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Abstract

Almost all modern hardware, from phone SoCs to high-end
servers with accelerators, contain memory translation and pro-
tection hardware like IOMMU s, firewalls, and lookup tables
which make it impossible to reason about, and enforce pro-
tection and isolation based solely on the processor’s MMUs.
This has led to numerous bugs and security vulnerabilities in
today’s system software.

In this paper we regain the ability to reason about and en-
force access control using the proven concept of a reference
monitor mediating accesses to memory resources. We present
a fine-grained, realistic memory protection model that makes
this traditional concept applicable today, and bring system
software in line with the complexity of modern, heteroge-
neous hardware.

Our design is applicable to any operating system, regard-
less of architecture. We show that it not only enforces the
integrity properties of a system, but does so with no inherent
performance overhead and it is even amenable to automation
through code generation from trusted hardware specifications.

1 Introduction

Both new, fully-verified kernels and traditional production-
quality operating systems rely on a model of memory address-
ing and protection so simple it is rarely remarked on: RAM
and devices reside at unique addresses in a single, shared phys-
ical address space, and all cores have homogeneous memory
management units (MMUs) which translate virtual addresses
into this single physical address space.

The OS running on the platform then fulfills two roles:
First, it manages resource allocation. Virtual memory makes
multiplexing hardware easier by decoupling the application’s
view of memory from the physical resources managed by
the OS, allowing late binding of addresses. Second it forms,
alongside the MMU, a reference monitor [4]: All resource
accesses (dereferences) are intercepted by the monitor (specif-
ically the TLB), and checked against an access-control policy.

This has for decades formed the basis for secure process iso-
lation in all operating systems implementing virtual memory.
The reference monitor concept repeats throughout tradi-
tional OS design, with more sophisticated abstractions grad-
ually built up, and their associated security properties en-
forced through a combination of hardware-provided monitors
(e.g. MMUs), and software ones (e.g. traps and syscalls).

For example, consider name (or address) resolution and
authorization checks in the mmap () syscall. A process begins
with a reference to a file: its filename. The OS, meanwhile,
enforces some access-control policy, e.g. UNIX-style per-
missions. The calling process dereferences the filename by
passing it to the open() syscall, whereupon the OS vali-
dates the request against policy (permissions), and resolves
the reference to another reference: the file descriptor (FD),
now referring to an entry in the global open-file table. The
existence of this entry, and that the process may possess a
reference is justified by the top-level policy; The pattern of
open files and FDs (the state) is a projection of something
permitted by the policy.

This pattern is replicated in the VM system thanks to
mmap (). Unix cannot directly interpose on memory reads
and writes (to the buffer cache page mapped to the user), but
does implement the initial mmap () call, and the page fault
handler. The kernel builds a reference monitor by composing
itself with that provided by the MMU. On an mmap () call, the
kernel verifies that the FD is valid, with appropriate permis-
sions (e.g. write), before constructing a VM region to back the
mapping. The policy encoded in the region’s flags is thus a
(transitive) projection of the original file system permissions.
On a page fault, the kernel is again invoked to lazily populate
the region (from the buffer cache). Now, it can consult the
mapping parameters (e.g. writable), and translate these to
flags in the page-table entry.

Thus, the page-table state (e.g. permission bits), and thence
the eventual TLB state, are justified by a chain of monitors all
the way back up to the system policy (file system permissions).
The MMU enforces this projected policy on the OS’ behalf.
Together they form, in security terms, a compound reference



monitor to enforce a policy both on real hardware resources
(RAM), and abstract OS-specific objects (processes, files).

This model has worked well for decades, but has been
undermined by a changing hardware contract. A modern
system contains not just processors and their attached MMUs,
but system MMUs or IOMMUs, memory firewalls, region
lookup tables, etc. all of which mediate access to and from
parts of the platform. “Smart” devices like GPGPUs, co-
processors, network cards, or accelerators come with their
own hardware protection and translation units [20].

In such a system, the processor’s MMU alone does not
form a reference monitor for memory, as it is not invoked on
all accesses. Indeed, the complex address-translation topol-
ogy of these systems renders even the concept of a unique
physical address meaningless, raising the risk that the policy
encoded into the distributed hardware reference monitor (the
collections of MMUs, SMMUs, etc.) is inconsistent due to
their differing views of the machine. These two problems
have already led to security vulnerabilities [32,33,37,41].

We identify three classes of security vulnerabilities and
bugs (Table 1) that i) cause the execution of an operation
without sufficient rights (a failure of policy enforcement), ii)
allow a compromise of the reference monitor itself (e.g. writ-
ing translation tables, a failure of partitioning), or iii) use the
wrong addresses in descriptors or pointers (a failure of name
resolution). The lack of a proper reference monitor which is
aware of the complex and configurable addressing network
continues to result in numerous bugs and security vulnera-
bilities [14,21,42,45,46,53,61]. Confining these bugs in a
kernel is hard, and they are likely to compromise the entire
system [13].

In this paper we demonstrate that these whole classes of
bugs can be prevented by extending the traditional OS-MMU
reference monitor to cover all hardware translation and en-
forcement engines, allowing policy enforcement on all mem-
ory accesses, ensuring consistent name resolution by adopting
the decoding net [1,2] as a more faithful model of modern
addressing hardware, and ensuring the secure partitioning of
reference monitor state either through a partitioned capability
system, or in a traditional kernel (such as Linux) by good
software engineering practice and the application of existing
memory management interfaces.

Our first contribution is to identify the undermining of
the traditional OS-MMU reference monitor by a changing
hardware/software contract as the root cause of several large
classes of critical security bugs.

Our second contribution is to adopt a faithful model of
complex addressing hardware (the decoding net), and from it
derive a minimal least-privilege model of memory manage-
ment authority on modern hardware, covering the common
functionality of all virtual memory systems (§ 4.1).

Our third contribution is the specification of an OS-agnostic
reference monitor to enforce policy expressed in the above
model, prototyped as an executable specification in Haskell,

Type CVE-...

Policy enforcement  1999-1166 2014-3601 2014-8369 2014-9888
2017-16994 2019-2250 2019-10538 2019-
10539 2019-10540

2011-1898 2013-43292014-0972 2018-1038
2018-11994 2019-2182 2019-19579
2013-4329 2014-9932 2016-3960 2016-5349
2017-8061 2017-12188 2019-15099

Partitioning

Name resolution
Table 1: Classes of Security Vulnerabilities.

and abstracting the OS’s internal policy language (e.g. capa-
bilities or ACLSs) as an access-control matrix.

Our fourth contribution is to demonstrate that this refer-
ence monitor design can be implemented without invasive
changes on either partitioned capability systems (e.g. seL4
or Barrelfish), or on ACL-based UNIX-style kernel (such as
Linux). Further our benchmarks demonstrates that there is
no measurable performance cost for a secure fully-explicit
least-privilege system-wide virtual memory authority imple-
mentation (§ 6)

2 Eliminating Classes of Bugs

The difficulty of getting complex memory addressing right in
an OS is shown by the steady, ongoing stream of related bugs
and vulnerabilities in operating systems, for example, policy
enforcement in Linux’s memory management code [25].

We identify three classes of common bugs and security vul-

nerabilities related specifically to the incompleteness of the
current reference monitor, which would be rendered impossi-
ble under comprehensive reference monitor which faithfully
reflected the hardware:
Policy Enforcement. These are bugs where a subject was
able to change the configuration of a translation unit without
having the proper rights do to so. The reference monitor fails
here to enforce the system policy:

* Mappings with holes belonging to another subject [39].
* Incorrect permissions on data pages [40].
¢ JOMMU configured to map too large a range [47—-49].

All these bugs are impossible once the operations are per-
formed through a (correct) reference monitor implementing
the system security property.

Partitioning. These bugs involve bypassing the reference
monitor directly e.g. by directly modifying its internal state:

* DMA transfers into MSI-x interrupt registers [36].
* DMA transfers into IOMMU control registers [38].
* Process modifies its own page table [44].

These are prevented once the reference monitor state is iden-
tified and partitioned by subjecting them to system policy
e.g. that no DMA engine or process may map a page table.



Name Resolution. This class represents inconsistent inter-
pretations of pointers (names):

* Insufficient context to identify the correct object [42].
* Resolving addresses in the wrong context [43].

These are prevented once names are dereferenced (resolve)
through a monitor with a complete, accurate model of address-
ing.

3 Background and Related Work

Before presenting our authority model and the executable
specification in the next section, we will briefly cover ref-
erence monitors in a little more detail, in particular the im-
portance of consistent naming, and how complex addressing
topologies make it difficult.

We also summarize the existing decoding net model, the ex-
ecutable specification/refinement approach which we borrow
from the sel.4 system, and the related work.

3.1 Reference Monitors

The reference monitor is a powerful structuring concept in
access control, and is implicitly used in practically every OS.
A reference monitor enforces an access-control policy, allow-
ing a separation of concerns, and thus effort: if every access
is subject to the policy, then the overall safety of the system
(w.r.t. the policy) can be guaranteed independently of the cor-
rectness of the components making the accesses. This is of
enormous benefit to a monolithic system (e.g. Linux), where a
fault in one subsystem can easily spread to others, particularly
as any subsystem can, in principle modify translations. Even
without enforcing a strict boundary between components (as
in a microkernel), routing all updates via a single component
responsible for safety ensures that accidental errors will no
longer lead to a whole-system compromise.

The critical point for a reference monitor is that all accesses
must pass through to it, and that it is able to accurately iden-
tify which resources are being accessed (e.g. which DRAM
address will ultimately be written) when applying its pol-
icy. Both of these are undermined in the complex address-
translation networks of modern systems, but not fatally so:
The hardware component of the reference monitor is now
distributed among multiple system MMUs, firewalls, etc.;
addresses may be rewritten after policy is applied, routing
them to locations that should not be accessible.

Both of these problems are solved with an accurate model
of the hardware: First, to know the complete set of access-
control components that must be included in the reference
monitor, and second, to guarantee that any translation below
the access-control level is consistent with policy.

3.2 The Canonical Name Problem

As established, modern platforms are composed of multiple,
heterogeneous cores and devices each of which can issue ac-
cesses to addressable resources such as DRAM, non-volatile
memory or device registers. Worse, there is no single “ref-
erence” physical address space [20]. Instead, a network of
address spaces or buses is connected by address translation
units which “route” memory accesses. As just described,
in order to securely enforce access control, it is essential to
know what final resource some intermediate address (or name)
refers to.

I/O memory management units (IOMMUs, or system
MMUs) translate addresses generated by accelerators and
DMA-capable devices into a “canonical” system-wide physi-
cal address space. This allows user-space programs to share a
virtual address space with a context on the device, but impose
a further complexity burden on the underlying OS which must
now ensure that IOMMU s are always correctly programmed.
This code is fraught with complexity and consequent bugs
and vulnerabilities, as it is also intended to provide protection
from malicious memory accesses [32—-35]. The problem is
likely going to get worse with the proliferation of IOMMU
designs built into GPUs, co-processors, and intelligent NICs.

Even memory controllers can violate the traditional model.
Hillenbrand et al. [23] reconfigure memory controller config-
urations from system software to provide DRAM aliases for
mitigating the performance effects of channel and bank inter-
leaving. Proposals for “in-memory” or “near-data” process-
ing [51,56,60] raise further questions for OS abstractions [10]
and require a way to unambiguously refer to memory regard-
less of which module accesses it.

3.3 Decoding Nets

A systematic and accurate way to establish canonical names
for access-controlled resources that may be referred by differ-
ent local names in different parts of the system is provided
by the established decoding net [1,2] model of address trans-
lation.

Decoding nets model the addressing structure of a system
as a directed graph, where nodes represent (virtual or physical)
address spaces or devices (including RAM), and edges the
translation of AS-local addresses into other address spaces or
devices. The graph is a set of nodes, defined as an abstract
datatype:

name = Name nodeid address
node = Node accept :: {address}
translate :: address — {name}

The model distinguishes local names (address), relative to
some address space, and global names (name), which qualify
a local name with its enclosing address space. Each node
may accept a set of (local) addresses (e.g. RAM or mem-
ory mapped device registers), and/or translate them to one
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Figure 1: Methodology Overview: Refinement steps.

or more global names (addresses in other address spaces,
e.g. MMU or PCI bridges).

This approach dovetails nicely with the reference monitor
concept as described above. Every translate step corresponds
to a dereference operation, and any accept can be used as a
canonical name: the ID of the accepting node, plus the local
address at which it accepts (e.g. address within a DRAM
bank).

Decoding nets have been successfully used to model a wide
variety of systems of exactly the sort that is of interest to us,
and give a trustworthy, precise guide to where a reference
monitor is required: any configurable translation node must
be treated as part of the distributed reference monitor. It must
only be configured such that its local translations are a projec-
tion of the higher-level security property, exactly as for a pro-
cessor’s MMU. Static configuration nodes must be configured
in such a way (either by construction or static verification)
that their translations are consistent with the projected policy
at the point they are applied.

3.4 Refinements and Executable Specifica-
tions

We borrow our modeling technique, combining refinement
with executable specification from the successful seL.4 project.
We identify all relevant objects (page tables, address spaces,
frames, ...), the subjects that manipulate them (processes,
devices, . ..), and which authority each subject exercises over
each object (e.g. in mapping a frame to a virtual address).
These are expressed in an access-control matrix (following
Lampson [29]) which forms our abstract specification, analo-
gous to the high-level security policy (integrity) shown to be
refined (correctly implemented) all the way down to compiled
binaries for selL4 [55].

Again, as in selL4 [15], we next develop an executable
specification in Haskell (see § 4.2), expressing subjects, ob-
jects, and authority as first-class objects, permitting rapid
prototyping without giving up strong formal semantics. Cor-
respondence between abstract and executable models is thus
far by inspection and careful construction.

Finally, we show (again with precedent [59]) that the exe-
cutable model (and hence the abstract model) permits multiple
high-performance implementations (see § 5): On Barrelfish,
as a representative of partitioned-capability systems including
selL4 (capabilities corresponding to rows in the matrix), and
on Linux, as a representative UNIX-style monolithic kernel
(where ACLs correspond to columns in the matrix).

3.5 Related Work

The selL4 proof [28] assumed a single, fixed, physical address
space and a single MMU, and provides no guarantees in the
presence of other cores or DMA devices. CertiKOS [22]
builds on a model of memory accesses to abstract regions
of private, shared or atomic memory, but again provides no
proof in the presence of other translation units or cores. Even
work on verifying memory consistency in the presence of
translation currently only considers the simple case of virtual-
to-physical mappings [52].

Graviton [57] provides a trusted execution environment
for GPUs requiring all updates to the page tables go through
the command processor, acting as a reference monitor for the
GPU. Komodo [19] uses ARM TrustZone [6] to implement a
software enclave. Both of these works are steps in the right
direction, and in this work we extend this approach to the
whole system.

OpenCL’s Shared Virtual Memory [27], nVidia’s
CUDA [50] or HSA [24] provide a unified view of memory,
ensuring addresses remain valid between CPU and GPU.
VAST [30] which uses compiler support to dynamically
copy memory to and from the GPU and Mosaic [8], which
provides support for multiple sizes of page translation in a
shared virtual address space between CPU and GPU. These
approaches ensure address consistency in the specific case
of CPU-GPU sharing, but are again not whole-system
approaches.

In DVMT [3], a customized TLB miss handler imple-
mented as a helper thread installs entries in the TLB using
specialized instructions. Similar to the MMU, the OS/hy-
pervisor sets up data structures specifying the policy which
mappings the thread is allowed to install. Again this solution
focuses on the processor and its MMU.

4 Model

A static decoding net is a snapshot of the address transla-
tion configuration of a system, at a particular moment. We
augment the static decoding net with a transition relation,
modelling the dynamic reconfiguration of the translation hard-
ware such as when a page table is modified. The allowable
transitions express the actions (or fraces) permitted by the
model.

4.1 Authority and Dynamic Behavior

The system consists of a set of address spaces each having a
current configuration, which corresponds to a decoding net
node, that defines the translation of local addresses in this
address-space context:

configuration :: address space — node

This lets us reason about translations with the existing mech-
anisms available for decoding nets. Hardware constraints,



Nodes: node :: Decoding Net Node

Objects: Object = {name}

Rights: Right = Grant | Map| Access

Configuration Space:

ConfSpace :: AddressSpace — {node}

Address Space Configuration:

Configuration :: AddressSpace — node

Access Control Matrix:

AccessControlMatrix :: Subject x Object — {Right}
Model State:

State = (AccessControlMatrix,Configuration)
State Transitions:

ModifyMap :: Subject — (name — {name}) — State — State

Figure 2: Model Definition
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Figure 3: Mappings between address spaces showing grant
and map rights of mapped segments.

e.g. an MMU that only supports the translation of naturally
aligned 4 KiB blocks of addresses, are expressed as a restric-
tion on the set of possible nodes an address space can map
to. This set is the configuration space of an address space.
Invariant Il requires that every address space must have a
well-defined configuration. The configuration space of a fixed
address space is a singleton set.

Invariant I1 (Well-defined Configuration)
Va :: AddressSpace. Configuration a € ConfSpace a.

Configuration Authority (Mapping). The configuration of
some address spaces can be changed. The configuration
space defines the set of possible states an address space may
occupy. An authority is a subset of configuration transitions,
representing what configuration actions a given subject is
permitted to take.

Consider Figure 3, representing the general case of an
update to an intermediate address space (for example the in-
termediate physical address, IPA, in a two-stage translation
system). We identify two distinct authorities: The MAP au-
thority, or the authority to change the meaning of an IPA by
changing its mapping; and the GRANT authority, or the right
to grant ACCESS (by mapping) to some range of physical ad-
dresses. Note that the ’virtual’ and *physical’ address spaces
of Figure 3 can be viewed as special cases of an intermediate
address space: A top-level ’virtual’ address space is simply
one to which nobody has a GRANT authority, and a *physical’
address space e.g. DRAM is one to which there exists no
MAP authority.

Right R1 (Grant)

The right to insert this memory object into some address space
Right R2 (Map)

The right to insert some memory object into this address space
Right R3 (Access)

The right to read or write an object.

CPU Core

1

i1
Processor M Controller
']

R BT T T
IOiMU Xeon Phi SMPT
* * e

DMA Core

Xeon Phi Bus
L

Xeon Phi Core

Figure 4: Address spaces in a system with two PCI devices

subject | object | DMAIOMMU  buffer

IOMMU driver
Xeon Phi process

MAP
GRANT

Table 2: Access control matrix of the Xeon Phi example

Changing Mappings. Consider Figure 4, showing the ad-
dress space configuration of a system with two PCI devices:
a DMA engine and an Intel Xeon Phi co-processor. Imagine
that we wish to establish a shared mapping to allow a process
on a Xeon Phi core to receive DMA transfers (e.g. network
packets) into a buffer allocated on the GDDR (following the
highlighted path from the DMA core to the GDDR).

The process ‘owns’ the buffer, and has the ability to call
recv(), triggering a DMA transfer. In other words, the
process has the right to grant ACCESS (temporarily) to the
DMA core, but it clearly should not have the ability to modify
the IOMMU mappings of the DMA core at will. Hence,
it does not have the MAP authority on the relevant address
space.

To change the mappings of an address space, an agent (a
subject, in standard access-control terminology) needs both
the GRANT authority on the buffer object, and the MAP au-
thority on the address space object.

The state transition, i.e. changing the configuration and

therefore how an address space translates addresses, is ex-
pressed by the operation ModifyMap(): A subject tries to
change how a name is being translated by the system, and
thus updates its state.
Authority Representation. In a monolithic kernel, both
these authorities are held (implicitly) by the kernel, which
exercises them on behalf of the subjects. It is up to the kernel
to maintain accurate bookkeeping to determine whether any
such request is safe, typically using an ACL (access-control
list) i.e. the object lists the subjects and their authorities on it.
In a partitioned-capability system such as seL4 or Barrelfish,
these authorities are represented by capabilities, handed ex-
plicitly to one subject, to authorize the operation. In this case,
subjects hold the authority on the object. These are equiva-
lent from the perspective of access control, differing only in
implementation: the same two basic types of authority are
present.

The standard representation of authority in systems is an
access control matrix [29], such as that of Table 2. This can be
read in rows: The IOMMU driver has the MAP capability to
the IOMMU address space, and the process the GRANT capa-
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bility to the buffer. Alternatively, reading down the columns
gives the ACLs: the IOMMU records MAP permission for the
driver, and for the buffer records a GRANT permission for the
process.

Security Property. This access control matrix is our abstract
model. A system is correct (secure) statically, if its current
configuration is consistent with the access control matrix. It
is secure dynamically if any possible transition, beginning in
a secure state, must leave the system in a secure state. The
access control matrix, together with the configuration space
defines the allowable state transitions. The address space
must have a valid configuration supported by hardware, and
the subject modifying it must have sufficient rights to do so.

4.2 Executable Specification

We refine this abstract model into an executable specification
of a reference monitor [4] for ModifyMap(). When com-
posed with the reference monitor ACCESS i.e. the MMU, we
have our desired compound reference monitor for the fully-
dynamic VM system, secure for accesses beginning at any
core or device.

This specification serves as an intermediate step between

(Figure 1) the abstract model and the concrete OS implemen-
tation of the next section, and also an OS-agnostic prototype
for implementation in other systems. This approach is in-
spired by seL4 [17], which also employed an intermediate
Haskell specification to facilitate prototyping.
Explicit Translation Structures. We now explicitly rep-
resent address translation structures (e.g. page tables, or
memory-mapped device registers) as memory objects, with-
out imposing any particular layout on them. This allows us to
reason about the manner in with address translation depends
on the contents of a memory object (e.g. page tables in RAM,
or the contents of device registers).

Once the translation structures are explicit, and noting that
these are exactly the reference monitor state we must securely
partition, we can state the partitioning invariant (Invariant [2)
in terms of implementation-visible objects.

Invariant 12 (Partitioning)
No subject has ACCESS to a translation object

We model address translation structures as an opaque data
type (TStructure). This allows us to maintain generality by
assuming nothing about their actual inner structure:

data Object = RAM {base::Name, size::Natural}
| Frame {base::Name, size::Natural}
| TStructure {base::Name, size::Natural}

Memory objects form a hierarchy (Figure 5 shows an excerpt)
which defines how the different types of objects can be de-
rived from each other. For example, in-memory translation
structures (TSTRUCTURE) are created by retyping RAM ob-
jects. RAM is the base type for untyped memory. Retyping
RAM to a FRAME makes it possible to map it into an address
space i.e. to GRANT access to it. Note, that neither RAM nor
TSTRUCTURE have the GRANT right, and therefore these
may never become accessible (partitioning).

An address space is derived from (and defined by) a trans-
lation structure, and is an explicit object granting the right
to map this space into higher-level address spaces (e.g. a
second-stage page table defining an IPA space, assigned to
the guest-physical address space of a virtualized OS): Fig-
ure 3.

AddressSpace0f :: Object -> AddressSpace

Authority and State. The system is a set of agents, a map-
ping database (MDB) recording the derivation relation be-
tween objects, and a set of active address spaces:

data KState = KState (Set Agent) MDB (Set AddrSpace)

Authority is either directly to an object, or a meta-authority,
the right to grant an authority to another. In turn set of such
authorities, coupled with an identifier, define an agent.
data Authority = Access Object | Map Object
| Grant Authority
Reference monitor. The model exposes a set of operations
that either change a configuration or access a memory address.
The set of permitted operations defines the behavior of the
reference monitor. We express this in Haskell as a custom
state monad:
data Operation a = Operation (State -> (a, State))
instance Monad (Operation) where ...

The reference monitor intercepts operations and verifies that
the agent performing the operation has sufficient rights to
execute it. We express the changes to the system’s state as se-
quence of operations on the reference monitor, e.g. retype ()
or map (), forming a trace of operations:
mappingTrace = do

L:.Tetype a RAM object to a Frame

res <- Model.retype RAM Agent Frame Agent

-- retype another RAM object to a TStructure

res <- Model.retype RAM2 Agent TStructure Agent

-- map the frame into the translation structure
mappingl <- Model.map TStructure Frame Agent

Model traces are sequences of monitor states, (KSTATE),
each corresponding to a static decoding net model. Operations
include:

* retype () converts an existing object into an object of a
permissible sub type.

* map () installs a mapping in a translation structure.

* copy () copies an authority from one subject to another.
Valid Traces. Contained within the set T of all possible
traces, there is a set of traces Ty € T that conform to all con-



state population

model runtime

[ Hardware
discovery

Algorithms

Application

tatic platform Model
description runtime state |:

Reference|Monitor
operatjons

o
Access Control

Policy i

Mechanism

System)|

Figure 6: Implementation Overview

straints enforced by the executable specification. We express
these traces in the model as sequences of kstates. All other
traces (T — Ty) indicate ending in a failure state (e.g. that
execution ended in a state not satisfying the access-control
policy).

Summary. The executable specification allows us to both
simulate and specify sequences of operations such as mem-
ory accesses or translation configurations as they would be
performed by a concrete OS, implementing the new abstract
model.

5 Implementation in a real OS

In this section, we describe the implementation of the refer-
ence monitor and runtime support libraries and services in
two classes of operating systems: a complete implementation
in Barrelfish/MAS' as a representative of a partitoned capabil-
ity system, derived from the open-source Barrelfish OS [12],
and side-by-side a sketch of an implementation within Linux,
as a representative of a traditional UNIX-style kernel.
Architecture Overview. Figure 6 shows an overview of the
resulting architecture. We separate policy and mechanism: @
at the center is the runtime representation of the model (§ 5.1)
which stores the memory topology and provides queries and
algorithms for memory allocation policies, @ the reference
monitor which enforces access control and provides the mech-
anisms for resource management and configuration, and @
static platform descriptions and dynamic discovery mecha-
nisms (§ 5.3) provide input for the policy and mechanism
implementations.

5.1 Runtime Support

We implement the runtime representation of the address space
model (Figure 6, @) in a policy engine. On Barrelfish,
this is merged into the Prolog-based system knowledge-base
(SKB) [54], which already stores both static and dynamic
facts about the system. On Linux, we could use a standalone
Prolog instance and run it as a service, or implement the
model directly along with other memory allocation policies
inside the kernel. We now describe the model representation,
its algorithms and potential optimizations.

Model representation. We implement the model represen-
tation by asserting facts for the accept, translate and overlay

'MAS stands for multiple address spaces.

assert (translate (RegionFrom,RegionTo)).
assert (overlay (NodeFrom,NodeTo)).
assert (accept (Region)) .

dn_get_allocation_range (NodeSrc, NodeDst).
dn_get_config_nodes (NodeSrc, NodeDst).
dn_resolve_range (Node, Addr, Size).
dn_resolve_range (NodeSrc, Addr, Size, DstSrc).

Listing 1: Prolog Model Representation

constructs of the model (see syntax in [2]). Listing | shows
the corresponding Prolog rules. This encodes the decoding
net, and adds the information to the database.
Algorithms. On top of the model encoding, we implement
several algorithms, useful for making allocation and config-
uration policy decisions. For instance, to set up a device,
the driver uses the dn_get_allocation_range() query to
find a suitable address space for memory allocation, then runs
dn_get_config nodes() to get the list of address spaces
which need to be configured to make the memory resource ac-
cessible, and lastly execute dn_resolve_range () to obtain
the address at which the device sees the memory resource.
The result of the queries is then converted into a sequence
of capability operations to allocate memory, setup transla-
tion structures and perform the relevant mappings. Note, the
model queries only provide a roadmap, the actual reconfigu-
ration steps are invocations of the reference monitor which
enforces the authority and integrity of the system following
the definition of the executable specification (§ 4.2).
Optimization. Running the Prolog queries on the full graph
is costly. We provide a library that caches the (flattened) graph
representation consisting only of cores/devices, configurable
address spaces and memory nodes in the Prolog engine and
directly in C using adjacency lists. We can then run a shortest-
path algorithm to perform the queries, which minimizes the
number of address spaces to configure.

5.2 Reference Monitor

We now describe the implementation of the reference monitor
defined by the executable specification in Linux and Bar-
relfish/MAS.

Resource Management. Both, Linux and Barrelfish already
have thorough resource management mechanisms, albeit difer-
ent: Barrelfish manages physical resources using a distributed,
partitioned capability system for naming, access control, and
accounting of objects. As in seL4 [18], capabilities are typed
to indicate what can be done with the memory they refer to;
rules dictate valid retype operations (e.g RAM to a Frame).
Linux maintains a data structure, the page struct, for every 4
KiB page of memory. In both systems, only the kernel has
direct access to those data structures, and can maintain the
partitioning invariant.

Reference Monitor. As with all microkernels, Barrelfish’s
kernel is essentially nothing but a reference monitor. It uses
the capability system to express the objects in memory and



the authority a process (subject) has over them. Any changes
to the translation units (e.g. mapping a memory frame into
the IOMMU) correspond to capability operations. The refer-
ence monitor checks type, address spaces and rights of the
capabilites.

On Linux, we can use the para-virtualization interface (PV-

Ops) to implement a reference monitor inside the kernel itself.
We can then extend the PV-Ops interface to include all address
translation units in the system. This effectively implements
a well-defined hypercall interface to request changes to the
translation tables from the hypervisor acting as the reference
monitor. Similarly, the nested kernel [16] integrates a priv-
ileged kernel inside the monolithic kernel which interposes
all updates to translation tables. Extending this interface to
include all other translation hardware as well, would present a
good way to implement a reference monitor inside the Linux
kernel.
Naming of Resources. Barrelfish’s capabilities contain phys-
ical addresses to identify the objects they are referring to. To
be able to still identify the objects uniquely in the presence
of multiple address spaces we change the capability system
in Barrelfish/MAS to use canonical base names, consisting
of an address space identifier and an address within that ad-
dress space. We adapt the kernel to consider the ASID when
performing capability operations. An operation may now
fail in new ways, due to incompatible address spaces of the
capabilities (e.g. one cannot directly map host physical frame
to a guest virtual address).

Linux uses the physical frame number (PFN) uniquely iden-
tify every 4 KiB page of memory. Using the sparse memory
model [58] or heterogeneous memory [31], we can implement
memory nodes (address spaces) a dynamic mapping of the
PEN to the underlying page struct. In this manner, we can use
the PFN as the memory resource’s canonical name.

On both operating systems, we need a function to deref-

erence the canonical name of a resource into a locally valid
address. We can generate such a translation function based
on the platform description or the model state.
Object Types. In addition, Barrelfish/MAS introduces new
capability types for all hardware translation units (not just
page tables), ASID allocation, and entire physical, interme-
diate or virtual address spaces. Like Barrelfish, we allow a
capability to refer to a memory region of arbitrary size, but
require that it must not span multiple address spaces.

On Linux, we do not need to use typed objects as such as
the kernel does not expose handles to physical resources to
user space. Internally, Linux already uses different accounting
types for memory allocations.

Page Tables and Address Spaces. Barrelfish/MAS intro-
duces distinct capability types for all hardware-defined trans-
lation structures (register sets or page table levels). Each of
these capability types are translation structures in the sense
of the executable spec. Since a page table defines an address
space, we can derive an address space capability from it,

and use it to install mappings in other address spaces. Delet-
ing the page table capability triggers a recursive deletion of
its spanned address spaces and all possible mappings. We
integrated this process into the capability system. This is ef-
fectively equivalent to revoking all descendants of the address
space capability and then deleting it. This ensures, that there
are no mappings referring to an invalid address space.

With the implementation of para-virtualization and KVM-

based virtualization, Linux has support to represent the guest
address space inside the kernel. This would be one possiblity
to get support for different address spaces in the kernel. Al-
ternatively, we can use the sparse memory model or HMM to
create “virtual” memory nodes that correspond to an interme-
diate address space.
Tracking Mappings. Barrelfish/MAS uses designated map-
ping capabilities to track mappings. For every mapped object,
there is a corresponding mapping capability, which is a de-
scendant thereof. Therefore, the capability system is able
to locate and invalidate all mappings when access to an ob-
ject is revoked. Note, translation structures effectively define
an address space, and hence there is no difference between
mappings of multi-level page tables, or actual frames.

Similar to the mapping capabilities, Linux uses the rmap
data structure to store where a page of memory is mapped.
This is already maintained for the page cache, as well as guest
memory pages. We can use this mechanisms to track all
mappings of a page in Linux.

5.3 Model Population

The last part of the implementation describes how the model
state is populated (@ in Figure 6). There are two major
sources of memory topology information building up the
runtime representation: i) static description of platforms (or
parts there of), and ii) discovery mechanisms such as PCI or
ACPI, which may instantiate predefined descriptions.

Static Platform Descriptions. The memory topology of
parts of the system — or in the case of SoC the entire sys-
tem — is fixed and known in advance: for instance, the Xeon
Phi co-processor has a defined number of cores and memory.
We can therefore write down a description of the memory sub-
system. For this, we use a domain specific language (DSL),
which follows closely the syntax of the formal model, allows
writing down the memory topology of the entire system, or its
sub-components. The DSL compiler then produces a set of
Prolog rules, which populate the model at runtime, either fully
or in response to hardware discovery events. On Linux, we
can use procfs and sysfs, as well as device trees to obtain
system topology descriptions.

Using Static Descriptions: Code Generation. From the
static descriptions, we can pre-compute and enumerate the
address spaces of the hardware component, or in the case of
SoC platforms, the entire memory topology. The DSL com-
piler generates a set of data structures and code used by the



reference monitor to instantiate the initial set of capabilities,
verify address space compatibility in capability operations,
translation tables, or functions to convert the canonical names
into valid, local physical or virtual addresses. We evaluate
this scenario in § 6.4.

Using Static Descriptions: Hardware Discovery. In gen-
eral, the configuration of a platform is known after device
discovery mechanisms such as ACPI or PCI (if percent). Dur-
ing this process, the model is dynamically populated with the
partial descriptions of its components: e.g. the ACPI table
indicates the presence and version of an IOMMU, and in re-
sponse the partial description of the IOMMU is instantiated
and added to the model at runtime. A driver may update the
model with more precise information, e.g. only the Xeon Phi
driver knows the precise number of cores and memory size of
the PCI Express attached co-processor.

6 Evaluation

In this section, we present a quantitative and qualitative per-
formance evaluation of the address space and least-privilege
authority model in Barrelfish/MAS. The goal of this section
is to establish the following:

1. The mechanism implementation results in a performant
memory system (§ 6.1, § 6.2).

2. The policy implementation produces usable results within
reasonable overheads (§ 6.3).

3. Qualitatively demonstrate, that the resulting system is able
to handle complex memory topologies (§ 6.4).

Evaluation Platform. All performance measurements are
performed on a dual-socket server consisting of two Intel
Xeon E5-2670 v2 processors (Ivy-Bridge micro-architecture)
with 10 cores each. The machine has 256 GiB of main mem-
ory split equally into two NUMA nodes. The machine runs
in “performance mode”, with disabled simultaneous multi-
threading (SMT), Intel TurboBoost technology, and Intel
Speed Stepping, to ensure consistent measurements. The
machine further contains two Intel Xeon Phi co-processor
31S1 attached as a PCI Express 3.0 device. The co-processors
have 57 cores with four hardware threads per core, and 8 GiB
GDDR memory. The Intel VT-d [26] (IOMMU) is enabled.
We use a vanilla Ubuntu 18.04 LTS with Linux kernel 4.15.
For a fair comparison we disable specter/meltdown mitiga-
tion as they slow down memory operations significantly and
Barrelfish doesn’t implement them. Barrelfish and Barrelfish/-
MAS are compiled in release mode.

6.1 VM Ops - Map/Protect/Unmap

In this part of the evaluation, we quantitatively evaluate the
performance of Barrelfish/MAS’s virtual memory operations
in comparison to vanilla Barrelfish and Linux.

T —+— Linux g —— Linux G —+— Linux
—+— Barrelfish ~4— Barrelfish > —4— Barrelfish
—— Barrelfish/MAS Em —— Barrelfish/MAS

—4— Barrelfish/MAS

1 2 4 8 163264
#Pages (1GB)

1 2 4 8 16 32 64128256
#Pages (4kB)

1 2 4 8 16 32 64128256
#Pages (2MB)

(a) map () Operation

8
g0 —+— Linux 710 —— Linux G771 —¥ Linux
2 0.8 —4— Barrelfish 2 0.8 —4— Barrelfish 26 —4— Barrelfish
g —4— Barrelfish/MAS @ —— Barrelfish/MAS 251 |\ Barrelfish/MAS
206 806 g,
804 go4 g3
o ° o
£o2 \ £o.2 g?
Y] T = i = S e e S
1 2 4 8 16 32 64128256 1 2 4 8 16 32 64128256 1 2 4 8 16 32 64
#Pages (4kB) #Pages (2MB) #Pages (1GB)
(b) protect () Operation
_30 _30 _30
2,5 h —¥— Linux T os —¥— Linux §,5] —f inux
Fod R —4— Barrelfish i —4— Barrelfish e —4— Barrelfish

\ o o
g20 —— Barrelfish/MAS 8 20 —4— Barrelfish/MAS 3 201 & —— Barrelfish/MAS
515 LN QS, 15 ?)1.5
g10 \‘\ 10 g10
Eo0s . Eos Eos
= = S
0. 0.

== 0
1 2 4 8 16 32 64128256 1 2 4 8 16 32 64128256 1 2 4 8 1632 64
#Pages (2MB) #Pages (1GB)

#Pages (4kB)
(c) unmap () Operation

Figure 7: Measured Latency per Page for the VM Operations
on Linux, Barrelfish and Barrelfish/MAS.

map () protect()  unmap()
4 KiB page Linux-shmfd Linux-shmfd Linux-shmat
2 MiB large page Linux-shmat Linux-mmap Linux-shmat
1 GiB huge page Linux-shmat Linux-shmat Linux-shmat

Table 3: The Best Configuration of the Linux VM Operations.

Benchmark Methodology. We compare the performance
of the virtual memory operations map (), protect() and
unmap () for buffer sizes from 4 KiB to 64 GiB using one of
the three native supported page sizes (4 KiB, 2 MiB and 1
GiB). On Barrelfish/MAS and Barrelfish, we use the default
user-level virtual memory management library, and on Linux
we take the fastest of the measured different techniques to map
memory using anonymous memory (mmap () ), shared mem-
ory objects (shmfd () ) or shared memory segment (shmat () ).
We exclude the allocation and clearing of backing memory in
this benchmark as it affects all systems the same and would
dominate the execution times.

Results. Figure 7 contains the results of this evaluation for the
three operations and page sizes. The graphs show the median
latency (lower is better) and standard error per modified page
table entry. We scale the number of changed page table entries.
For Linux, we select the best configuration as indicated in
Table 3. We make the following observations:

» Amortization: The general pattern is similar: the cost per
page decreases with increasing numbers of affected pages.
The cost of the virtual region management, syscall overhead,
locating the page table entry is amortized among multiple
pages, whose mappings are likely to be in consecutive page
table entries.

e map (). Both, Barrelfish and Barrelfish/MAS have match-
ing performance patterns, independent of the used page size.
Linux is faster for mapping up to two 4 KiB pages. For
larger pages Barrelfish (as well as Barrelfish/MAS) outper-



forms Linux. This is not an effect of our implementation but
due to Linux allocating lower-level page tables, in case the
super-page mapping needs to be broken up. Therefore, Linux
allocates and clears memory to hold the page table. Zeroing a
page can add up to 0.71us which is the difference we see in
the graph. Both, Barrelfish and Barrelfish/MAS only have to
create a new mapping capability and insert it into the MDB.

* protect (). We observe very predictable patterns for Bar-
relfish and Barrelfish/MAS, where vanilla Barrelfish is slightly
faster due to storing an explicit pointer to the page table di-
rectly in the mapping capability, whereas Barrelfish/MAS
stores the canonical name which requires an address transla-
tion causing more work. In both cases, the mapping capabil-
ity contains all information to perform the operation. Linux
needs to walk the page table to locate the page table entry to
be protected. This is again not an effect of the MAS extension
but a difference between Linux and vanilla Barrelfish.

e unmap (). Up to eight affected pages, Linux is faster than
Barrelfish and Barrelfish/MAS, which both need to remove
and delete the mapping capability from the MDB, which
results in another syscall on Barrelfish (Barrelfish/MAS re-
moves this when clearing the page table entry). Removing
the mapping capability gets amortized when more pages are
affected.

Discussion. In direct comparison with Barrelfish, we observe
that Barrelfish/MAS is able to match the performance in all
cases. Moreover, the comparison with Linux shows, that
Barrelfish/MAS has comparable performance to a mainstream
OS. We conclude that our least-privilege access control model
with support for multiple address spaces can be implemented
with fine granularity while maintaining competitive memory
management performance.

6.2 VM Ops - Appel-Li Benchmark

The Appel-Li benchmark [5] exercises the virtual memory
subsystem with operations, which are relevant to tasks such
as garbage collection or tracking page modifications.
Benchmark Methodology. The benchmark consists of the
following three experiments:

1. protl-trap-unprot. Randomly pick a page of memory,
write-protect the page, write to it, take a trap, unprotect the
page, continue with next page.

2. protN-trap-unprot. Write-protect 512 pages of memory at
once, write to each page of memory in turn, taking a trap and
unprotecting the page.

3. trap only. Pick a protected page, write to it and take the trap
continue with next page without changing any permissions.
We run this benchmark on Barrelfish and Barrelfish/MAS. In
addition, we compare to Linux as a frame of reference. On
Barrelfish and Barrelfish/MAS the numbers include the cost
of virtual address space accounting in userspace.

Results. We show the benchmark results in Figure 8. Each
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Figure 8: Appel-Li Benchmark on Barrelfish/MAS and Linux.

bar corresponds to a different OS and represents the time
taken per page. The three bar groups represent the three
benchmark experiments. The standard error is less than 0.5%.
We make the following observations:

* Barrelfish vs. Barrelfish/MAS. Direct comparison shows a
slowdown of less than 5% for Barrelfish/MAS vs. Barrelfish.
The trap performance of both systems is the same.

e Linux vs Barrelfish. Barrelfish outperforms Linux in all
experiments. Barrelfish can use its capability system to effi-
ciently find the page table that has to be modified while Linux
needs to walk the page table tree. Furthermore Barrelfish re-
flects the trap directly to user-space without checking whether
the faulting address has been previously allocated [9]. This
applies to Barrelfish/MAS as well as vanilla Barrelfish and is
independent of our extension.

* Batching. The protection of 512 pages in one syscall (protN-
trap-unprot) amortizes the total syscall overheads, which re-
duce the time per page on all systems by 600-2000 cycles.

Discussion. In this evaluation, we show that Barrelfish/MAS
is able to match the performance of Barrelfish with a maxi-
mum overhead of less than 5%, despite support for explicit
address spaces. The comparison to Linux again shows that
Barrelfish/MAS’s memory operation performance is competi-
tive to that of a mainstream OS.

6.3 Dynamic Updates of Translation Tables

In this evaluation, we investigate the overheads of the
model runtime representation and the translation unit re-
configuration following the principle of least-privilege.
Benchmark Methodology. This benchmark models an
offload-scenario, where an application workload wants to
make use of a co-processor attached to PCI Express. We use
the Xeon Phi co-processor for this purpose. We are interested
in the sequence of initialization steps to establish a shared
buffer between the CPU cores and the co-processor:

1. Model Query. Evaluate the runtime representation to find
a suitable memory region and needed re-configuration steps.
2. Allocate and Map. Request memory from the allocator and
map it into the application’s virtual address space.

3. Program Translation Units. Re-configure the translation
units indicated in the model query response. Here, this in-
cludes i) the IOMMU, and ii) the SMPT of the co-processor.
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Figure 9: Breakdown of the Offloading Scenario.

We profile the execution of these steps and measure the

time it takes to perform each step individually. We evaluate
two mechanisms to program the IOMMU, i) to use capability
invocations directly, and ii) use an RPC to the IOMMU ser-
vice acting as a reference monitor. The buffer size used is 8
MiB. As a frame of reference, measure the time it takes to
just allocate and map memory on both Linux (using mmap ())
and vanilla Barrelfish.
Results. The breakdown of the operation into the steps is
shown in Figure 9. We show both the numbers for both
mechanisms to program the IOMMU, and for comparison, we
include the time it takes to just allocate and map the memory
on vanilla Barrelfish and Linux. The x-axis represents the
measured times in us. We make the following observations:

* Memory Allocation and Mapping. All three OSes use about
the same time to allocate and map the required memory region,
which accounts for the majority of the profiled time. It is
dominated by zeroing the newly allocated memory.

* Model Query. Evaluating the model at runtime accounts
for less than 5% of the total runtime.

* SMPT Configuration. Programming the SMPT of the co-
processor uses less than 0.3% of the runtime.

* [OMMU Programming. The configuration of the IOMMU
using direct capability invocations is fast (0.2% of the run-
time). When using the RPC to the IOMMU reference monitor,
this requires capability transfers which corresponds to about
3% of the execution time.

Overall, the resulting overhead for the model query and the
address space configuration accounts for 5.7%. There is no
significant difference in the memory allocation and mapping
times of Barrelfish/MAS compared to Barrelfish and Linux.
Discussion. In this evaluation, we have shown that it is possi-
ble to efficiently implement a representation of our executable
model in an operating system and reconfigure address spaces
following the principle of least-privilege. Moreover, subse-
quent allocations may use the cached results of the model
query, reducing the overhead even further. Note, that the
query merely indicate the operations to be carried out, but the
capability system enforces the integrity thereof.

6.4 Correctness on Simulated Platforms

In this evaluation, we qualitatively show the application and
integration of the address space model into the OS toolchain
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to generate low-level, platform-specific OS code and data
structures. By doing that we show, that our implementation
is functional even when run on simulated platforms with un-
usual address space topologies not supported by other systems.
While these simulated platforms are extreme, they include
other real systems such as those with secure co-processors.
Evaluation Methodology. We design and build the toolchain
illustrated in Figure 10 and write a series of different platform
descriptions using a DSL. These platform descriptions then
specify the memory topology of the simulated platforms. The
DSL compiler then generates:

1. Executable Model. A runtime representation of the mem-
ory topology model, and

2. Simulator Configuration. The LISA+ hardware description
that configures the ARM FastModels simulator [7].

The generated runtime representation of the topology
model then acts as the initial state for the Barrelfish SKB,
and is used to generate low-level OS code and data struc-
tures, which are compiled and linked into a platform-specific
Barrelfish/MAS OS image.

We mention four example configurations we tested for this
evaluation. Figure 11 shows an illustration of the simulated
platform, which consists of two ARM Cortex AS57 processors,
each having a configurable local memory map which defines
at which addresses they see the DRAM regions (and the rest
of the system in general) in their local address space. We
evaluated the following configurations:

1. Uniform Both cores have an identical memory map.

2. Swapped DRAM is split in two halves, where each core
sees the two halves at swapped address ranges.

3. Private One shared memory region, and each core further
has a private memory region, inaccessible by the other.

4. Private Swapped Combines the swapped and private se-
tups: shared memory with swapped views, and private mem-
ory per core.

Results. During out experiments, we managed to compile
Barrelfish/MAS and run it successfully on all tested platform



configurations. This includes various memory management
tasks and shared-memory message passing between the cores.
There was no programmer effort required, besides writing the
platform description.
Discussion. We know of no other current OS designs which
can manage memory globally in all these cases. Popcorn
Linux [11] and Barrelfish have limited support for case 3;
while regular Linux and seL.4 only support case 1. In contrast,
Barrelfish/MAS supports all four cases.

Barrelfish/MAS is able to boot and manage memory on all
platforms without modifications, regardless of the topology.

6.5 Evaluation Summary

In this evaluation, we have shown that it is possible to effi-
ciently implement the address space model and least-privilege
memory management in an OS. We have quantitatively eval-
vated Barrelfish/MAS’s virtual memory system, the recon-
figuration operations, and analyzed the space and runtime
complexity of maintaining kernel state.

Moreover, we have seen that Barrelfish/MAS is able to han-
dle complex and non-standard memory topologies by strictly
using the memory object’s canonical name in the capabil-
ity system, and generated translation functions which further
convert this canonical name to a valid local address

7 Conclusion

In this paper, we made the case to bring back the concept of
a reference monitor to mediate access to memory resource
on modern, heterogeneous platforms. We presented a fine-
grained, realistic memory protection model based on which
we can extend the reference monitor to include all memory
translation and protection hardware present in the system.
This allows systems software to adapt their access control
model and catch up with the complexity of modern hardware.

We have shown that our design is applicable to any OS, re-
gardless of its architecture. We have developed an executable
specification of a reference monitor including the state, oper-
ations and authority, on which we have based our prototype
implementation in Barrelfish/MAS. Not only can this memory
protection model eliminate three different classes of bugs and
vulnerabilities, but there is also no inherent performance over-
head in implementing it in an operating system. Moreover,
based on trusted hardware specifications we can increase the
level of automation and generate low-level operating systems
code. We believe that our approach can lay the foundation
for both fully verified systems and more reliable memory
management in existing systems.

We plan to open-source the reference monitor and Bar-
relfish/MAS implementations.
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