
A Least-Privilege Memory Protection Model for Modern Hardware

Reto Achermann, Nora Hossle, Lukas Humbel, Daniel Schwyn, David Cock, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zurich

Abstract
We present a new least-privilege-based model of address-

ing on which to base memory management functionality in
an OS for modern computers like phones or server-based
accelerators. Existing software assumptions do not account
for heterogeneous cores with different views of the address
space, leading to the related problems of numerous security
bugs in memory management code (for example programming
IOMMUs), and an inability of mainstream OSes to securely
manage the complete set of hardware resources on, say, a
phone System-on-Chip.

Our new work is based on a recent formal model of address
translation hardware which views the machine as a config-
urable network of address spaces. We refine this to capture
existing address translation hardware from modern SoCs and
accelerators at a sufficiently fine granularity to model minimal
rights both to access memory and configure translation hard-
ware. We then build an executable specification in Haskell,
which expresses the model and metadata structures in terms
of partitioned capabilities. Finally, we show a fully functional
implementation of the model in C created by extending the
capability system of the Barrelfish research OS.

Our evaluation shows that our unoptimized implementa-
tion has comparable (and in some cases) better performance
than the Linux virtual memory system, despite both capturing
all the functionality of modern hardware addressing and en-
abling least-privilege, decentralized authority to access physi-
cal memory and devices.

1. Introduction
Both modern, fully-verified operating systems and traditional
production-quality kernels rely on a model of memory address-
ing and protection so simple it is rarely remarked on: RAM
and devices reside at unique addresses in a single, shared phys-
ical address space, and all cores have homogeneous memory
management units which translate from a virtual address space
into these physical addresses. These MMUs are all configured
by a single monolithic kernel.

Unfortunately, this model bears little relation to modern
hardware. Modern platforms like phone SoCs violate the
assumption of a single physical address space. A modern
computer is, in reality, a network of address spaces with ad-
hoc address translation functions between them, many config-
urable by sufficiently-privileged system software. Access to
memory is performed by a variety of heterogeneous cores and

I/O devices from different points in this network. Simply con-
figuring a given platform correctly to maintain the assumption
of a single physical address space on which the verification is
based on is, by itself, a complex and error-prone process.

The result is that traditional kernels suffer from numerous
(and continuing) security bugs arising from incorrect assump-
tions about memory addressing in the system, while correct-
ness proofs for verified kernels are cast into doubt by the
existence of “cross-SoC” attacks.

Moreover, centralized authority over all memory access
does not accommodate features like the secure co-processors
and management engines standard in modern PCs as well as
phone platforms. Authority to grant access to memory and
devices needs to be decentralized, and this decentralization
represented in the specification of the OS itself.

This paper develops an alternative model of hardware mem-
ory addressing, protection, and authorization which captures
the richness, complexity, and diversity of modern hardware
platforms. Our model can serve as a basis for formal verifi-
cation of system software but also as an informal basis for
designing correct memory management functionality.

The model is based on two guiding principles: completeness,
meaning that we capture the full semantics of real addressing
hardware without simplifying assumptions, and least-privilege,
meaning that we represent individual authority to both access
memory and modify translations at as fine a granularity as
allowed by the hardware.

In the next section we elaborate on the mismatch between
modern hardware and OS designs, and existing efforts to ad-
dress it. In Section 3 we review the recent related work on
which this paper builds, and lay out our methodology.

Our first contribution, in Section 4, is development of the
model itself. We start from an abstract model of memory ad-
dressing and progressively refine it until it captures the salient
features of modern memory hardware, including the rights
to modify translations in multi-level page tables and custom
protection units. We build an executable spec in Haskell which
serves as a basis for an implementation in a real OS.

In Section 5 we describe how Linux might be extended with
a subset of our model (foregoing least-privilege and centraliz-
ing authority in the kernel), and present a full implementation
of the model by extending the capability system in the Bar-
relfish research OS. Our implementation runs on real hardware
and can manage protection rights on a variety of hardware
platforms. We also discuss the minimal overhead it incurs for

1

ar
X

iv
:1

90
8.

08
70

7v
1

 [
cs

.O
S]

 2
3

A
ug

 2
01

9

metadata and bookkeeping.
In Section 6 we evaluate the performance of this memory

system and show that, despite the richer and more faithful view
of hardware it embodies, it provides comparable performance
to the highly optimized, but less functional, Linux virtual
memory system on identical hardware.

This paper also has a set of non-goals. Firstly, we do not
present any formally-verified OS software; our goal is rather
to show a model which can be used as a replacement for the
over-simplified addressing models currently used in the proofs
for verified systems like seL4 and CertiKOS.

Second, we develop no new memory subsystem for Unix-
like OSes. As we note below, reasoning about the correctness
and security of a modern computer requires going beyond a
Linux kernel to capture co-processors and intelligent devices.
We sketch in section 5.1 how a simplified version of our model
might be retrofitted to Linux.

Finally, this is not a bug-finding paper. We do not aim to
find problems in existing OS code (though we cite numerous
examples from other work). Instead, we lay the foundations
for a more faithful view of the hardware on which to base
better system software.

2. Motivation and Related Work

We first review the implicit model of memory addressing used
by existing OSes, and then explain with concrete examples
why it no longer reflects hardware reality. We discuss the
implications of this for both new, formally verified OSes and
traditional kernels like Linux, and the limitations of existing
approaches to the problem in both kinds of OS.

2.1. The traditional view of memory

Address translation is a fundamental technique in computing,
enabling relocation, demand paging, machine virtualization
(either via processes or full virtual machines), shared memory,
inter-process protection, and much other functionality.

Typically, the key abstraction employed is a virtual address
space, accesses to which are translated into addresses within
a unique, machine-wide physical address space by hardware
mechanisms (TLBs, multi-level page tables, etc.).

Physical memory addresses can thus be used as unambigu-
ous, system-wide identifiers for memory and devices, and
so are also used to keep track of access rights: Linux main-
tains such a data-structure for each page or frame of physical
memory, while some microkernels like seL4 [14, 23] and
Barrelfish [11, 15] use a capability system [26] to represent
physical memory regions with access rights.

An OS must configure translation hardware and maintain
these data structures to ensure correct and secure operation.
For example, user programs should only be able to load and
store to physical resources (memory, or memory-mapped I/O
devices) the OS has granted them access rights to.

2.2. Hardware doesn’t conform to this view

Unfortunately, modern hardware platforms violate the assump-
tions in the traditional model above. They are composed of
multiple, heterogeneous cores and devices each of which can
issue accesses to byte-addressable memory resources such as
DRAM, non-volatile memory or device registers. Worse, there
is no single “reference” physical address space [16]. Instead,
a network of address spaces or buses is connected by address
translation units which “routes” accesses through the network.

This breaks most of the assumptions of the classical model:
different cores and devices translate their virtual addresses
into different physical address spaces, physical addresses can
no longer be used as global identifiers without further scoping,
address aliasing is not only possible but likely, and finally,
software with access to translation units can reconfigure the
physical address space underneath the systems’ MMUs.

For example, the Xeon Phi co-processor [21] implements a
“system memory page table” which further translates physical
(post-MMU) addresses from the accelerator cores into the
host’s PCI address space using a single, shared register array
where each register controls the translation of a fixed 16GB
page in the Xeon Phi’s “physical” address space.

Such additional layers of translation are commonplace in
phone Systems-on-Chip like the NXP iMX8 [33], Texas In-
struments OMAP [39], and NVIDIA Parker [31] processors.
Such SoCs contain a variety of different processors with differ-
ent physical address spaces, which overlap and intersect [16].
This is a deliberate, rational design choice – for example, it is
important that a secure co-processor holding encryption keys
has private memory that cannot be accessed from application
cores, even in kernel mode.

I/O memory management units (IOMMUs, or System
MMUs) translate addresses generated by accelerators and
DMA-capable devices into a “canonical” system-wide physi-
cal address space. This allows user-space programs to share a
virtual address space with a context on the device, but impose
a further complexity burden on the underlying OS which must
now ensure that IOMMUs are always correctly programmed.
This code is fraught with complexity and consequent bugs and
vulnerabilities, as it is also intended to provide protection from
malicious memory accesses [29, 30, 28, 27]. The problem is
likely going to get worse with the proliferation of IOMMU
designs built into GPUs, co-processors, and intelligent NICs.

OpenCL’s Shared Virtual Memory extends the global mem-
ory region into the host memory region using three different
types [22]. Similarly, nVidia’s CUDA [32] or HSA [19] pro-
vide a unified view of memory. The same concerns apply here:
the complexity of maintaining a shared virtual address space
is pushed to system software, but remains.

Even memory controllers can violate the traditional model.
Hillenbrand et al. [18] reconfigure memory controller con-
figurations from system software to provide DRAM aliases
for mitigating the performance effects of channel and bank

2

interleaving. Proposals for “in-memory” or “near-data” pro-
cessing [34] raise further questions for OS abstractions [9] and
require a way to unambiguously refer to memory regardless
of which module accesses it.

2.3. Implications for current OS designs

Correctness arguments about OS code therefore rely on as-
sumptions about the hardware that no longer hold. Proofs for
the seL4 microkernel [23] assume a single, fixed, physical
address space without other translation hardware, and provide
no guarantees of safety in the presence of other cores or in-
correctly programmed DMA devices. CertiKOS [17] proves
functional correctness based on a model of memory accesses
to abstract regions of private, shared or atomic memory, but
again provides no proof in the presence of other translation
units and heterogeneous cores. Even work on verifying mem-
ory consistency in the presence of translation only considers
the simple case of virtual-to-physical mappings [36].

Proofs aside, the difficulty of getting complex memory ad-
dressing right in an OS is shown by the steady stream of related
bugs and vulnerabilities in Linux [20], for example ignoring
holes in huge pages (CVE-2017-16994), miscalculation of the
number of affected pages (CVE-2014-3601), access rights for
data pages (CVE-2014-9888), interactions of virtually mapped
stack with DMA scatter lists (CVE-2017-8061), handling of
shadow page tables (CVE-2016-3960). Moreover, miscalcula-
tions, misinterpretations or underflows of addresses and off-
sets, (Linux commits 9d8c3af3160, 7655739143, 29a90b708
and 5016bdb79), mixing up memory addresses with MSI-X
interrupt ranges (Linux: 17f5b569e09cf) and IOMMU address
space allocations (Linux: a15a519ed6e) cause unexpected
behavior, crashes or memory corruption.

Faced with the complexity of hardware, a number of ad-hoc
point solutions have appeared for specific cases, primarily
GPUs, such as VAST [25] which uses compiler support to
dynamically copy memory to and from the GPU and Mo-
saic [8], which provides support for multiple sizes of page
translation in a shared virtual address space between CPU
and GPU. In DVMT [3], applications request physical frames
from the OS that have specified properties. The system al-
lows applications to customize how the virtual-to-physical
mapping is set up by registering a TLB miss handler for the
special DVMT range. The CBuf[35] system globally manages
virtual and physical memory focusing on efficient sharing
and moving data between protection domains. CBuf unifies
shared-memory, memory allocation and system-wide physical
memory allocation.

All these approaches aim to simplify user code, at the cost
of OS complexity. In contrast, our work is a response to this
complexity: the central OS abstraction of a single, shared,
global physical address space, combined with straightforward
translations to it from virtual address spaces, is inadequate for
a secure and reliable OS running on modern hardware. We
need a richer model of addressing, and this paper is based

on one which views address spaces as nodes in a network of
translation units.

3. Methodology
Our new model builds on the existing decoding net model of
Achermann et al. [1, 2], which has been shown to provide
a precise formal model of many of the sorts of systems we
consider in this work: Multi-socket NUMA systems, ARM
SoCs, plug-in accelerators, etc.

Achermann et al. model the addressing structure of a system
as a directed graph, where nodes represent (virtual or physical)
address spaces or devices (including RAM), and edges the
translation of AS-local addresses into other ASs or devices.
The graph is a set of nodes, defined as an abstract datatype so:

name = Name nodeid address

node = Node accept :: {address}
translate :: address→{name}

Their model distinguishes local names (address), relative to
some address space, and global names (name), which qualify
a local name with its enclosing address space. Each node may
accept a set of (local) addresses, and/or translate them to one
or more global names (addresses in other address spaces).

This existing model is a long way from being a basis for
an operational system. In Section 4.1 we add two impor-
tant features: dynamic configuration of the translate function
which captures how real translation units can be programmed,
and rights corresponding to the ability for software processes
to configure such units. We model the complex network of
interacting address spaces, identify and label the necessary
divisions of authority as finely as possible, following the prin-
ciple of least privilege.

We adopt a methodology strongly influenced by the suc-
cessful combination of refinement and executable specification
used in the seL4 project.

Specifically, we begin by identifying all relevant objects
(page tables, address spaces, . . .), the subjects that manipulate
them (processes, the kernel, devices, . . .), and which authority
each subject exercises over an object (e.g. in mapping a frame
to a virtual address). These are expressed in an access-control
matrix (following Lampson [24]) which forms our abstract
specification, analogous to the high-level security policy (in-
tegrity) shown to be refined (correctly implemented) all the
way down to compiled binaries for seL4 [38].

Again, as in seL4 [12], we next develop an executable spec-
ification in Haskell (see Section 4.2), expressing subjects,
objects, and authority as first-class objects, permitting rapid
prototyping without giving up strong formal semantics. Corre-
spondence between abstract and executable models is thus far
by inspection and careful construction.

Finally, we show (again with precedent [40]) that the ex-
ecutable model (and hence the abstract model) permits mul-
tiple high-performance implementations: In the Barrelfish

3

OS (expressing rows of the access matrix with capabilities,
see Section 5.2), and in Linux (collapsing distinct authori-
ties held by the kernel, and taking columns as access-control
lists, see Section 5.1). Barrelfish and seL4 have closely re-
lated capability-based resource management and authorization
systems and our implementation transfers naturally to seL4;
Barrelfish is currently a better platform for our work, due to
its support for multiprocessing and heterogeneous hardware.

By adopting a proven methodology, we can be confident that
the resulting artifact is compatible with an seL4-style verifica-
tion, and could thus serve as a more accurate replacement for
the hardware model underlying the seL4 or CertiKOS proofs.
Simultaneously, by careful selection of an abstract model (the
access-control matrix) and through the use of refinement, our
model is not specific to a particular implementation.

4. Model
We derive our abstract, formal model from the existing de-
coding net model in two steps. First, we extend the model
to include dynamic behavior (updating translations), and ex-
press the required authority using an access-control matrix.
Second, we build a (still relatively abstract) executable spec-
ification in Haskell, allowing us to reason concretely about
implementation trade-offs.

4.1. Authority and Dynamic Behaviour

Decoding nets are static: they represent the current state of
the system. To describe the dynamic behavior of a system, we
add an abstraction above the decoding net, consisting of a set
of (dynamic) address spaces. The state of the system is then
expressed as a function from address space, to the mapping
node representing its current configuration:

configuration = address space→ node

We can then express the configuration space of an address
space, as a set of possible configurations:

config space = address space→{node}

The configuration space of a page table in a system with 4kiB
translation granularity would, for example, only include nodes
that map all addresses in any naturally-aligned 4kiB region
contiguously. We will use the configuration space to express
allowable system states according to a security property.

At this level of abstraction, state transitions are simply
changes in the current configuration of the address spaces:

ModifyMap :: address→ name→
configuration→ configuration

Authority Consider Figure 1, representing the general case of
an update to an intermediate address space (for example the
intermediate physical address, IPA, in a two-stage translation
system). We identify two distinct rights (authorities): The

Virtual
Address Space

Intermediate
Address Space

Physical
Address Space

grant

grant

map

map

Figure 1: Mappings between address spaces showing grant
and map rights of mapped segments.

Xeon Phi Core

Xeon Phi Bus

Xeon Phi SMPTGDDR

IOMMU

Registers

DMA Core

IOMMU

PCI Bridge WindowRAM

CPU Core

Figure 2: Address spaces in a system with two PCI devices

map right, or the right to change the meaning of an IPA by
changing its mapping; and the grant right, or the right to grant
access (by mapping) to some range of physical addresses.

These two rights do not necessarily go together.
Consider Figure 2, showing the address-space structure of

a system with two PCI devices: a DMA engine and an Intel
Xeon Phi co-processor. Imagine that we wish to establish
a shared mapping to allow a process on a Xeon Phi core to
receive DMA transfers (e.g. network packets) into a buffer
allocated to it in the on-board GDDR.

The process ‘owns’ the buffer, and has the ability to call
recv(), triggering a DMA transfer. We interpret this as the
process having the right to grant access (temporarily) to the
DMA core. The user-level process, however, clearly should
not have the ability to modify the IOMMU mappings of the
DMA core at will (or its own, for that matter). That is, it does
not have the map right on the relevant address space.

What is needed is some agent (hereafter a subject, in stan-
dard authority-control terminology) with both the grant right
on the buffer object, and the map right on the address space
object. In a traditional monolithic kernel, both these rights are
held (implicitly) by the kernel, which exercises them on behalf
of the subjects. It is up to the kernel to maintain accurate
bookkeeping to determine whether any such request is safe,
typically using an ACL (access-control list) i.e. authority tied
to the subject.

In a microkernel such as seL4 or Barrelfish, these rights are
represented by capabilities, handed explicitly to one subject,
in order to authorize the operation. In this case, authority is
tied to the object. These are equivalent from the perspective
of access control, differing only on implementation detail: In

4

subject/object DMA IOMMU buffer

IOMMU driver map
Xeon Phi process grant

Table 1: Access control matrix of the Xeon Phi example

both cases, the same two basic authorities are present.

Right R1 (Grant)
The right to insert this object into some address space
Right R2 (Map)
The right to insert some object into this address space

Note that the ’virtual’ and ’physical’ address spaces of Fig-
ure 1 can be viewed as special cases of an intermediate ad-
dress space: A top-level ’virtual’ address space is simply one
to which nobody has a grant right, and a ’physical’ address
e.g. DRAM is one to which there exists no map right.

The standard representation of authority in systems is an
access control matrix [24], such as that of Table 1. This can be
read in rows: The IOMMU driver has the map capability to the
IOMMU address space, and the process the grant capability to
the buffer. Alternatively, reading down the columns gives the
ACLs: the IOMMU records map permission for the driver, and
for the buffer is recorded a grant permission for the process.

This access control matrix on maps and grants is our abstract
model. A system is correct (secure) statically, if its current
configuration is consistent with the access control matrix. It is
secure dynamically if any possible transition, beginning in a
secure state, must leave the system in a secure state.

4.2. Executable Specification

Thus far we have expanded upon the existing decoding net
model, giving us a dynamic access-control matrix formulation
of the system’s correctness property. Next, we implement
a (still abstract) reference monitor [4] in Haskell, to aid in
rapid prototyping of both model and implementation, and as
an intermediate step in the process of refinement from abstract
specification to operational, high-performance implementa-
tion. In this, we again take our example from the seL4 ap-
proach, which used just such an executable specification [13]
to prototype the kernel prior to implementation in C.

Given our target environments of Linux and Barrelfish, oper-
ations and data structures for the reference monitor are named
in a manner suggestive of an OS kernel, although other im-
plementations would be possible. The most important detail
added at this stage is to make translation structures explic-
itly visible. The reason for this is to allow us to express the
fact that the translation state of the system depends, in a deter-
ministic manner, on the contents of RAM and device registers
(e.g. segment registers). This in turn allows us to express the
invariant (necessary for integrity of the reference monitor) that
no such objects are ever made accessible (i.e. mapped) outside
the monitor itself:

RAM Frame

grantuse

AddressSpaceOf

map, grant
Configurable

Address Space

mappable objectsunmappable objects

TStructure

use

retype

Figure 3: Object Type Hierarchy and possible rights (green).

mappingTrace :: (Operation KernelState)
mappingTrace = do

...
-- retype a RAM object to a Frame
res <- retype RAM Disp Frame Disp
-- retype another RAM object to a translation structure
res <- retype RAM2 Disp TStructure Disp
-- map the frame into the translation structure
mapping1 <- Model.map TStructure Frame Disp
...

Figure 4: Mapping a RAM object

Invariant I1 (Never Accessible)
Subjects can never access unmappable objects

Note that (in contrast to the seL4 executable specification),
the details of the translation structures are kept opaque at this
point—we merely record that they exist at certain locations
by dividing the mappable address spaces into objects (with
terminology borrowed from Barrelfish):

data Object = RAM {base :: Name, size :: Natural}
| Frame {base :: Name, size :: Natural}
| TStructure {base :: Name, size :: Natural}

Objects form a hierarchy (Figure 3) which defines how ob-
jects can be derived from each other. For example, translation
structures (TStructure) are created by retyping RAM ob-
jects. The previous invariant now reduces to stating that no
object of type TStructure is ever mapped. RAM is the base
type for untyped memory, and a Frame is RAM that has been
retyped to be mappable.

In addition, the set of translation structures defines (again in
an implementation-specific manner), the set of address spaces:

AddressSpaceOf :: TStructure -> AddressSpace

Authority is likewise stored as explicit rights:

data Authority = Access Object | Map Object
| Grant Authority

The monitor (kernel) state is a set of subjects (the term dis-
patcher being borrowed from Barrelfish), a mapping database
(MDB) recording the derivation relation between objects, and
a set of active address spaces:

data KernelState
= KernelState (Set Dispatcher) MDB (Set AddrSpace)

5

The monitor is exercised (as for the seL4 specification) by
direct calls to its API, such as in Figure 4. These are imple-
mented within a state monad: Operation. Thus changes to
the system’s state are a sequence of API calls e.g. retype or
map:

data Operation a = Operation (State -> (a, State))
instance Monad (Operation) where ...

Traces are thus sequences of such operations, correspond-
ing to an observed sequence of KernelStates. Each of these
states defines a static configuration of the decoding net. Oper-
ations include:
• retype converts an existing object into an object of a per-

missible subtype.
• map installs a mapping in a translation structure.
• copy copies the rights from one subject to another.

Contained within the set of all possible traces T , there is
a set of correct traces CT ∈ T that correspond to sequences
of consistent KernelStates. All other traces indicate that
execution had to be aborted at some point since an operation
was applied that would otherwise have led to transitioning to
an inconsistent or disallowed system state.

5. Implementation
We first describe how a subset of our model might be imple-
mented in the Linux monolithic kernel, and then present a full
implementation based on the open-source Barrelfish OS [11].
We refer to this new implementation as Barrelfish/MAS, where
MAS refers to Multiple Address Spaces.

5.1. Implementation in a Monolithic Kernel

We describe how one could implement the least privilege
model and add support for multiple address spaces in a mono-
lithic kernel at the example of Linux.

The Linux kernel acts as the reference monitor and therefore
assumes authority over all address spaces in the system: it can
change address space mappings and grant access to memory at
will. This happens mostly as a reaction to user-space requests
such as mmap, but may also originate from policy decisions
inside the kernel e.g. demand paging or page caches where
the kernel decides to unmap memory from a process.

A possible way to achieve separation is through intercepting
updates to the translation tables, which can be done using the
para-virtualization subsystem. Whenever a translation table is
changed, this gets converted into an API call to the reference
monitor. This gives some form of separation, but without
proper virtualization cannot be strictly enforced.

User-space processes may share memory by creating shared
memory objects, which are implemented as files in a ramfs.
Linux manages access to that shared memory object–and file-
based objects in general–using standard UNIX permissions,
representing an access control list. Consequently, every pro-
cess with a matching user or group id can access the shared
memory object. ACL means for each object (resource) in

the system there is a list of subjects plus rights. Files can be
opened, which gives the process a file descriptor, which can
be mmaped, hence a read right on a file can be seen as a grant
right to the memory described by that file. After opening a
file, the file descriptor can also be passed around, hence also
the file descriptor represents a grant right.

Most memory used by applications is not file backed, and
hence referred to as anonymous memory. User-space pro-
cesses have the access right to mapped anonymous memory.
The process cannot explicitly hand over the grant right to
anonymous memory to another process other than forking
itself, where the child process inherits rights on resources from
its parent.

A process can request memory to be mapped and unmapped
from its address space. It may supply hints on what type of
memory it would like, but in the end the Linux kernel decides
where to map and what memory to grant.

Apart from tracking rights, our design also requires the un-
derstanding of multiple address spaces and have rights refer
to qualified names instead of addresses. In order for Linux to
do this, we have to make sure that the physical frames are cor-
rectly identified in the presence of multiple address spaces (e.g.
the kernel sees a RAM region at a different address than say a
DMA engine). Each frame is identified by a physical frame
number (PFN). We can use this PFN as the canonical name for
the frame itself and the sparse memory model in Linux [5] to
implement multiple address spaces holding physical resources
as memory sections. For each frame of memory, Linux main-
tains a data structure tracking its use. We can augment the data
structure to include type information to implement different
memory object types (Linux already distinguishes between
user and kernel objects). The relationship between PFNs and
local physical addresses would need to be changed from a
fixed offset to one that depends on the current configuration
of translation hardware plus the current executing core.

In conclusion, the Linux kernel acts as a central authority
holding the grant and map right to all address spaces and
resources. A separation is possible when using the para-
virtualization subsystem to intercept updates to translation
tables. The kernel data structures could be modified to support
the notion of multiple address spaces. Because it is very hard
to support the full granularity of our model in a monolithic
kernel, we chose to implement and evaluate it in a capability
system, which is described in the next section.

5.2. Implementation in Barrelfish/MAS

We chose the open-source Barrelfish OS [11] as the basis for
our implementation because it uses an seL4-style capability
system for authorization and resource management, but in con-
trast to seL4 has has support for heterogeneous platforms and
has drivers for IOMMUs and the Intel Xeon Phi co-processor,
thus providing a real-world example of complex addressing.

We describe the relevant parts of our implementation in
Barrelfish/MAS: the capability system that supports multiple

6

address spaces (§ 5.2.1), implementation of runtime support
by generating code for known translation and maintaining
a graph of configurable nodes § 5.2.2, and finally adapting
user-space device drivers (§ 5.2.3).
5.2.1. Capability System Barrelfish manages physical re-
sources using a capability system for naming, access control,
and accounting of objects in a single physical address space.
We describe the Barrelfish/MAS capability system as a whole
here, since a clear description of the original Barrelfish capabil-
ity system has not been published. As in seL4 [14], capabilties
are typed to indicate what can be done with the memory they
refer to; rules dictate valid retype operations (e.g retyping
RAM to a Frame).

Barrelfish/MAS builds on Barrelfish by adding multiple
address spaces and having capabilities which refer to memory
objects hold the object’s canonical base name, the size of the
object they are referring to, as well as its type and rights.

Barrelfish/MAS is a partitiioned capability system: Capabil-
ities are stored in memory-resident objects as well, but these
are unmappable ensuring that no user-space process can forge
capabilities by writing to memory locations. A process hold-
ing a capability obtains a certain set of rights on the object
referred to by the capability. These rights can be exercised by
invoking the reference monitor API which is implemented as
a system call interface.

Capabilities encode the canonical names of the objects they
refer to, implemented as a struct with two fields: the address
space identifier (ASID) and the address within the address
space. An optimized variant packs both values into a 64-
bit integer providing support for a 16-bit ASID and a 48-bit
address, which is sufficient for current platforms.

ASIDs nevertheless are a limited resource, and their alloca-
tion must be managed accordingly to avoid ASID exhaustion.
We use a dedicated capability to manage ASIDs, where a new
range of ASIDs can be allocated by retyping a larger range of
ASIDs.

There may be multiple capabilities pointing to the same
object, but there is always at least one capability for every
given byte in memory.

The mapping database: Barrelfish/MAS manages a map-
ping database, a data structure that allows efficient lookup
of all related capabilities given the name of object they refer
to. The mapping database is a balanced tree structure of all
capabilities present in the database.

The mapping database stores the capabilities in a cannonical
ordering, allowing efficient lookup and range query operators
such as “overlap” and “contains”. The canonical ordering of
the capabilities is defined on their canonical name (address
space and address), size and type. Capabilities to objects with a
smaller name appear first. If the base names of two capabilities
are equal, then the larger object comes first. Finally, all other
attributes being equal, the type of the capability defines the
order: types higher up in the hierarchy come first.

This ordering is important, because based on the canonical
order of the capabilities one can define the descendant relation.
We say a capability B is a descendant of capability A if A is
smaller than A and B is fully contained in the range convered
by A:

descendant c1 c2↔ c1∩ c2 = c2∧ c1.type≤ c2.type

The mapping database can therefore be traversed to find the
descendants of a capability (successors) and ancestors (prede-
cessors) efficiently.

It is important that the ordering relation is in line with the
retype operation. If B can be retyped from A, B must be smaller
than A. Our definition fulfils this, a retype can increase the
name, decrease the size or change the type to a subtype.

With help of the mapping database, we can efficiently find
all the ancestors and descendants of a particular object.

Page tables and address spaces: Barrelfish/MAS has a dis-
tinct capability type for each hardware-defined translation
table e.g. one for each of the four levels of the x86_64 architec-
ture. Each of these capability types are translation structures
in the sense of the executable spec.

User processes can construct their own page tables through
capability invocations. This is safe, because the invocations
only allow operations resulting in correct-by-construction page
tables, and processes can only map resources for which they
hold a capability with the grant right to it.

Since a page table defines an address space, we can derive
an address space capability from a page table. This address
space represents the input address space of the translation
table. For each translation table, the spanning address space
can only be derived once.

When we delete a page table, we use this stored ASID to
query the mapping database for address space capabilities and
start a recursive deletion. This ensures that upon deletion of the
page table, the address space is deleted including all segments
within it. This is equivalent to revoking all descendants of the
address space capability and then deleting it.

Tracking mappings: When access to an object is revoked,
all positions where this object has been mapped must be found
and removed. We manage this bookkeeping using the capa-
bility system. For each mapable object there exists a corre-
sponding mapping capability. The mapping capability is a
descendant of (retyped from) the mapped objects and hence
we can find all locations where an object is mapped by walk-
ing the mapping database in ascending order. Each mapping
capablity indicates the page table objects and slot range where
the object has been mapped.

The same technique is used to track mappings of multi-level
page tables. For each valid entry in a page table there exists
a mapping capability. When the last mapping capability is
deleted, the page table entry is invalidated.
5.2.2. Runtime Support In Figure 2 we draw a diagram of
the different address spaces present in a heterogeneous multi-

7

processor system. To acquire the access right to a particular
memory object, a sequence of translations need to be setup.
Which address spaces need to be configured depends on the
system topology, which may only be discovered at runtime.

SoC-Platforms The topology of SoC platforms is typically
fixed and known at compile time. We can therefore enumer-
ate all address spaces of the SoC and pre-compute all fixed
translations and store a graph of the topology consisting of
configurable and leaf address spaces in the kernel. We can
generate core-specific translation functions that convert local
addresses to global names and vice versa. The name can then
be resolved by walking the translation structures of the con-
figurable address spaces until it reaches an accepting address
space or there is no translation. We evaluate this scenario
in § 6.4.

Device Discovery In general, the information about the
hardware topology and its address spaces may be incomplete
and must be discovered during runtime. For instance, the pres-
ence of an IOMMU is known after parsing the ACPI tables and
the Xeon Phi co-processor of our example (Figure 2) is discov-
ered by PCI, and lastly the size of the GDDR available on the
co-processor is known by the driver. The state of the model is
therefore populated by multiple sources of information.

In Barrelfish, there exists the system knowledge base
(SKB) [37] which stores information about the system. The
SKB in a nutshell is a database storing facts about the system
which can be queried using Prolog. We implement the model
inside the SKB. During device discovery, processes insert in-
formation about the discovered address spaces and how they
are connected with each other.

Model Queries Device drivers must configure translation
units to enable devices to access memory. Booting a core
on the Xeon Phi co-processor is a particular example: appli-
cation modules to be run on the co-processor may reside in
host RAM. To make this accessible from the co-processor
the IOMMU and the SMPT must be configured accordingly.
This information can be obtained by querying the SKB, which
returns a list of address spaces that must be configured. The
query is based on a shortest path algorithm between the ad-
dress space of the Xeon Phi core and the address space where
host RAM resides in.

Running the queries in the SKB is costly (§ 6.3). We provide
a library that caches the graph representation of configurable
address spaces and run shortest path on it.

The result of the query is a list of address spaces that need
to be configured to make the memory object accessible from
the source address space. This blueprint is then converted by
the user-space process into a sequence of capability operations
to allocate memory, setup translation structures and perform
the relevant mappings. The model queries only provide a ‘hint’
on what needs to be configured while the capablity system
enforces the authorization required to perform the required
mappings. We evaluate the latency of this scenario in § 6.2.

Address Resolution While the SKB stores the address
space topology of the system it does not store the actual trans-
lations of configurable address spaces. An address can be
fully resolved by performing the previous query and instead of
changing the configuration of the address spaces, we can use
the translation structure to calculate where the address space
translates the address.
5.2.3. Device Driver Adaptation We adapt the user-space
device drivers in Barrelfish to use the runtime support de-
scribed above when configuring their devices and allocating
in-memory data structures. In Barrelfish/MAS, device drivers
run in user-space. They are started by a device manager which
passes a set of capabilities including a capability to the device
registers and the IOMMU IPC endpoint. The driver can then
use capability operations to map the device registers into its
address space or program the IOMMU translation through the
IOMMU IPC endpoint. Devices with additional memory, such
as the Xeon Phi with GDDR receive a capability to the leaf
address space, which the driver can then use to retype new
RAM capabilities from it.

Memory access from the device might be translated by the
IOMMU. To setup a shared buffer between the driver and
the device the driver needs to: Allocate memory, Map the
memory into the driver’s own address space, query the graph
to determine necessary configuration steps, follow the result
to map the memory into the device’s address space For an
evaluation of these steps see § 6.2.

To set up the IOMMU, we implemented two alternatives:
i) an RPC to the IOMMU reference monitor that manages
the translations, or ii) direct capability invocations on the
translation table used by the IOMMU for this device. This is
safe, because the capability system enforces that only memory
for which the driver has a capability for can be mapped.

6. Evaluation
We evaluate our implementation by showing memory manage-
ment performance comparable to Linux (§ 6.1) and applicabil-
ity to a real-world scenario using co-processors (§ 6.2). We
also show the scaling behavior of the model queries (§ 6.3) and
demonstrate how the model can also be used in pathological
topologies using simulators (§ 6.4). Finally, we analyze the
space-time overheads of our implementation (§ 6.5).

All performance evaluations use a dual-socket Intel Xeon
E5 v2 2600 (“Ivy Bridge”) with 256GB of main memory.
There are 10 cores per socket with HyperThreading, Turbo-
Boost, and speed stepping disabled, and the system runs in
“performance” mode. The system also has two Intel Xeon
Phi co-processors (“Knights Corner”). All Linux experiments
use Ubuntu 18.04LTS, with kernel version 4.15 and the latest
patches for mitigating Meltdown and Spectre attacks.

6.1. Memory operations

We compare the performance of Barrelfish/MAS’s memory
subsystem against Linux with Spectre/Meltdown mitigation

8

prot1-trap-unprot protN-trap-unprot trap only

2.5
5.0
7.5

10.0
12.5
15.0

kc
yc

le
s/

(p
ag

e|
tra

p)

Linux - Heuristic
Linux - Full

Linux NS - Heuristic
Linux NS - Full

Barrelfish/MAS Default
Barrelfish/MAS Direct

Figure 5: Appel-Li benchmark on Barrelfish/MAS and Linux
with and without Spectre/Meltdown mitigation (NS).

both enabled and disabled, using two microbenchmarks. Bar-
relfish/MAS has no mitigation measures.
6.1.1. The Appel and Li benchmark [6] tests operations
relevant to garbage collection and other non-paging tasks by
measuring time to protect, and trap-and-unprotect pages of
memory.

We run the benchmark with working sets of less than 2MB
(512 pages). We measure Linux with four configurations: i)
default TLB flush heuristic, and iii) always full TLB flush, all
with Spectre/Meltdown mitigation both enabled and disabled.
We benchmark Barrelfish/MAS in two ways: i) direct invo-
cation of the mapping capability and ii) protecting the page
through user-level data structures tracking the mapping. Note
that Barrelfish/MAS does not support selective TLB flushing.

The results are shown in Figure 5. We observe that Bar-
relfish/MAS is consistently faster than Linux in all cases. The
Spectre/Meltdown mitigation incurs a 45-53% slowdown. For
both multi-page (protN-trap-unprot) and single page (prot1-
trap-unprot) protect-trap-unprotect, Barrelfish/MAS is up to
4x faster than Linux. We observe a slight increase in execution
time when full TLB flushes are enabled. The Barrelfish/MAS
“Direct” results use the kernel primitives directly. This enables
us to isolate the cost of user-space accounting, which accounts
for 10-17% of the execution time.
6.1.2. The map/protect/unmap benchmark measures the
performance of the primitive operations map, protect and
unmap with respect to an increasing buffer size.

The benchmark works as follows: i) allocate a region of
virtual memory and fault on it to map memory, ii) write-protect
the entire virtual region, and iii) unmap the virtual memory
region again. We time each operation separately. We mea-
sured different ways to map memory on Linux using mmap,
shmat and shmfd and compare Barrelfish/MAS against the
best performance we obtained on Linux for each operation
and page-size. For mapping and unmapping 4kB pages, this
was passing a file descriptor obtained through shm_open to
mmap. For map/unmap with larger page sizes, shared memory
segments (shmat, shmdt) performed best. Changing page
protection was always fastest using mprotect. Again, we
benchmark Linux with and without Spectre/Meltdown mit-
igation enabled. If possible, we do not measure the time
for memory allocation as this is dominated by memset. On
Barrelfish/MAS we use the high-level interfaces to include

user-space book-keeping in the measurements.
Figure 6 shows execution time of the three operations per

page for an increasing buffer size and three page sizes. En-
abling Spectre/Meltdown mitigation results in a slow down
of up to 2x for small page numbers. In all cases, the cost per
page decreases as the number of pages increases, amortizing
the system call cost.

Map: Barrelfish/MAS is able to match and outperform Linux
in all but one case, with a significant difference when using
large and huge pages.

Protect: These are in line with the Appel and Li bench-
marks above; Barrelfish/MAS outperforms Linux in all config-
urations.

Unmap: We observe very similar performance characteris-
tics here. For small buffer sizes Linux is slightly faster, for
larger buffers Barrelfish/MAS slightly outperforms Linux.

From these two microbenchmarks, we conclude that Bar-
relfish/MAS memory operations are competitive: capabilities
and fast traps allow an efficient virtual memory interface de-
spite splitting up larger mappings into multiple capability oper-
ations and syscalls. It is possible to build a fast and competitive
memory system which still fully implements our fine-grained,
least-privilege model.

6.2. Complex hardware

We now profile the support for address space networks in Bar-
relfish/MAS, including memory mappings and model queries.
We put the cost in the context of related operations a device
driver has to perform.

We profile the boot process of the Xeon Phi Co-Processor
on our server platform. All accesses from the co-processor to
host RAM are translated multiple times, most notably:

CoreMMU → SMPT → IOMMU → SystemBus

Each step must be configured correctly. We adapted the ex-
isting drivers for the co-processor, the system memory page
table (SMPT), and the IOMMU to use our new capabilities
and model queries. The MMU is managed by the kernel
running on the co-processor cores. Resources are managed
using the capability system which allows safe programming
of translation tables.

First, we allocate 6MB from host RAM, and map this into
the device drivers address space (equivalent to performing an
anonymous mmap in Linux). Then we copy the boot image into
this allocated buffer. We then query the model representation
to determine which translation units must be reprogrammed.
We map the buffer into the device’s IOMMU address space,
and then map the resulting obtained segment into the SMPT
address space. We compare the IOMMU mapping in two
cases. In the first, we ask the IOMMU driver to perform the
mapping; this ad-hoc approach corresponds to the current state
of the art. In the second, enabled by our model, we perform
the mapping directly with capability invocations.

9

4k 2M 1G 64G0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
pe

r p
ag

e
[

s]

Map

4k 2M 1G 64G0.0

0.5

1.0

1.5

2.0

2.5

3.0 Protect

4k 2M 1G 64G0.0

0.5

1.0

1.5

2.0

2.5

3.0 Unmap

4k Linux
4k Linux NS

4k Barrelfish/MAS
2M Linux

2M Linux NS
2M Barrelfish/MAS

1G Linux
1G Linux NS

1G Barrelfish/MAS

Figure 6: Comparison of memory operations on Barrelfish/MAS and Linux with and without Spectre/Meltdown mitigation (NS).
Execution time per page in µs. Buffer sizes in powers of two from 4kB to 64GB.

Linux MMAP Local Map RPC Map0
100
200
300
400
500
600
700
800
900

1000

Ti
m

e
[u

s]

Map SMPT
Map IOMMU
Query Model
Write Memory
Allocate &
map process

Figure 7: Profiling Configuration Time for a Xeon Phi Co-
Processor comparing Local Syscalls and RPCs to Perform
IOMMU Mappings with Linux mmap’ing a buffer of the same
size for perspective.

As Figure 7 shows, the cost is dominated by memory al-
location, which takes about 625µs and involves an RPC to a
memory server. Writing the buffer content using memcpy takes
224µs. Determining the units to be configured to make the
buffer available to the device takes 71µs, using the C graph
implementation. Setting up the IOMMU mapping is 2µs (or
32µs, when using RPC). Mapping the segment into the SMPT
using a kernel driver takes 5µs.

For comparison we also show the cost in Linux to mmap an
anonymous 6MB region in a userspace process – equivalent
in our implementation to allocating and mapping the buffer
in the driver. We perform this operation slightly faster than
Linux, but pay an additional 71µ to dynamically determine
the nodes that have to be configured. A less flexible approach
might pre-compute or memoize this step, avoiding the latency
at map time. Compared with the cost of allocation and writing
the memory, the cost of setting up the IOMMU and SMPT
mappings (together 7µs) are negligible. Note that in any
system an untrusted agent will have to perform some sort of
invocation (such as a system call) to install these mappings.
Despite our fine-grained rights and dynamic implementation,
performance is comparable to Linux.

6.3. Scaling

We now turn to the scaling properties of the model represen-
tation with respect to the system complexity. In real systems,
we see ever-increasing numbers of cores and DMA-capable
devices, but the diameter of the decoding net representation
grows much more slowly, and rarely exceeds 10. This is true

1 2 4 8 16 32 64 128 256
Number of PCI devices

0
250
500
750

1000
1250
1500

Ti
m

e
[u

s]

Native
EclipseCLP

Figure 8: Cost of determing mappable nodes on an X86 sys-
tem with growing number of PCI devices.

not only for x86 systems, but also for all the ARM SoCs we
have encountered to date.

We write a synthetic benchmark that simulates a system
with an increasing number of PCIe devices, each of which has
its own address space and translation unit, much like the Intel
Xeon Phi described in the previous section. This grows the
model state in two ways: the total number of address spaces,
as well as the number of these that are configurable. Both grow
linearly with the number of PCIe devices. We measure the time
it takes to determine the configurable address spaces between
a PCIe device and the system bus, a typical setup operation
from a device driver that has to setup IOMMU and device-
local translation structures. We evaluate two implementations:
i) a Prolog implementation of the model using the EclipseCLP
interpreter in Barrelfish, and our C implementation based on a
graph represented as an adjacency matrix. Both use Dijkstra’s
algorithm on the graph representation.

Figure 8 shows that, due to internal memory allocations, the
performance of EclipseCLP implementation scales linearly in
the number of devices. The native C implementation, in con-
trast, shows almost constant performance. Small linear factors
stem from walking of the adjacency-matrix and initialization
of the parent array.

We conclude that the cost of determining configurable nodes
remains almost independent of the system complexity, as long
as the graph is of low diameter and is maintained in an effi-
cient data structure, suggesting that the routing calculation is
feasible for modern hardware.

10

6.4. Correctness on simulated platforms

In this qualitative evaluation we show that the model imple-
mentation is functional and performant even when run on
simulated platforms with unusual address space topologies
not supported by other systems. While these topologies are
extreme, their envelope includes other real systems (such as
those with secure co-processors) which are not handled by
current systems.

We wrote a series of system descriptions for the ARM Fast
Models simulator [7]. We use this description to i) configure
the simulator and ii) extract the topology of the memory sub-
system. We then use this information to populate the address
space model which is used at compile time to generate oper-
ating system code and at runtime to query information about
the memory system as in the previous evaluation. We mention
four configurations, where each consists of two ARM Cortex-
A57 clusters, each having their own memory map connecting
to DRAM and other devices. The memory map is configured
as follows:
1. Uniform Uniform memory map between all clusters.
2. Swapped Memory map contains two areas whose addresses

are swapped (exchanged) between the two clusters.
3. Private Each cluster has its own private memory region.
4. Private Swapped A combination of the Private and

Swapped configurations
We know of no other current OS designs which can manage

memory globally in all these cases. Popcorn Linux [10] and
Barrelfish have limited support for case 3; while regular Linux
and seL4 only support case 1.

Barrelfish/MAS is able to boot and manage memory on all
platforms without modifications, regardless of the topology, by
virtue of the capabilities used to refer to memory containing
the canonical name of the object. Whenever an object is
accessed, this canonical name is converted into a local address
using a generated function.

6.5. Space and time overheads

Finally, we analyze the time and space complexity of manag-
ing the physical resources of the system using capabilities in
Barrelfish.

We are interested in the space overhead to store the capa-
bilities, managing the lookup of capabilities in the mapping
database, and creating new mappings.

In the implementation, capabilities occupy 64 bytes each.
There is typically less than one capability for each frame of
memory, as each capability can represent up to 264−1 bytes
of memory. The number of capabilities should grow sub-
linearly with the size of available RAM. For each mapping,
Barrelfish/MAS creates a capability for bookkeeping. The
number of these mapping capabilities also grows sub-linearly
in the total number of mapped frames. Large frames result
in one mapping capability per page-table that is spanned for
the mapping. Since the 64-byte capability representation also

includes all the pointers necessarily to index the mapping
database, the latter incurs no additional overhead. The index
itself is a balanced tree; lookups are logarithmic in the total
number of capabilities.

Overall, keeping track of memory resources with capabil-
ities incurs a space overhead which grows at worst linearly
in the available physical memory. Furthermore, the mapping
database can be implemented and queried efficiently. As-
suming the Barrelfish/MAS worst case of one capability per
4kB frame, this accounts for a 1.5% total memory overhead.
In comparison, Linux manages a struct page per physical
frame of up to 80 bytes in size, an overhead of almost 2%.

7. Conclusion
In this paper we have built on existing work in modelling
the complex interacting address spaces in modern hardware
by adopting the proven methodology of the seL4 project to
produce a rigorous, no-stone-left-unturned model of mem-
ory management. Our model applies well-known concepts
in access control, giving an abstract model amenable to im-
plementation in capability-based systems (e.g. Barrelfish), as
well as ACL-based systems such as Linux.

We have shown that it is possible to implement the model
efficiently in an operating system delivering excellent memory
management performance while at the same time offering a
clean and safe way to deal with the complexity of the allocation
and enforcement problem.

We’ve shown that the model can be used to configure real,
complex (even pathological) systems, scales well, and intro-
duces little overhead. Our model is a sound foundation for
both fully verified systems and more reliable memory manage-
ment in existing systems.

References
[1] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.

Formalizing Memory Accesses and Interrupts. In Proceedings of the
2nd Workshop on Models for Formal Analysis of Real Systems, MARS
2017, pages 66–116, 2017.

[2] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.
Physical Addressing on Real Hardware in Isabelle/HOL. In Interactive
Theorem Proving, ITP’18, pages 1–19, Oxford, United Kingdom, 2018.
Springer International Publishing.

[3] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. Do-
It-Yourself Virtual Memory Translation. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17,
pages 457–468, New York, NY, USA, 2017. ACM.

[4] James P. Anderson. Computer Security Technology Planning Study.
Technical Report ESD-TR-73-51, Vol. I, AD-758 206, Electronic Sys-
tems Division, Deputy for Command and Management Systems HQ
Electronic Systems Division (AFSC), L. G. Hanscom Field, Bedford,
Massachusetts 01730, USA, October 1972.

[5] Andy Whitcroft. Sparsemem Memory Model. https://lwn.net/
Articles/134804/, Aug 2019.

[6] Andrew W. Appel and Kai Li. Virtual Memory Primitives for User
Programs. In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IV, pages 96–107, New York, NY, USA, 1991.
ACM.

[7] ARM Ltd. Development Tools and Software: Fast Mod-
els. https://www.arm.com/products/development-tools/
simulation/fast-models, August 2019.

11

https://lwn.net/Articles/134804/
https://lwn.net/Articles/134804/
https://www.arm.com/products/development-tools/simulation/fast-models
https://www.arm.com/products/development-tools/simulation/fast-models

[8] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata
Ghose, Jayneel Gandhi, Christopher J. Rossbach, and Onur Mutlu. Mo-
saic: A GPU Memory Manager with Application-transparent Support
for Multiple Page Sizes. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-50 ’17, pages
136–150, New York, NY, USA, 2017. ACM.

[9] Antonio Barbalace, Anthony Iliopoulos, Holm Rauchfuss, and Goetz
Brasche. It’s Time to Think About an Operating System for Near Data
Processing Architectures. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, HotOS ’17, pages 56–61, New York, NY,
USA, 2017. ACM.

[10] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-
nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and
Binoy Ravindran. Popcorn: Bridging the Programmability Gap in
heterogeneous-ISA Platforms. In Proceedings of the Tenth European
Conference on Computer Systems, EuroSys ’15, pages 29:1–29:16,
New York, NY, USA, 2015. ACM.

[11] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,
and Akhilesh Singhania. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP ’09, pages
29–44, New York, NY, USA, 2009. ACM.

[12] David Cock, Gerwin Klein, and Thomas Sewell. Secure Microkernels,
State Monads and Scalable Refinement. In Proceedings of the 21st
International Conference on Theorem Proving in Higher Order Logics,
TPHOLs ’08, pages 167–182, Berlin, Heidelberg, 2008. Springer-
Verlag.

[13] Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and
Manuel M. T. Chakravarty. Running the Manual: An Approach to
High-assurance Microkernel Development. In Proceedings of the 2006
ACM SIGPLAN Workshop on Haskell, Haskell ’06, pages 60–71, New
York, NY, USA, 2006. ACM.

[14] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified
Protection Model of the seL4 Microkernel. In Proceedings of the
2Nd International Conference on Verified Software: Theories, Tools,
Experiments, VSTTE ’08, pages 99–114, Berlin, Heidelberg, 2008.
Springer-Verlag.

[15] Simon Gerber. Authorization, Protection, and Allocation of Memory
in a Large System. PhD thesis, ETH Zurich, 2018.

[16] Simon Gerber, Gerd Zellweger, Reto Achermann, Kornilios Kourtis,
Timothy Roscoe, and Dejan Milojicic. Not Your Parents’ Physical
Address Space. In Proceedings of the 15th USENIX Conference on
Hot Topics in Operating Systems, HOTOS’15, pages 16–16, Berkeley,
CA, USA, 2015. USENIX Association.

[17] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. CertiKOS: An Extensible Archi-
tecture for Building Certified Concurrent OS Kernels. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 653–669, Berkeley, CA, USA, 2016.
USENIX Association.

[18] Marius Hillenbrand, Mathias Gottschlag, Jens Kehne, and Frank Bel-
losa. Multiple Physical Mappings: Dynamic DRAM Channel Sharing
and Partitioning. In Proceedings of the 8th Asia-Pacific Workshop on
Systems, APSys ’17, pages 21:1–21:9, Mumbai, India, 2017.

[19] HSA Foundation. HSA Runtime Programmer’s Reference Manual,
version: 1.1.4 edition, Oct 2016.

[20] Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan. An Evo-
lutionary Study of Linux Memory Management for Fun and Profit.
In Proceedings of the 2016 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’16, pages 465–478, Berkeley,
CA, USA, 2016. USENIX Association.

[21] Intel Corporation. Intel Xeon Phi Coprocessor System Software Devel-
opers Guide, 2014.

[22] Khronos OpenCL Working Group. The OpenCL Specification, version:
2.0, document revision: 29 edition, July 2015.

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal Verification of an OS Kernel. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA,
2009. ACM.

[24] Butler W Lampson. Protection. ACM SIGOPS Operating Systems
Review, 8(1):18–24, 1974.

[25] Janghaeng Lee, Mehrzad Samadi, and Scott Mahlke. VAST: The
Illusion of a Large Memory Space for GPUs. In Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation,
PACT ’14, pages 443–454, New York, NY, USA, 2014. ACM.

[26] Henry M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA, 1984.

[27] A Theodore Markettos, Colin Rothwell, Brett F Gutstein, Allison
Pearce, Peter G Neumann, Simon W Moore, and Robert NM Watson.
Thunderclap: Exploring Vulnerabilities in Operating System IOMMU
Protection via DMA from Untrustworthy Peripherals. In NDSS, 2019.

[28] Alex Markuze, Adam Morrison, and Dan Tsafrir. True IOMMU Pro-
tection from DMA Attacks: When Copy is Faster Than Zero Copy.
In Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’16, pages 249–262, New York, NY, USA, 2016. ACM.

[29] Benot Morgan, Eric Alata, Vincent Nicomette, and Mohamed Kaaniche.
Bypassing IOMMU Protection against I/O Attacks. In 2016 Seventh
Latin-American Symposium on Dependable Computing (LADC), pages
145–150, Oct 2016.

[30] Benot Morgan, Eric Alata, Vincent Nicomette, and Mohamed Kaaniche.
IOMMU Protection Against I/O Attacks: A Vulnerability and a Proof
of Concept. Journal of the Brazilian Computer Society, 24(1):2, Jan
2018.

[31] NVIDIA. NVIDIA Parker Series SoC Technical Reference Manual,
v.1.0p edition, June 2017.

[32] NVIDIA Corporation . Unified Memory in CUDA 6, Nov 2013. https:
//devblogs.nvidia.com/unified-memory-in-cuda-6/.

[33] NXP. i.MX 8DualXPlus/8QuadXPlus Applications Processor Ref-
erence Manual, January 2019. REV 1, www.nxp.com/docs/en/
user-guide/IMX8QXPMEKHUG.pdf.

[34] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Kather-
ine Yelick. A Case for Intelligent RAM. IEEE Micro, 17(2):34–44,
March 1997.

[35] Yuxin Ren, Gabriel Parmer, Teo Georgiev, and Gedare Bloom. CBufs:
Efficient, System-wide Memory Management and Sharing. In Proceed-
ings of the 2016 ACM SIGPLAN International Symposium on Memory
Management, ISMM 2016, pages 68–77, New York, NY, USA, 2016.
ACM.

[36] Bogdan F. Romanescu, Alvin R. Lebeck, and Daniel J. Sorin. Speci-
fying and Dynamically Verifying Address Translation-aware Memory
Consistency. In Proceedings of the Fifteenth Edition of ASPLOS on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS XV, pages 323–334, New York, NY, USA, 2010.
ACM.

[37] Adrian Schüpbach, Andrew Baumann, Timothy Roscoe, and Simon
Peter. A Declarative Language Approach to Device Configuration. In
Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
XVI, pages 119–132, New York, NY, USA, 2011. ACM.

[38] Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June
Andronick, and Gerwin Klein. seL4 Enforces Integrity. In Markovan
Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors,
Interactive Theorem Proving, pages 325–340, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[39] Texas Instruments. OMAP44xx Multimedia Device Technical Ref-
erence Manual, April 2014. Version AB, www.ti.com/lit/ug/
swpu235ab/swpu235ab.pdf.

[40] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick,
David Cock, and Michael Norrish. Mind the Gap. In Proceedings
of the 22Nd International Conference on Theorem Proving in Higher
Order Logics, TPHOLs ’09, pages 500–515, Berlin, Heidelberg, 2009.
Springer-Verlag.

12

https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
www.nxp.com/docs/en/user-guide/IMX8QXPMEKHUG.pdf
www.nxp.com/docs/en/user-guide/IMX8QXPMEKHUG.pdf
www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf
www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf

	1 Introduction
	2 Motivation and Related Work
	2.1 The traditional view of memory
	2.2 Hardware doesn't conform to this view
	2.3 Implications for current OS designs

	3 Methodology
	4 Model
	4.1 Authority and Dynamic Behaviour
	4.2 Executable Specification

	5 Implementation
	5.1 Implementation in a Monolithic Kernel
	5.2 Implementation in Barrelfish/MAS
	5.2.1 Capability System
	5.2.2 Runtime Support
	5.2.3 Device Driver Adaptation

	6 Evaluation
	6.1 Memory operations
	6.1.1 The Appel and Li benchmark
	6.1.2 The map/protect/unmap benchmark

	6.2 Complex hardware
	6.3 Scaling
	6.4 Correctness on simulated platforms
	6.5 Space and time overheads

	7 Conclusion

