
Cichlid: Explicit physical memory management for large machines

Simon Gerber, Gerd Zellweger, Reto Achermann,
Moritz Hoffmann, Kornilios Kourtis, Timothy Roscoe, Dejan Milojicic†

Systems Group, Department of Computer Science, ETH Zurich †Hewlett-Packard Labs

Abstract
In this paper, we rethink how an OS supports virtual

memory. Classical VM is an opaque abstraction of RAM,
backed by demand paging. However, most systems today
(from phones to data-centers) do not page, and indeed
may require the performance benefits of non-paged phys-
ical memory, precise NUMA allocation, etc. Moreover,
MMU hardware is now useful for other purposes, such
as detecting page access or providing large page transla-
tion. Accordingly, the venerable VM abstraction in OSes
like Windows and Linux has acquired a plethora of extra
APIs to poke at the policy behind the illusion of a virtual
address space.

Instead, we present Cichlid, a memory system which
inverts this model. Applications explicitly manage their
physical RAM of different types, and directly (though
safely) program the translation hardware. Cichlid is im-
plemented in Barrelfish, requires no virtualization support,
and outperforms VMM-based approaches for all but the
smallest working sets. We show that Cichlid enables use-
cases for virtual memory not possible in Linux today, and
other use-cases are simple to program and significantly
faster.

1 Introduction

We argue that applications for modern machines should
manage physical RAM explicitly and directly program
MMUs according to their needs, rather than manipulat-
ing such hardware implicitly through a virtual address
abstraction as in Linux. We show that explicit primitives
for managing physical memory and the MMU deliver
comparable or better application performance, greater
functionality, and a simpler and orthogonal interface that
avoids the feature interaction and performance anomalies
seen in Linux.

Traditional virtual memory (VM) systems present a
conceptually simple view of memory to the application

programmer: a single, uniform virtual address space
which the OS transparently backs with physical mem-
ory. In its pure form, applications never see page faults,
RAM allocation, address translation, TLB misses, etc.

This simplicity has a price. VM is an illusion — one
can exhaust physical memory, resulting in thrashing, or
the OS killing the application. Moreover, performance is
unpredictable. VM hardware is complex, with multiple
caches, TLBs, page sizes, NUMA nodes, etc.

For applications like databases the performance gains
from closely managing the MMU mappings and locations
of physical pages on memory controllers are as important
to the end user as the functional correctness of the pro-
gram [39,56]. Consequently, the once-simple VM abstrac-
tion in systems such as Linux has become steadily more
complex, as application developers demand more control
over the mapping hardware, by piercing the VM abstrac-
tion with features like transparent huge pages, NUMA
allocation, pinned mappings, etc. In Section 2, we discuss
the complexity, redundancy, and feature interaction in the
formerly simple VM interface.

In response, we investigate the consequences of turn-
ing the VM system inside-out: applications (1) directly
manage physical RAM, and (2) directly (but safely) pro-
gram MMUs to build the environment in which they op-
erate. Our contribution is a comprehensive design which
achieves these goals, allows the full range of use-cases
for memory system hardware, and which performs well.

Cichlid1, a new memory management system built in
the Barrelfish research OS, adopts a radically inverted
view of memory management compared with a traditional
system like Linux. Cichlid processes still run inside a vir-
tual address space (the MMU is enabled) but this address
space is securely constructed by the application itself with
the help of a library which exposes the full functional-
ity of the MMU. Above this, all the functionality of a
traditional OS memory system is provided.

1Pronounced "sIkl1d; see https://en.wikipedia.org/wiki/Cichlid.

1

ar
X

iv
:1

91
1.

08
36

7v
1

 [
cs

.O
S]

 1
9

N
ov

 2
01

9

https://en.wikipedia.org/wiki/Cichlid

Application-level management of the virtual address
space is not a new idea; we review its history in Section 5.
Cichlid itself is an extension of the original Barrelfish
physical memory management system described in Bau-
mann et al. [8], which itself was based on seL4 [32].

The contributions of Cichlid over these prior systems
are:

• A comprehensive implementation of application-
level memory management for modern hardware
capable of supporting applications which exploit its
features. We extend the Barrelfish model to support
safe user construction of page tables, arbitrary su-
perpage mapping, demand paging, and fast access to
page status information without needing virtualiza-
tion hardware.

• A detailed performance evaluation of Cichlid com-
paring it with a variety of techniques provided by,
and different configurations of, a modern Linux
kernel, showing that useful performance gains are
achieved while greatly simplifying the interface.

In the next section of this paper we first review the var-
ious memory management features in Linux as an exam-
ple of the traditional Unix-based approach. In Section 3
we then present Cichlid, and evaluate its performance in
Section 4. Section 5 discusses the prior work on explicit
physical memory management, and Section 6 summarizes
the contribution and future work.

2 Background: the Linux VM system

We now discuss traditional VM systems, as context for
Cichlid. We focus on Unix-like systems and Linux in
particular as representative of mainstream approaches and
the problems they exhibit. Later, in Section 5 we discuss
prior systems which have adopted a different approach,
some of which have strongly influenced Cichlid.

2.1 Traditional Unix

Unix was designed when RAM was scarce, and demand
paging essential to system operation. Virtual memory is
fully decoupled from backing storage via paging. Each
process sees a uniform virtual address space. All memory
is paged to disk by a single system-wide policy. The basic
virtual memory primitive visible to software is fork(),
which creates a complete copy of the virtual address space.
Modern fork() is highly optimized (e.g. using copy-on-
write).

Today, RAM is often plentiful, MMUs are sophisticated
and featureful devices (e.g. supporting superpages), and
the memory system is complex, with multiple controllers

and set-associative caches (e.g. which can be exploited
with page coloring).

Workloads have also changed. High-performance mul-
ticore code pays careful attention to locality and mem-
ory controller bandwidth. Pinning pages is a common
operation for performance and correctness reasons, and
personal devices like phones are often designed to not
page at all.

Instead, the MMU is used for purposes aside from
paging. In addition to protection, remapping, and sharing
of physical memory, MMUs are used to interpose on
main memory (e.g. for copy-on-write, or virtualization)
or otherwise record access (such as the use of “dirty” bits
in garbage collection).

2.2 Modern Linux

The need to exploit the memory system fully is evident
from the range of features added to Linux over the years to
“poke through” the basic Unix virtual address abstraction.

The most basic of these creates additional “shared-
memory objects” in a process’ address space, which may
or may not be actually shared. Such segments are referred
to by file descriptors and can either be backed by files or
“anonymous”. The basic operation for mapping such an
object is mmap(), which in addition to protection informa-
tion accepts around 16 different flags specifying whether
the mapping is shared, at a fixed address, contains pre-
zeroed memory, etc. We describe basic usage of mmap()
and related calls in Section 2.3; above this are a number
of extensions.

Large pages: Modern MMUs support mappings at a
coarser granularity than individual pages, typically by ter-
minating a multi-level page table walk early. For example,
x86_64 supports 2 MB and 1 GB superpages as well as
4 kB pages, and for simplicity we assume this architecture
in the discussion that follows (others are similar).

Linux support for superpage mappings is some-
what complex. Firstly, mappings can be created for
large (2 MB) or huge (1 GB) pages via a file sys-
tem, hugetlbfs [40, 58] either directly or through
libhugetlbfs [41]. For each supported superpage size,
a command-line argument tells the kernel to allocate a
fixed pool of superpages at boot-time. This pool can
be dynamically resized by an administrator. Shrinking
a pool deallocates superpages from applications using a
hard-wired balancing policy. In addition, one superpage
size is defined as a system-wide default which will be
used for allocation if not explicitly specified otherwise.

Once an administrator has set up the page pools, users
can be authorized to create memory segments with su-
perpage mappings, either by mapping files created in the
hugetlbfs file system, or mapping anonymous segments

2

with appropriate flags. Superpages may not be demand-
paged [5].

The complexity of configuring different memory pools
in Linux at boot has led to an alternative, transparent
huge pages (THP) [27, 59]. When configured, the kernel
allocates large pages on page faults if possible according
to a single, system-wide policy, while a low-priority ker-
nel thread scans pages for opportunities to use large pages
through defragmentation. Demand-paging is allowed by
first splitting the superpage into 4 kB pages [5]. A typical
modern x86_64 kernel is configured for transparent sup-
port of 2 MB pages, but not 1 GB pages. Alternatively,
an administrator can disable system-wide THP at boot
or by writing to sysfs and programs can enable it on a
per-region basis at runtime using madvise().

NUMA: The mbind() system call sets a NUMA policy
for a specific virtual memory region. A policy consists of
a set of NUMA nodes and a mode: bind to restrict alloca-
tion to the given nodes; preferred to prefer those nodes,
but fall back to others; interleave allocations across the
nodes, and default to lazily allocate backing memory on
the local node of the first thread to touch the virtual ad-
dresses. This “first touch” policy has proved problematic
for performance [29].
libNUMA provides an additional numa_alloc_onnode()

call to allocate anonymous memory on a specific node
with mmap() and mbind(). Linux can move pages between
nodes: migrate_pages() attempts to move all pages of
a process that reside on a set of given nodes to another
set of nodes, while move_pages() moves a set of pages
(specified as an array of virtual addresses) to a set of
nodes. Note that policy is expressed in terms of virtual,
not physical, memory.

There are also attempts [19–22, 25, 29] to deal with
NUMA performance issues transparently in the kernel, by
migrating threads closer to the nodes containing memory
they frequently access, or conversely migrating pages to
threads’ NUMA nodes, based on periodically revoking
access to pages and tracking usage with soft page faults. A
good generic policy, however, may be impossible; highly
performance-dependent applications currently implement
custom NUMA policies by modifying the OS [29].

User-space faults: Linux signals can be used to reflect
page faults to the application. GNU libsigsegv [43] pro-
vides a portable interface for handling page faults: a user
fault handler is called with the faulting virtual address and
must then be able to distinguish the type of fault, and pos-
sibly map new pages to the faulting address. When used
with system calls such as mprotect() and madvise(), this
enables basic user-space page management. The current
limitations of this approach (both in performance and
flexibility) have led to a proposed facility for user-space
demand paging [23, 26].

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

T
im

e
 p

e
r

p
a
g
e
 [

u
s]

Map

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5
Unmap

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

T
im

e
 p

e
r

p
a
g
e
 [

u
s]

Protect

Linux MMAP

Linux SHM

Linux SHMAT

Figure 1: Managing memory on Linux (4.2.0)

2.3 Discussion
Based on the simple Unix virtual address space, the Linux
VM system has evolved in response to new demands
by accreting new features and functionality. This has
succeeded up to a point, but has resulted in a number of
problems.

The first is mechanism redundancy: there are multi-
ple mechanisms available to users with different perfor-
mance characteristics. For example, Figure 1 shows the
performance of three different Linux facilities for creat-
ing, destroying, and changing “anonymous mappings”: re-
gions of virtual address space backed by RAM but not cor-
responding to a file. These measurements were obtained
using the machine in Table 1 using 4k pages throughout.

MMAP uses an mmap() call with MAP_POPULATE
and MAP_ANONYMOUS to map and unmap regions, and
mprotect() for protection. This forces the kernel to
zero pages being mapped, dominating execution time.
Avoiding this behavior, even when safe, requires kernel
reconfiguration at build time – a global policy aimed at
embedded systems.

SHM creates a shared memory object with
shm_open() and passes it to mmap() and mprotect().
In this case, mmap() will not zero the memory. Unmap-
ping is also faster since memory is not immediately
reclaimed. The object can be shared with other processes,
but (unlike MMAP mappings) cannot use large pages.

SHMAT attaches a shared segment with shmat(),
and does allow large pages if the process has the
CAP_IPC_LOCK capability. Internally, the mechanism is
similar to mmap(), with system-wide limits on the number
and size of segments.

For buffers up to 2 MB, the cost per page decreases
with size for all operations due to amortization of the
system call overhead. Afterwards, the time stays constant

3

CPU Intel Xeon E5-2670 v2 (Ivy Bridge)
#nodes / #sockets / #cores 2 / 2 / 20 @ 2.5 GHz
L1 / L2 cache 32 kB / 256 kB (per core)
L3 size 25 MB (shared)
dTLB (4 kB pages) 64 entries (4-way)
dTLB (2 MB pages) 32 entries (4-way)
dTLB (1 GB pages) 4 entries (4-way)
L2 TLB (4K) 512 entries (4-way)
RAM 256 GB (128 GB per node)
Linux kernel v.4.2.0 (Ubuntu 15.10)

Table 1: Test bed specifications. [49]

4.2.0 4.2.0 (Ubuntu 15.10) No large page support
4.2.0-tlbfs 4.2.0 (Ubuntu 15.10) hugetlbfs enabled
4.2.0-thp 4.2.0 (Ubuntu 15.10) Transparent huge pages enabled
3.16 3.16 Stock 3.16 kernel
3.16-dune 3.16 Linux 3.16 with Dune

Table 2: Tested Linux configurations

except for MMAP map operations.
libhugetlbfs provides get_hugepage_region

and get_huge_pages calls to directly allocate
superpage-backed memory using a malloc-style in-
terface. The actual page size cannot be specified and
depends on a system-wide default; 4 kB pages may be
used transparently unless the GHR_STRICT flag is set. By
default, hugetlbfs prefaults pages.

The high-level observation is: No single Linux API is
always optimal, even for very simple VM operations.

A second problem is policy inflexibility. While the
appropriate policy for many memory management oper-
ations such as page replacement, NUMA allocation or
handling of superpages depend strongly on individual ap-
plication’s workloads. In Linux, however, they usually
either apply system-wide, require administrator configu-
ration (often at boot), must be enabled at compile time, or
a combination of them.

For example, supporting two superpage sizes in
hugetlbfs requires two different, pre-allocated pools of
physical memory, each assigned to a different file sys-
tem, precluding a dynamic algorithm that could adapt to
changing workloads.

In addition to the added complexity in the kernel [24],
the system-wide policies in transparent superpage support
have led to a variety of performance issues: Oracle DB has
suffered from I/O performance degradation when reading
large extents from disk [5, 17]. Redis incurs unexpected
latency spikes using THP due to copy-on-write overhead
for large pages, since the application periodically uses
fork() to persist database snapshots [65]. The jemalloc
memory allocator experiences performance anomalies

due to its use of madvise to release small regions of mem-
ory inside of bigger chunks which have been transparently
backed by large pages — the resulting holes preventing
later merging of the region back into a large page [37].

These issues are not minor implementation bugs, but
arise from the philosophy that memory system complex-
ity should be hidden from applications, and resource al-
location policies should be handled transparently by the
kernel.

The third class of problem is feature interaction. We
have seen how superpages cannot be demand paged (even
though modern SSDs can transfer 2MB pages with low
latency). Another example is the complex and subtle
interaction between kernel-wide policies for NUMA al-
location with superpage support [58]. At one level, this
shows up in the inability to control initial superpage allo-
cation at boot time (superpages are always balanced over
all NUMA nodes). Worse, Gaud et al. [38] show that treat-
ing large pages and NUMA separately does not work well:
large pages hurt the performance of parallel applications
on NUMA machines because hot pages are more likely,
and larger, and false page sharing makes replication or
migration less effective. Accordingly, the Carrefour [29]
system modifies the kernel’s NUMA-aware page place-
ment to realize its performance gains.

Collectively, these issues motivate investigating alter-
native approaches. As memory hardware diversifies in the
future, memory management policies will become increas-
ingly complicated. We note that none of the Linux mem-
ory APIs actually deal with physical memory directly,
but instead select from a limited number of complex, in-
kernel policies for backing traditional virtual memory.

In contrast, therefore, Cichlid safely exposes to pro-
grams and runtime systems both physical memory and
translation hardware, and allows libraries to build familiar
virtual memory abstractions above this.

3 Design

We now describe the design of Cichlid, and how it is
implemented over the basic memory functionality of Bar-
relfish. While Cichlid allows great flexibility in arranging
an address space, it nevertheless ensures the following
key safety property: no Cichlid process can issue read
or write instructions for any area of physical memory for
which it does not have explicit access rights.

Subject to this requirement, Cichlid also provides the
following completeness property: a Cichlid process can
create any address space layout permitted by the MMU for
which it has sufficient resources. In other words, Cichlid
itself poses no restriction on how the memory hardware
can be used.

There are three main challenges in the implementa-

4

tion that Cichlid must address: Firstly, it must securely
name and authorize access to, and control over, regions of
physical memory. Cichlid achieves this using partitioned
capabilities. Secondly, it must allow safe control of hard-
ware data structures (such as page tables) by application
programs. This, is achieved by considerably extending the
set of memory types supported by the capability system
in Barrelfish (and seL4) for Cichlid to use. Finally, Ci-
chlid must give applications direct access to information
provided by the MMU (such as access and write-tracking
bits in the page tables). Unlike prior approaches which
rely on virtualization technology, Cichlid allows direct
read-only access to page table entries; we explain below
why this is safe.

Cichlid has three main components: First, the kernel
provides capability invocations that allow application pro-
cesses to install, modify and remove page table entries
and query for the base address and size of physical re-
gions. Second, the kernel exception handler redirects any
exceptions generated by the MMU to the application pro-
cess that caused the exception. Thirdly, a runtime library
provides to applications an abstraction layer over the ca-
pability system which exposes a simple, but expressive
API for managing page tables.

3.1 Physical memory allocation

Cichlid applications directly allocate regions of physical
memory and pass around authorization for these regions
in the form of capabilities. Regions can be mapped into a
virtual address space by changing a page table, or used for
other purposes such as holding page tables themselves.

Cichlid extends the Barrelfish capability design, itself
inspired by seL4 [30, 33, 53]. All physical regions are
represented by capabilities, which also confer a particular
memory type. For example, the integrity of the capability
system itself is ensured by storing capability representa-
tions in memory regions of type CNode, which can never
be directly written by user-space programs. Instead, a
region must be of type Frame to be mapped writable into
a virtual address space. Holding both Frame and CNode
capabilities to the same region would enable a process to
forge new capabilities by directly manipulating their bit
representations, and so is forbidden. Such a situation is
prevented by having a kernel enforced type hierarchy for
capabilities.

Capabilities to memory regions can be split and retyped
according to a set of rules. At system start-up, all mem-
ory is initially of type Untyped, and physical memory
is allocated to processes by splitting the initial untyped
region. Retyping and other operations on capabilities is
performed by system calls to the kernel.

seL4 capabilities are motivated by the desire to prove
correctness properties of the seL4 kernel, in particular,

the property that no system call can fail due to lack of
memory. Hence, seL4 and Barrelfish perform no dynamic
memory allocation in the kernel, instead memory for all
dynamic kernel data structures is allocated by user-space
programs and retyped appropriately, such as to a kernel
thread control block or a CNode, for example.

Capabilities are attractive since they export physical
memory to applications in a safe manner: application
may not arbitrarily use physical memory; they must in-
stead “own” the corresponding capability. Furthermore,
capabilities can be passed between applications. Finally,
capabilities have some characteristics of objects: each ca-
pability type has a set of operations which can be invoked
on it by a system call.

In Barrelfish, seL4, and Cichlid, the kernel enforces
safety using two types of meta-data: a derivation database
and a per-processes capability space. All capability ob-
jects managed by a kernel are organized in a capability
derivation tree. This tree enables efficient queries for
descendants (of retype and split operations) and copies.
These queries are used to prevent retype races on separate
copies of a capability that might compromise the system.

User processes refer to capabilities and invoke opera-
tions on them using opaque handles. Each process has its
own capability address space, which is explicitly main-
tained via a radix tree in the kernel which functions as a
guarded page table. The nodes of the tree are also capabil-
ities (retyped from RAM capabilities) and are allocated
by the application.

The root of the radix tree for each process is stored
in the process control block. When a process invokes a
capability operation it passes to the kernel the capability
handle with the invocation arguments. To perform the op-
eration, the kernel traverses the process’ capability space
to locate the capability corresponding to the handle and
authorizes the invocation.

Cichlid builds on the basic Barrelfish capability mech-
anisms to allow explicit allocation of different kinds of
memory. A memory region has architectural attributes
such as the memory controller it resides on, whether it is
on an external co-processor like a GPGPU or Intel Xeon
Phi, whether it is persistent, etc. Applications explicitly
acquire memory with particular attributes by requesting a
capability from an appropriate memory allocator process,
of which there are many. Furthermore, less explicit “best
effort” policies can be layered on top by implementing
further virtual allocators which can, for example, steal
RAM from nearby controllers if local memory is scarce.

3.2 Securely building page tables

Page tables are hardware specific, and at the lowest level,
Cichlid’s interface (like seL4 and Barrelfish) reflects the
actual hardware. Applications may use this interface di-

5

rectly, or a high-level API with common abstractions for
different MMUs, to safely build page tables, exchange
page tables on a core, and install mappings for any phys-
ical memory regions for which the application is autho-
rized. The choice of virtual memory layout, and its repre-
sentation in page tables, is fully controlled by the applica-
tion. Cores can share sub-page-tables between different
page-table hierarchies to alias a region of memory at a
different address or to share memory between different
cores as in Corey [16].

Cichlid adds support for multiple page sizes (2 MB and
1 GB superpages in x86_64, and 16 MB, 1 MB, and 64 kB
pages in ARMv7-a [4]) to the Barrelfish memory manage-
ment system [8]. Cichlid decouples the physical memory
allocation from programming the MMU. Therefore the
API allows for a clean way to explicitly select the page
size for individual mappings, map pages from a mixture
of different page sizes, and change the virtual page sizes
for mappings of contiguous physical memory regions all
directly from the applications itself instead of relying on
the kernel to implement the correct policy for all cases.

To do this, Cichlid extends the Barrelfish memory sys-
tem (and that of seL4) by introducing a new capability
type for every level of page table for every architecture
supported by the OS. This is facilitated by the Ham-
let domain-specific language for specifying capability
types [28].

For example, for an MMU in x86_64 long-mode there
are four different types of page table capability, corre-
sponding to the 4 levels of a 64-bit x86 page table (PML4,
PDPT, PD, and PT). A PT (last-level page table) capability
can only refer to a 4k page-aligned region of RAM and
has a map operation which takes an additional capability
plus an entry number as arguments. This capability in
turn must be of type Frame and refer to another 4k page.
The operation installs the appropriate page table entry in
the PT to map the specified frame. The kernel imposes no
policy on this mapping, other than restricting the type and
size of capabilities.

Similarly, a map on a PD (a 2nd-level “page directory”)
capability only accepts a capability argument which is of
size 4 kB and type PT, or of type Frame and size 2 MB
(signifying a large page mapping).

A small set of rules therefore captures all possible
valid and authorized page table operations for a process,
while excluding any that would violate the safety prop-
erty. Moreover, checking these rules is fast and is partly
responsible for Cichlid’s superior performance described
in Section 4.2. This type system allows user-space Cichlid
programs to construct flexible page tables while enforcing
the safety property stated at the start of this section.

Cichlid’s full kernel interface contains the follow-
ing capability invocations: identify, map, unmap,
modify_flags (protect), and clear_dirty_bits.

Memory regions represented by capabilities and asso-
ciated rights allow user-level applications to safely con-
struct page tables; they allocate physical memory regions
and retype them to hold a page table and install the entries
as needed.

Typed capabilities ensure a process cannot success-
fully map a physical region for which it does not have
authorization. The process of mapping itself is still a
privileged operation handled by the kernel, but the kernel
must only validate the references and capability types
before installing the mapping. Safety is guaranteed based
on the type system: page tables have a specific type which
cannot be mapped writable.

Care must be taken in Cichlid to handle capability revo-
cation. In particular, when a Frame capability is revoked,
all page table entries for that frame must be quickly iden-
tified and removed. Cichlid handles this by requiring
each instance of a Frame capability to correspond to at
most one hardware page table entry. To map a frame into
multiple page tables, or at multiple locations in the same
page table, the program must explicitly create copies of
the capability.

As described so far, each operation requires a separate
system call. Cichlid optimizes this in a straightforward
way by allowing batching of requests, amortizing system
call cost for large region operations. The map, unmap, and
modify_flags operations all take multiple consecutive
entries for a given page table as arguments.

In Section 4.3 we confirm existing work on the effect
of page size on performance of particular workloads, and
in Section 4.4 we show that the choice of the page size is
highly dynamic and depends on the program’s configura-
tion such as the number of threads and where memory is
allocated.

In contrast, having the OS transparently select a page
size is an old idea [60] and is the default in many Linux
distributions today, but finding a policy that satisfies a
diverse set of different workloads is difficult in practice
and leads to inherent complexity with questionable per-
formance benefits [17, 38, 42, 65].

3.3 Page faults and access to status bits
Cichlid uses the existing Barrelfish functionality for re-
flecting VM-related processor exceptions back to the fault-
ing process, as in Nemesis [44] and K42 [55]. This incurs
lower kernel overhead than classical VM and allows the
application to implement its own paging policies. In Sec-
tions 4.1 and 4.2 we show that Cichlid’s trap latency to
user space is considerably lower than in Linux.

Cichlid extends Barrelfish to allow page-traps to be
eliminated for some use-cases when the MMU maintains
page access information in the page table entries. While
Dune [9] uses nested paging hardware to present “dirty”

6

and “accessed” bits in an x86_6 4 page table to a user
space program, Cichlid achieves this without hardware
support for virtualization.

We extend the kernel’s mapping rules in Section 3.2
to allow page tables themselves to be mapped read-only
into a process’ address space. Essentially, this boils down
to allowing a 4 kB capability of type PML4, PDPT, PD, or
PT to be mapped in an entry in a PT instead of a Frame
capability, with the added restriction that the mapping
must be read-only.

This allows applications (or libraries) to read “dirty”
and “accessed” bits directly from page table entries with-
out trapping to the kernel. Setting or clearing these bits
remains a privileged operation which can only be per-
formed by a kernel invocation passing the capability for
the page table.

Note that this functionality remains safe under the ca-
pability system: an application can only access the map-
pings it has installed itself (or for which it holds a valid
capability), and cannot subvert them.

In Section 4.5 we demonstrate the benefits of this ap-
proach for a garbage collector. Cichlid’s demand-paging
functionality for x86_64 also uses mapped dirty bits to de-
termine if a frame’s contents should be paged-out before
reusing the frame.

Since Cichlid doesn’t need hardware virtualization sup-
port, such hardware, if present, can be used for virtualiza-
tion. Cichlid can work both inside a virtual machine, or
as a better memory management system for a low-level
hypervisor.

Moreover, nested paging has a performance cost for
large working sets, since TLB misses can be twice as
expensive. In Section 4.6 we show that for small work-
ing sets (below 16 MB for our hardware) a Dune-like
approach outperforms Cichlid due to lower overhead in
clearing page table bits, but for medium-to-large working
sets Cichlid’s lower TLB miss latency improves perfor-
mance.

The Cichlid and Dune approaches are complementary,
and a natural extension to Cichlid (not pursued here)
would allow applications access to both the physical (ma-
chine) page tables and nested page tables if the workload
can exploit them.

3.4 Runtime library
Cichlid provides a number of APIs above the capability
invocations discussed above.

The first layer of Cichlid’s user-space wraps the in-
vocations to create, modify or remove single mappings,
and keep track of the application’s virtual address space
layout.

While application programmers can build directly on
this, the Cichlid library provides higher-level abstractions

based on the concepts of virtual regions (contiguous sets
of virtual addresses), and memory objects that can be used
to back one or more virtual regions and can themselves
be comprised of one or more physical regions.

This layer is important to Cichlid’s usability. Manually
invoking operations on capabilities to manage the virtual
address space can be cumbersome; take the example of a
common operation such as mapping an arbitrarily-sized
region of physical memory R with physical base address
P and size S bytes, R = (P, S), at an arbitrary virtual base
address V . The number of invocations needed to create
this simple mapping varies based on V , S , and the desired
properties of the mapping (such as page size), as well as
the state of the application’s virtual address space before
the operation. In particular, installing a mapping can
potentially entail creating multiple levels of page table
in addition to installing a page table entry. The library
encapsulates the code to do this on demand, as well as
batching operations up to amortize system call overhead.

Finally, the library also provides traditional interfaces
such as sbrk() and malloc() for areas of memory where
performance is not critical. To simplify start-up, programs
running over Cichlid start up with a limited, conventional
virtual address space with key segments (text, data, bss)
backed with RAM, though this address space is, itself,
constructed by the process’ parent using Cichlid (rather
than the kernel).

In addition, the Cichlid library provides demand pag-
ing to disk as in Nemesis [44], but not by default: many
time-sensitive applications rely on not paging for correct-
ness, small machines such as phones typically do not page
anyway, and and the growth of non-volatile main mem-
ory [48, 62] may make demand-paging obsolete. Unlike
the Linux VM system, demand paging is orthogonal to
page size: the Cichlid library can demand-page super-
pages provided the application has sufficient frames and
disk space. Furthermore, the application is aware of the
number of backing frames and can add or remove frames
explicitly at runtime if required.

The library shows that building a classic VM abstrac-
tion over Cichlid is straightforward, but the reverse is not
the case.

4 Evaluation

We evaluate Cichlid by first demonstrating that primitive
operations have performance as good as, or better than
those of Linux, and then showing that Cichlid’s flexi-
ble interface allows application programmers to usefully
optimize their systems.

All Linux results, other than those for Dune (Sec-
tion 4.5), are for version 4.2.0, as shipped with Ubuntu
15.10, with three large-page setups: none, hugetlbfs, and
transparent huge pages. As the Dune patches (git revision

7

prot1-trap-unprot protN-trap-unprot trap only
Strategy

0

2000

4000

6000

8000

Ex
ec

ut
io

n
tim

e
(c

yc
le

s/
(p

ag
e|

tra
p)

)
Linux default
Linux full TLB flush
Linux selective TLB flush
Cichlid default

Cichlid full TLB flush
Cichlid selective TLB flush
Cichlid full TLB flush + DI
Cichlid selective TLB flush + DI

Figure 2: Appel-Li benchmark. (Linux 4.2.0)

6c12ba0) require a version 3 kernel, these benchmarks
use kernel version 3.16 instead. These configurations are
summarized in Table 2. Thread and memory pinning was
done using numactl and taskctl. Performance numbers
for Linux are always the best among all tested configura-
tions.

4.1 Appel and Li benchmark

The Appel and Li benchmark [3] tests operations rele-
vant to garbage collection and other non-paging tasks.
This benchmark is compiled with flags -O2 -DNDEBUG,
and summarized in Figure 2.

We compare Linux and Cichlid with three different
TLB flush modes: 1) Full: Invalidate the whole TLB
(writing cr3 on x86) every time, 2) Selective: Only invali-
date those entries relevant to the previous operation (using
the invlpg instruction), and 3) System default: Cichlid,
by default, does a full flush only for more than one page.
Linux’s default behavior depends on kernel version. The
version tested (4.2.0) does a selective flush for up to 33
pages, and full a flush otherwise [45]. We vary this value
to change Linux’s flush mode. The working set here is
less than 2 MB, and thus large pages have no effect and
are disabled.

Cichlid is consistently faster than Linux here.

For multi-page protect-trap-unprotect (protN-trap-
unprot), Cichlid is 46% faster than Linux. For both sys-
tems, the default adaptive behavior is as good as, or better
than, selective flushing. The Cichlid +DI results use the
kernel primitives directly, to isolate the cost of user-space
accounting, which is around 5%.

4.2 Memory operation microbenchmarks

We extend the Appel and Li benchmarks, to establish how
the primitive operations scale for large address spaces,
using buffers up to 64 GB. We map, protect and unmap
the entire buffer, and time each operation separately. We
compare Cichlid to the best Linux method for each page
size established in § 2.3. On Cichlid we use the high-level
interfaces on a previously allocated frame, for similar
semantics to shared memory objects in Linux. The ex-
periments were conducted on a 2x10 Intel Xeon E5 v2.
Figure 3 shows execution time per page.

Map: Cichlid per-page performance is highly pre-
dictable, regardless of page size. Since all information
needed is presented to each a system call, the kernel does
very little. On Linux we use shm_open for 4k pages and
shmat for others. Linux needs to consult the shared seg-
ment descriptor and validate it. This results in a general
performance improvement for Cichlid over Linux up to
15x for 4 kB pages or 93x for large pages, once some
upfront overhead is amortized.

Protect: These are in line with the Appel and Li bench-
marks: Cichlid outperforms Linux’s mprotect() on an
mmap’ed region in all configurations except for small
buffers of 4 kB pages. For large buffers, the differences
between Cichlid and Linux are up to 4x (4 kB pages) or
8x (huge pages).

Unmap: Doing an unmap in Cichlid is expensive: the
relevant page table capability must be looked up to invoke
it and the mapped Frame capability needs to be marked
unmapped. Linux shmdt, however, simply detaches the
segment from the process but doesn’t destroy it. Cichlid
could be modified to directly invoke the page table, and
thereby match the performance of Linux.

Cichlid memory operations are competitive: capabili-
ties and fast traps allows an efficient virtual memory inter-
face. Even when multiple page table levels are changed,
Cichlid usually outperforms Linux on most cases, despite
requiring several system calls.

4.3 Random accesses benchmark (GUPS)

Many HPC workloads have a random memory access
pattern, and spend up to 50% of their time in TLB
misses [67]. Using the RandomAccess benchmark [54]
from the HPC Challenge [68] suite, we demonstrate that
carefully user-selected page sizes, as enabled by Cichlid,
have a dramatic performance effect.

We measure update rate (Giga updates per second, or
GUPS) for read-modify-write on an array of 64-bit in-
tegers, using a single thread. We measure working sets
up to 32 GB, which exceeds TLB coverage for all page
sizes. Linux configuration is 4.2.0-tlbfs, with pages
allocated from the local NUMA node. If run with transpar-

8

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

2.0
Ti

m
e

pe
r p

ag
e

[µ
s]

Map

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

2.0 Unmap

4k 2M 1G 64G
Buffersize

0.5

1.0

1.5

2.0 Protect

4k Linux 4k Cichlid 2M Linux 2M Cichlid 1G Linux 1G Cichlid

Figure 3: Comparison of memory operations on Cichlid and Linux using shmat, mprotect and shmdt. (Linux
4.2.0-tlbfs)

Cichlid Linux
Page Size GUPS Time GUPS Time

4k 0.0122 1397s 0.0121 1414s
2M 0.0408 420s 0.0408 421s
1G 0.0659 260s 0.0658 261s

Table 3: GUPS as a function of page size, 32 GB table.

2M 4M 8M 16M 32M 128M 1G 4G 8G 32G
Size of table in Bytes

1x

2x

3x

4x

5x

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e 1G Pages

2M Pages
4k Pages

Figure 4: GUPS as a function of table size, normalized.

ent huge pages instead, the system always selects 2 MB
pages, and achieves lower performance.

Figure 4 shows the results on Cichlid, normalized to
1 GB pages. Performance drops once we exceed TLB
coverage: at 2 MB for 4 kB pages, and at 128 MB for
2 MB pages. The apparent improvement at 32 MB is due
to exhausting the L3 cache, which slows all three equally,
bringing the normalized results together. Large pages not
only increase TLB coverage, but cause fewer table walk
steps to service a TLB miss. Page-structure caches would
reduce the number of memory accesses even further but
are rather small [6,12] in size. Cichlid and Linux perform
identically in the test, as Table 3 shows. These results
support previous findings on TLB overhead [7, 67], and
emphasize the importance for applications being able to

420 440 460 480 500 520 540
Runtime [s]

0

2

4

6

8

Re
pe

tit
io

ns

Figure 5: GUPS variance. 4.2.0-tlbfs, 2 MB pages.

select the correct page size for their workload.
On Linux, even with NUMA-local memory, high

scheduling priority, and no frequency scaling or power
management, there is a significant variance between
benchmark runs, evidenced by the multimodal distribu-
tion in Figure 5. This occurs for both hugetlbfs and
transparent huge pages, and is probably due to variations
in memory allocation, although we have been unable to
isolate the precise cause. This variance is completely
absent under Cichlid even when truly randomizing pag-
ing layout and access patterns, demonstrating again the
benefit of predictable application-driven allocation.

4.4 Mixed page sizes

Previous work [38] has shown that while large pages
can be beneficial on NUMA systems, they can also hurt
performance. Things are even more complicated when
there are more page sizes (e.g., 4 kB, 2 MB, 1 GB for
x86_64). Furthermore, modern machines often have a
distinct TLB for each page size, suggesting that using a
mix of page sizes increases TLB coverage.

Kaestle et al. [50] showed that distribution and repli-

9

CPU AMD Opteron 6378
micro architecture Piledriver
#nodes / #sockets / #cores 8 / 4 / 32 @ 2.4 GHz
L1 / L2 cache size 16 kB / 2 MB per core
L3 cache size 12 MB per socket
dTLB (4 kB pages) 64 entries, fully
dTLB (2/4 MB pages) 64 entries, fully
dTLB (1 GB pages) 64 entries, fully
L2 TLB (4 kB pages) 1024 entries, 8 way
L2 TLB (2/4 MB pages) 1024 entries, 8 way
L2 TLB (1 GB pages) 1024 entries, 8 way
RAM 512 GB (64 GB per node)

Table 4: Specification of machine used in §4.4

cation of data mitigates congestion on interconnects and
balances memory controller load, by extending Green-
Marl [47], a high-level domain-specific language for
graph analytics, to automatically apply these techniques
per region, using patterns extracted by the compiler. This
gave a two-fold speedup of already tuned parallel pro-
grams.

Large pages interact with the NUMA techniques de-
scribed above, by changing the granularity at which they
can be applied to data structures that are contiguous in
virtual memory. The granularity of NUMA distribution,
for example, is the page size. Hence, the smaller the
page size the more slack the run-time has to distribute
data across NUMA nodes. Bigger page sizes also make
memory allocation more restrictive: The starting address
when allocating memory must be a multiple of the page
size. Bigger page sizes can increase fragmentation and
increases the chance of conflicts in caches and TLB.

In Cichlid, programs map their own memory, and all
combinations of page sizes are supported. Furthermore,
no complex setup of page allocations and kernel configu-
rations are required.

Table 5 shows the effect of the page size on application
performance using Shoal’s Green-Marl PageRank [50].
NUMA effects are minimal on the 2-socket machine we
are using in other experiments, so for this experiment we
use the machine in Table 4 and note that AMD’s SMT
threads (CMT) are disabled in our experiments.

We evaluate two configurations: First, single-threaded
(T=1). In this case replication does not make sense as
all accesses are local, and distribution is unnecessary as
a single thread cannot saturate the memory controller —
indeed, an increase in remote memory access would likely
reduce performance. In this case, an isolated application,
bigger pages are always better.

Next, we run on all cores and explore the impact of
replication and distribution on the choice of page sizes.
1 GB pages clearly harm performance as distribution is
impossible or too coarse-grained. We only break even if

page size array configuration
T=1 T=32 (dist) T=32 (repl + dist)

4 kB 597.91 51.32 34.43
2 MB 414.80 58.09 28.87
1 GB 395.64 265.94 128.77

Table 5: PageRank runtime (seconds) depending on page
size and PageRank configuration (repl = replication, dist
= distribution, T is the number of threads). Highlighted
are best numbers for each configuration. Standard error
is very small.

90% of the working set is replicated. However, the last
10% still cannot be distributed efficiently, which leads to
worse performance.

It is clear that the right page size is highly dynamic and
depends on workload and application characteristics. It is
impractical to statically configure a system with pools (as
in Linux) optimally for all programs, as the requirements
are not known beforehand. Also, memory allocated to
pools is not available for allocations with different page
sizes. In contrast, Cichlid’s simpler interface allows arbi-
trary use of page sizes and replication by the application
without requiring a priori configuration of the OS.

4.5 Page status bits
The potential of using the MMU to improve garbage col-
lection is known [3]. Out of many possible applications,
we consider detecting page modifications; A feature used,
for example, in the Boehm garbage collector [15] to avoid
stopping the world. Only after tracing does the collector
stop the world and perform a final trace that need only
consider marked objects in dirty pages. This way, newly
reachable objects are accounted for and not collected.

There are two ways to detect modified pages: The first
is to make the pages read-only (e.g., via mprotect() or
transparently by the kernel using soft-dirty PTEs [66]),
and handle page faults in user-space or kernel-space. The
handler sets a virtual dirty bit, and unprotects the page to
allow the program to continue. The second approach uses
hardware dirty bits, set when a page is updated. Some
OSes (e.g., Linux) do not provide access to these bits.
This is not just an interface issue. The bits are actively
used by Linux to detect pages that need to be flushed to
disk during page reclamation. Other OSes such as Solaris
expose these dirty bits in a read-only manner via the
/proc file-system. In this case, applications are required
to perform a system call to read the bits, which, can lead
to worse performance than using mprotect() [13].

In Cichlid, physical memory and page tables are di-
rectly visible to applications. Applications can map page
tables read-only in their virtual address space. Only clear-
ing the dirty bits requires a system call.

10

C1 C2 C3 C4 C5
Heap size

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e
Cichlid (prot)
Linux (prot)
Cichlid (dirty)

Dune (dirty)
Cichlid/NP (dirty)

Figure 6: GCBench on Linux, Cichlid and Dune, normal-
ized runtime to Linux. (Linux 3.16, 3.16-dune)

Dune [9] provides this functionality through nested
paging hardware, intended for virtualization, by running
applications as a guest OS. Dune applications have direct
access to the virtualized (nested) page tables. This ap-
proach avoids any system call overhead to reset the dirty
bits, but depends on virtualization hardware and can lead
to a performance penalty due to greater TLB usage [7,11].

We use the Boehm garbage collector [15] and the
GCBench microbenchmark [14]. GCBench tests the
garbage collector by allocating and collecting binary trees
of various sizes. We run this benchmark with the three de-
scribed memory systems, Linux, Dune and Cichlid with
five different configurations C1 to C5, which progres-
sively increase the size of the allocated trees.

In Figure 6 we compare the runtime of each system. Ci-
chlid implements all three mechanisms: protecting pages
(Cichlid (prot)), hardware dirty bits (Cichlid (dirty)) in
user-space and hardware dirty bits in guest ring 0 (Cich-
lid/NP (dirty)) (as does Dune). Our virtualization code is
based on Arrakis [63].

Cichlid (prot) performs slightly worse than Linux
(prot). This is consistent with Figure 3 where Linux per-
forms better than Cichlid for protecting a single 4 kB page.
We achieve better performance (between 13% (C2) and
19% (C4)) than Linux when we use hardware dirty bits,
by avoiding traps when writing to pages. We still incur
some overhead as we have to make a system call to re-
set the dirty bits on pages. Dune outperforms Cichlid
(dirty) by up to 21% (C1), as direct access to the guest
page tables enables resetting the dirty bits without hav-
ing to make a system call. However, Cichlid manages to
close the gap as the working set becomes larger, in which
case Dune performance noticeably shows the overhead
of nested paging. Unfortunately, we were unable to get
Dune working with larger heap sizes on our hardware and
thus have no numbers for Dune for configurations C4 and

Config C1 C2 C3 C4 C5
Runtime (s)
Linux (prot) 2.1 9.6 42 191 848
Cichlid (prot) 2.4 10.5 43 203 928
Cichlid (dirty) 1.9 8.3 34 153 692
Dune (dirty) 1.5 7.3 33 – –
Cichlid/NP (dirty) 2.0 8.6 36 157 720
Collections
Linux (prot) 251 336 381 428 448
Cichlid (prot) 245 335 393 432 442
Cichlid (dirty) 230 323 383 435 441
Dune (dirty) 318 367 403 – –
Cichlid/NP (dirty) 233 325 381 434 443
Heap size (MB)
Linux (prot) 139 411 1924 7972 24932
Cichlid (prot) 132 453 1413 6789 26821
Cichlid (dirty) 100 453 1477 5669 28132
Dune (dirty) 106 386 1579 – –
Cichlid/NP (dirty) 100 453 1573 5541 28132

Table 6: GCBench reported total runtime, heap size and
amount of collections.

C5.

On Linux, using transparent huge pages did not have
a significant impact on performance and we report the
Linux numbers with THP disabled. In a similar vein, we
were unable to get Dune working with superpages, but
we believe that having superpages might improve Dune
performance for larger heap sizes (c.f. 4.3).

Cichlid/NP (dirty) runs GCBench in guest ring 0 and
reads and clears dirty bits directly on the guest hardware
page tables. The performance for Cichlid/NP is similar
to Cichlid (dirty) and slower than Dune. However, this
can be attributed to the fact that Cichlid/NP does not
fully leverage the advantage of having direct access to the
guest hardware page tables and still uses system calls to
construct the address space.

Table 6 shows the total runtime, number of collections
the GC did and the heap size used by the application.
Ideally, the heap size should be identical for all systems
since it is always possible to trade memory for better run
time in a garbage collector. In practice this is very difficult
to enforce especially across entirely different operating
systems. For example Cichlid uses less memory (28%)
for C4 compared to Linux (prot) but more memory (12%)
for C5.

We conclude that with Cichlid we can safely expose
MMU information to applications which in turn can ben-
efit from it without relying on virtualization hardware
features.

11

1 2 4 8 16 32 64 128

GUPS size [MB]

0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

gups

gups (dune)

gups_lcg

gups_lcg (dune)

Figure 7: Comparison of the execution time of Rando-
mAccess with and without nested paging for varying
working set sizes, normalized to GUPS on native Linux.
(Linux 3.16, 3.16-dune)

4.6 Nested paging overhead
To illustrate the potential downside of nested paging, we
revisit the HPC Challenge RandomAccess benchmark.
Resolving a TLB miss with nested paging requires a 2D
page table walk and up to 24 memory accesses [2] result-
ing in a much higher miss penalty, and the overhead of
nested paging may end up outweighing the benefits of
direct access to privileged hardware in guest ring zero.
GUPS represents a worst-case scenario due to its lack of
locality.

We conduct the same experiment as in section 4.3 on
Dune [9] with a working set size ranging from 1 MB to
128 MB. Figure 7 and Table 7 show that for the smallest
table sizes (1 MB and 2 MB) the performance of Rando-
mAccess under Dune and Linux is comparable. Larger
working set sizes exceed the TLB coverage and hence
more TLB misses occur. This results in almost 2x higher
runtime for RandomAccess in Dune than Linux. As for
all comparisons with Dune, we disable transparent huge
pages on Linux.

Running applications in guest ring zero as in Dune has
pros and cons: on one hand, the application gets access
to privileged hardware features, on the other hand, the
performance may be degraded due to larger TLB miss
costs for working sets which cannot be covered by the
TLB.

4.7 Page coloring
The core principle of paged virtual memory is that virtual
pages are backed by arbitrary physical pages. This can
adversely affect application performance due to unneces-
sary conflict misses in the CPU caches and an increase

Linux Dune
Size GUPS GUPS LCG GUPS GUPS LCG

1 2 1 2 1
2 3 3 3 3
4 11 11 18 19
8 35 36 61 65

16 90 93 165 169
32 236 240 421 425
64 594 595 1098 1113

128 1510 1571 2999 3043

Table 7: RandomAccess absolute execution times in mil-
liseconds. (Linux 3.16, 3.16-dune)

in non-determinism [52]. In addition, system wide page
coloring introduces constraints on memory management
which may interfere with the application’s memory re-
quirements [70].

Implementing page placement policies is non-trivial:
The complexity of the FreeBSD kernel is increased sig-
nificantly [31], Solaris allows applications to chose from
multiple algorithms [61], and there have been several
failed attempts to implement page placement algorithms
in Linux. Other systems like COLORIS [69] replace
Linux’ page allocator entirely in order to support page
coloring.

In contrast, Cichlid allows an application to explicitly
request physical memory of a certain color and map ac-
cording to its needs. For instance, a streaming database
join operator can restrict the large relation (which is
streamed from disk) to a small portion of the cache as
most accesses would result in a cache miss anyway and
keep the smaller relation completely in cache.

Table 8 shows the results of parallel execution of two
instances of the HPC Challenge suite RandomAccess
benchmark on cores that share the same last-level cache.
In the first column we show the performance of each in-
stance running in isolation. We see a significant drop
in GUP/s for the instance with the smaller working set
when both instances run in parallel. By applying cache
partitioning we can keep the performance impact on the
smaller instance to a minimum while improving the per-
formance of the larger instance even compared to the case
where the larger instance runs in isolation.

The reason behind this unexpected performance im-
provement is that the working set (the table) of the larger
instance is restricted to a small fraction of the cache which
reduces conflict misses between the working set and other
data structures such as process state etc.

4.8 Discussion
With this evaluation, we have shown that the flexibility
of Cichlid’s memory system allows applications to opti-

12

Process Isolation Parallel Parallel Colors
16M Table 0.0926 0.0834 90.0% 0.0921 99.5%
64M Table 0.0570 0.0561 98.4% 0.0631 110.7%

Table 8: Parallel execution of GUPS on Cichlid with and
without cache coloring. Values in GUP/s.

mize their physical resources for a particular workload
independent of a system-wide policy without sacrificing
performance.

Cichlid’s strength lies in its flexibility. By stripping
back the policies baked into traditional VM systems over
the years (many motivated by RAM as a scarce resource)
and exposing hardware resources securely to programs, it
performs as well as or better than Linux for most bench-
marks, while enabling performance optimizations not pre-
viously possible in a clean manner.

5 Related work

Prior to Barrelfish and seL4, the idea of moving memory
management into the application rather than a kernel or
external paging server had been around for some time.
Engler et al. in 1995 [35] outlined much of the motiva-
tion for moving memory management into the application
rather than the kernel or external paging server, and de-
scribed AVM, an implementation for the Exokernel [36]
based on a software-loaded TLB, presenting a small per-
formance evaluation on microbenchmarks. AVM referred
to physical memory explicitly by address, and “secure
bindings” conferred authorization to map it. Since then,
software-loaded TLBs have fallen out of favor due to
hardware performance trends. Cichlid targets modern
hardware page tables, and uses capabilities to both name
and authorize physical memory access.

The V++ Cache Kernel [18] implemented user-level
management of physical memory through page-frame
caches [46] allowing applications to monitor and control
the physical frames they have, with a focus on better page-
replacement policies. A virtual address space is a segment
which is composed of regions from other segments called
bound regions. A segment manager, associated with each
segment, is responsible for keeping track of the segment
to page mappings and hence handling page faults. Pages
are migrated between segments to handle faults. Segment
managers can run separately from the faulting application.
It is critical to avoid double faults in the segment manager.
Initialization is handled by the kernel which creates a
well-known segment.

Other systems have also reflected page faults to user
space. Microkernels like L4 [57], Mach [64], Chorus [1],
and Spring [51] allow server processes to implement cus-

tom page management policies. In contrast, the soft-
realtime requirements of continuous media motivated
Nemesis [44] redirecting faults to the application itself, to
ensures resource accountability. As with AVM, the target
hardware is a uniprocessor with a software-loaded TLB.
A similar upcall mechanism for reflecting page faults was
used in K42 [55].

In contrast, extensible kernels like SPIN [10] and
VINO [34] allow downloading of safe policy extensions
into the kernel for performance. For example, SPIN’s
kernel interface to memory has some similarity with Cich-
lid’s user-space API: PhysAddr allowed allocation, deal-
location, and reclamation of physical memory, VirtAddr
managed a virtual address space, and Translation al-
lowed the installation of mappings between the two, as
well as event handlers to be installed for faults. In com-
parison, Cichlid allows applications to define policies
completely in user-space, whereas SPIN has to rely on
compiler support to make sure the extensions are safe for
use in kernel-space.

6 Conclusion

Cichlid inverts the classical VM model and securely ex-
poses physical memory and MMU hardware to appli-
cations without recourse to virtualization hardware. It
enables a variety of optimizations based on the memory
system which are either impossible to express in Unix-
like systems, or can only be cast as “hints” to a fixed
kernel policy. Although MMU hardware has evolved to
support a Unix-oriented view of virtual memory, Cichlid
outperforms the Linux VM in many cases, and equals it
in others.

Cichlid explores a very different style of OS service
provision. Demand paging often badly impacts modern
applications that rely on fast memory; the virtual address
space can be an abstraction barrier which degrades per-
formance. In Cichlid, in contrast, an application knows
when it has insufficient physical memory and must explic-
itly deal with it. Given current trends in both applications
and hardware, we feel this “road less travelled” in OS
design is worthy of further attention. Exposing hardware
securely to applications, libraries, and language runtimes
may be the only practical way to avoid the increasing
complexity of memory interfaces based purely on virtual
addressing.

References

[1] Abrossimov, E., Rozier, M., and Shapiro, M.
Generic Virtual Memory Management for Operat-
ing System Kernels. In Proceedings of the Twelfth

13

ACM Symposium on Operating Systems Principles
(1989), SOSP ’89, ACM, pp. 123–136.

[2] Ahn, J., Jin, S., and Huh, J. Revisiting Hardware-
assisted Page Walks for Virtualized Systems. In
Proceedings of the 39th Annual International Sym-
posium on Computer Architecture (Washington, DC,
USA, 2012), ISCA ’12, IEEE Computer Society,
pp. 476–487.

[3] Appel, A. W., and Li, K. Virtual Memory Primitives
for User Programs. In Proceedings of the Fourth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(New York, NY, USA, 1991), ASPLOS IV, ACM,
pp. 96–107.

[4] ARM Ltd. Cortex-A9 Technical Reference Manual.
Revision r4p1.

[5] Aziz, K. Improving the Performance
of Transparent Huge Pages in Linux.
https://blogs.oracle.com/linuxkernel/entry/
performance_impact_of_transparent_huge, Aug
2014.

[6] Barr, T. W., Cox, A. L., and Rixner, S. Translation
Caching: Skip, Don’t Walk (the Page Table). In
Proceedings of the 37th Annual International Sym-
posium on Computer Architecture (New York, NY,
USA, 2010), ISCA ’10, ACM, pp. 48–59.

[7] Basu, A., Gandhi, J., Chang, J., Hill, M. D., and
Swift, M. M. Efficient Virtual Memory for Big
Memory Servers. In Proceedings of the 40th Annual
International Symposium on Computer Architec-
ture (New York, NY, USA, 2013), ISCA ’13, ACM,
pp. 237–248.

[8] Baumann, A., Barham, P., Dagand, P.-E., Harris, T.,
Isaacs, R., Peter, S., Roscoe, T., Schüpbach, A., and
Singhania, A. The Multikernel: a new OS architec-
ture for scalable multicore systems. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (2009), pp. 29–44.

[9] Belay, A., Bittau, A., Mashtizadeh, A., Terei, D.,
Mazières, D., and Kozyrakis, C. Dune: safe user-
level access to privileged CPU features. In Proceed-
ings of the 10th USENIX conference on Operating
Systems Design and Implementation (OSDI) (Hol-
lywood, CA, USA, 2012).

[10] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G.,
Fiuczynski, M. E., Becker, D., Chambers, C., and
Eggers, S. Extensibility Safety and Performance in
the SPIN Operating System. In Proceedings of the

Fifteenth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 1995), SOSP ’95,
ACM, pp. 267–283.

[11] Bhargava, R., Serebrin, B., Spadini, F., andManne,
S. Accelerating Two-dimensional Page Walks for
Virtualized Systems. In Proceedings of the 13th
International Conference on Architectural Support
for Programming Languages and Operating Systems
(2008), ASPLOS XIII, pp. 26–35.

[12] Bhattacharjee, A. Large-reach Memory Manage-
ment Unit Caches. In Proceedings of the 46th
Annual IEEE/ACM International Symposium on
Microarchitecture (New York, NY, USA, 2013),
MICRO-46, ACM, pp. 383–394.

[13] Boehm, H.-J. Conservative GC algorithmic overview.
http://www.hboehm.info/gc/gcdescr.html.

[14] Boehm, H.-J. Gcbench. http://hboehm.info/gc/gc_
bench/.

[15] Boehm, H.-J., Demers, A. J., and Shenker, S. Mostly
Parallel Garbage Collection. In Proceedings of the
ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation (1991), PLDI
’91, pp. 157–164.

[16] Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y.,
Kaashoek, F., Morris, R., Pesterev, A., Stein, L.,
Wu, M., Dai, Y., Zhang, Y., and Zhang, Z. Corey:
An Operating System for Many Cores. In Proceed-
ings of the 8th USENIX Conference on Operat-
ing Systems Design and Implementation (Berkeley,
CA, USA, 2008), OSDI’08, USENIX Association,
pp. 43–57.

[17] Casey, M. Performance Issues with
Transparent Huge Pages (THP). https:
//blogs.oracle.com/linux/entry/performance_
issues_with_transparent_huge, Sep 2013.

[18] Cheriton, D. R., and Duda, K. J. A Caching Model
of Operating System Kernel Functionality. In Pro-
ceedings of the 1st USENIX Conference on Operat-
ing Systems Design and Implementation (Monterey,
California, 1994), OSDI ’94, USENIX Association.

[19] Corbet, J. AutoNUMA: the other approach to
NUMA scheduling. http://lwn.net/Articles/488709/,
Mar 2012.

[20] Corbet, J. NUMA in a hurry. http://lwn.net/Articles/
524977/, Nov 2012.

[21] Corbet, J. Toward better NUMA scheduling. http:
//lwn.net/Articles/486858/, Mar 2012.

14

https://blogs.oracle.com/linuxkernel/entry/performance_impact_of_transparent_huge
https://blogs.oracle.com/linuxkernel/entry/performance_impact_of_transparent_huge
http://www.hboehm.info/gc/gcdescr.html
http://hboehm.info/gc/gc_bench/
http://hboehm.info/gc/gc_bench/
https://blogs.oracle.com/linux/entry/performance_issues_with_transparent_huge
https://blogs.oracle.com/linux/entry/performance_issues_with_transparent_huge
https://blogs.oracle.com/linux/entry/performance_issues_with_transparent_huge
http://lwn.net/Articles/488709/
http://lwn.net/Articles/524977/
http://lwn.net/Articles/524977/
http://lwn.net/Articles/486858/
http://lwn.net/Articles/486858/

[22] Corbet, J. NUMA scheduling progress. http://lwn.
net/Articles/568870/, Oct 2013.

[23] Corbet, J. User-space page fault handling. http:
//lwn.net/Articles/550555/, May 2013.

[24] Corbet, J. 2014 LSFMM summit: Huge page issues.
http://lwn.net/Articles/592011/, Mar 2014.

[25] Corbet, J. NUMA placement problems. http://lwn.
net/Articles/591995/, Mar 2014.

[26] Corbet, J. Page faults in user space:
MADV_USERFAULT, remap_anon_range(),
and userfaultfd(). http://lwn.net/Articles/615086/,
Oct 2014.

[27] Corbet, J. Transparent huge pages in 2.6.38. http:
//lwn.net/Articles/423584/, Jan 2014.

[28] Dagand, P.-E., Baumann, A., and Roscoe, T. Filet-
o-Fish: practical and dependable domain-specific
languages for OS development. In 5th Workshop
on Programming Languages and Operating Systems
(PLOS) (Oct 2009).

[29] Dashti, M., Fedorova, A., Funston, J., Gaud, F.,
Lachaize, R., Lepers, B., Quema, V., and Roth, M.
Traffic Management: A Holistic Approach to Mem-
ory Placement on NUMA Systems. In Proceedings
of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (Houston, Texas, USA, 2013),
ASPLOS ’13, ACM, pp. 381–394.

[30] Derrin, P., Elkaduwe, D., and Elphinstone, K. seL4
Reference Manual. NICTA, 2006. http://www.ertos.
nicta.com.au/research/sel4/sel4-refman.pdf.

[31] Dillon, M. Design elements of the FreeBSD
VM system - Page Coloring. Online,
https://www.freebsd.org/doc/en/articles/
vm-design/page-coloring-optimizations.html, Nov
2013. Accessed 2015-08-26.

[32] Elkaduwe, D., Derrin, P., and Elphinstone, K.
A memory allocation model for an embedded mi-
crokernel. In Proceedings of the 1st International
Workshop on Microkernels for Embedded Systems
(MIKES) (2007), pp. 28–34.

[33] Elkaduwe, D., Derrin, P., and Elphinstone, K. Ker-
nel Design for Isolation and Assurance of Physical
Memory. In Proceedings of the 1st Workshop on Iso-
lation and Integration in Embedded Systems (New
York, NY, USA, 2008), IIES ’08, ACM, pp. 35–40.

[34] Endo, Y., Seltzer, M., Gwertzman, J., Small, C.,
Smith, K. A., and Tang, D. VINO: The 1994 Fall
Harvest. Technical Report TR-34-94, Center for
Research in Computing Technology, Harvard Uni-
versity, December 1994.

[35] Engler, D. R., Gupta, S. K., and Kaashoek, M. F.
AVM: Application-level Virtual Memory. In Pro-
ceedings of the Fifth Workshop on Hot Topics in
Operating Systems (HotOS-V) (1995), HOTOS ’95,
IEEE Computer Society, pp. 72–.

[36] Engler, D. R., Kaashoek, M. F., and O’Toole, Jr.,
J. Exokernel: An Operating System Architecture for
Application-level Resource Management. In Pro-
ceedings of the 15th ACM Symposium on Operating
Systems Principles (1995), pp. 251–266.

[37] Evans, J. Issue #243: Improve interaction with trans-
parent huge pages. https://github.com/jemalloc/
jemalloc/issues/243, Jul 2015.

[38] Gaud, F., Lepers, B., Decouchant, J., Funston, J.,
Fedorova, A., and Quéma, V. Large Pages May
Be Harmful on NUMA Systems. In Proceedings
of the 2014 USENIX Conference on USENIX An-
nual Technical Conference (Philadelphia, PA, 2014),
USENIX ATC’14, USENIX Association, pp. 231–
242.

[39] Giceva, J., Alonso, G., Roscoe, T., and Harris, T.
Deployment of query plans on multicores. Proc.
VLDB Endow. 8, 3 (Nov 2014), 233–244.

[40] Gorman, M. Huge pages. http://lwn.net/Articles/
374424/, Feb 2010.

[41] Gorman, M. Huge pages part 2: Interfaces. https:
//lwn.net/Articles/375096/, Feb 2010.

[42] Gorman, M., and Healy, P. Performance Character-
istics of Explicit Superpage Support. In Proceedings
of the 2010 International Conference on Computer
Architecture (Berlin, Heidelberg, 2012), ISCA’10,
Springer-Verlag, pp. 293–310.

[43] Haible, B., and Bonzini, P. GNU libsigsegv - Han-
dling page faults in user mode. http://libsigsegv.
sourceforge.net/.

[44] Hand, S. M. Self-paging in the Nemesis Operating
System. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation
(New Orleans, Louisiana, USA, 1999), OSDI ’99,
USENIX Association, pp. 73–86.

[45] Hansen, D. TLB flushing on x86. https://www.
kernel.org/doc/Documentation/x86/tlb.txt.

15

http://lwn.net/Articles/568870/
http://lwn.net/Articles/568870/
http://lwn.net/Articles/550555/
http://lwn.net/Articles/550555/
http://lwn.net/Articles/592011/
http://lwn.net/Articles/591995/
http://lwn.net/Articles/591995/
http://lwn.net/Articles/615086/
http://lwn.net/Articles/423584/
http://lwn.net/Articles/423584/
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf
https://www.freebsd.org/doc/en/articles/vm-design/page-coloring-optimizations.html
https://www.freebsd.org/doc/en/articles/vm-design/page-coloring-optimizations.html
https://github.com/jemalloc/jemalloc/issues/243
https://github.com/jemalloc/jemalloc/issues/243
http://lwn.net/Articles/374424/
http://lwn.net/Articles/374424/
https://lwn.net/Articles/375096/
https://lwn.net/Articles/375096/
http://libsigsegv.sourceforge.net/
http://libsigsegv.sourceforge.net/
https://www.kernel.org/doc/Documentation/x86/tlb.txt
https://www.kernel.org/doc/Documentation/x86/tlb.txt

[46] Harty, K., and Cheriton, D. R. Application-
controlled Physical Memory Using External Page-
cache Management. In Proceedings of the Fifth In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems
(New York, NY, USA, 1992), ASPLOS V, ACM,
pp. 187–197.

[47] Hong, S., Chafi, H., Sedlar, E., and Olukotun, K.
Green-Marl: A DSL for Easy and Efficient Graph
Analysis. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(New York, NY, USA, 2012), ASPLOS XVII, ACM,
pp. 349–362.

[48] HP Labs. The Machine. http://www.hpl.hp.com/
research/systems-research/themachine/, January
2015.

[49] Intel Corporation. Intel 64 and IA-32 Ar-
chitectures Optimization Reference Man-
ual, September 2014. Online. Accessed
2015-03-12. http://www.intel.com/content/
www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.
html?wapkw=order+number+248966-025.

[50] Kaestle, S., Achermann, R., Roscoe, T., and Harris,
T. Shoal: Smart Allocation and Replication of Mem-
ory for Parallel Programs. In Proceedings of the
2015 USENIX Annual Technical Conference (Santa
Clara, CA, 2015), USENIX ATC ’15, pp. 263–276.

[51] Khalidi, Y. A., and Nelson, M. N. The Spring Vir-
tual Memory System. Technical Report SMLI TR-
93-9, Sun Microsystems Laboratories Inc., February
1993.

[52] Kim, J., Kim, J., Ahn, D., and Eom, Y. I. Page
coloring synchronization for improving cache per-
formance in virtualization environment. In Compu-
tational Science and Its Applications-ICCSA 2011.
Springer, 2011, pp. 495–505.

[53] Klein, G., Elphinstone, K., Heiser, G., Andronick,
J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt,
K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
andWinwood, S. seL4: Formal verification of an
OS kernel. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles (2009).

[54] Koester, D., and Lucas, B. HPC Challenge
- Random Access. Online. http://icl.cs.utk.
edu/projectsfiles/hpcc/RandomAccess/. Accessed
2015-03-09.

[55] Krieger, O., Auslander, M., Rosenburg, B., Wis-
niewski, R. W., Xenidis, J., Da Silva, D., Ostrowski,
M., Appavoo, J., Butrico, M., Mergen, M., Water-
land, A., and Uhlig, V. K42: Building a Complete
Operating System. In Proceedings of the 1st Eu-
roSys Conference (2006), pp. 133–145.

[56] Leis, V., Boncz, P., Kemper, A., and Neumann, T.
Morsel-driven parallelism: A numa-aware query
evaluation framework for the many-core age. In Pro-
ceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (New York, NY,
USA, 2014), SIGMOD ’14, ACM, pp. 743–754.

[57] Liedtke, J., Uhlig, V., Elphinstone, K., Jaeger, T.,
and Park, Y. How to Schedule Unlimited Memory
Pinning of Untrusted Processes or Provisional Ideas
About Service-Neutrality. In Proceedings of the
The Seventh Workshop on Hot Topics in Operating
Systems (Washington, DC, USA, 1999), HOTOS
’99, IEEE Computer Society, pp. 153–.

[58] Linux Kernel Project. Hugetlbpage support in
the Linux kernel. https://www.kernel.org/doc/
Documentation/vm/hugetlbpage.txt.

[59] Linux Kernel Project. Transparent Hugepage Sup-
port. https://www.kernel.org/doc/Documentation/
vm/transhuge.txt.

[60] Navarro, J., Iyer, S., Druschel, P., and Cox, A.
Practical, transparent operating system support for
superpages. SIGOPS Oper. Syst. Rev. 36, SI (Dec
2002), 89–104.

[61] Oracle Corporation. Online. http:
//docs.oracle.com/cd/E19683-01/806-7009/
chapter2-95/index.html, 2010. Accessed 2015-08-
15.

[62] Paolo Faraboschi, Kimberly Keeton, T. M., and
Milojicic, D. Beyond processor-centric operating
systems. In Proceedings of the 2015 International
Workshop on Hot Topics in Operating Systems (Ho-
tOS XV) (Karthause Ittingen, Warth-Weiningen,
Switzerland, May 2015).

[63] Peter, S., Li, J., Zhang, I., Ports, D. R. K., Woos,
D., Krishnamurthy, A., Anderson, T., and Roscoe,
T. Arrakis: The Operating System is the Control
Plane. In 11th Symposium on Operating Systems
Design and Implementation (OSDI’14) (Broomfield,
Colorado, USA, October 2014).

[64] Rashid, R., Tevanian, A., J., Young, M., Golub,
D., Baron, R., Black, D., Bolosky, W., and Chew,
J. Machine-Iindependent Virtual Memory Manage-
ment for Paged Uniprocessor and Multiprocessor

16

http://www.hpl.hp.com/research/systems-research/themachine/
http://www.hpl.hp.com/research/systems-research/themachine/
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html?wapkw=order+number+248966-025
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html?wapkw=order+number+248966-025
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html?wapkw=order+number+248966-025
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html?wapkw=order+number+248966-025
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
http://docs.oracle.com/cd/E19683-01/806-7009/chapter2-95/index.html
http://docs.oracle.com/cd/E19683-01/806-7009/chapter2-95/index.html
http://docs.oracle.com/cd/E19683-01/806-7009/chapter2-95/index.html

Architectures. Computers, IEEE Transactions on 37,
8 (Aug 1988), 896–908.

[65] Sanfilippo, S. Redis latency problems troubleshoot-
ing. http://redis.io/topics/latency.

[66] Soft-Dirty PTEs. https://www.kernel.org/doc/
Documentation/vm/soft-dirty.txt.

[67] Soma, Y., Gerofi, B., and Ishikawa, Y. Revisiting
Virtual Memory for High Performance Computing
on Manycore Architectures: A Hybrid Segmenta-
tion Kernel Approach. In Proceedings of the 4th
International Workshop on Runtime and Operating
Systems for Supercomputers (New York, NY, USA,
2014), ROSS ’14, ACM, pp. 3:1–3:8.

[68] The University of Tennessee. HPC Challenge
Benchmark. Online. http://icl.cs.utk.edu/hpcc/
software/view.html?id=178. Accessed 2015-03-09.

[69] Ye, Y., West, R., Cheng, Z., and Li, Y. COLORIS:
A Dynamic Cache Partitioning System Using Page
Coloring. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compi-
lation (Edmonton, AB, Canada, 2014), PACT ’14,
pp. 381–392.

[70] Zhang, X., Dwarkadas, S., and Shen, K. Towards
Practical Page Coloring-based Multicore Cache
Management. In Proceedings of the 4th ACM Euro-
pean Conference on Computer Systems (Nuremberg,
Germany, 2009), EuroSys ’09, pp. 89–102.

17

http://redis.io/topics/latency
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
http://icl.cs.utk.edu/hpcc/software/view.html?id=178
http://icl.cs.utk.edu/hpcc/software/view.html?id=178

	1 Introduction
	2 Background: the Linux VM system
	2.1 Traditional Unix
	2.2 Modern Linux
	2.3 Discussion

	3 Design
	3.1 Physical memory allocation
	3.2 Securely building page tables
	3.3 Page faults and access to status bits
	3.4 Runtime library

	4 Evaluation
	4.1 Appel and Li benchmark
	4.2 Memory operation microbenchmarks
	4.3 Random accesses benchmark (GUPS)
	4.4 Mixed page sizes
	4.5 Page status bits
	4.6 Nested paging overhead
	4.7 Page coloring
	4.8 Discussion

	5 Related work
	6 Conclusion

