
Fast Local Page-Tables for Virtualized
NUMA Servers with vMitosis

Ashish Panwar
Indian Institute of Science

Bangalore, India

Reto Achermann
University of British Columbia

Vancouver, BC, Canada

Arkaprava Basu
Indian Institute of Science

Bangalore, India

Abhishek Bhattacharjee
Yale University

New Haven, CT, USA

K. Gopinath
Indian Institute of Science

Bangalore, India

Jayneel Gandhi
VMware Research
Palo Alto, CA, USA

ABSTRACT

Increasing memory heterogeneity mandates careful data placement
to hide the non-uniform memory access (NUMA) effects on applica-
tions. While NUMA optimizations have focused on application data
for decades, they have ignored the placement of kernel data struc-
tures due to their small memory footprint; this is evident in typical
OSes that pin kernel data structures in memory. In this paper, we
show that careful placement of kernel data structures is gaining im-
portance in the context of page-tables: their sub-optimal placement
causes severe slowdown (up to 3.1×) on virtualized NUMA servers.

In response, we present vMitosis ś a system for explicit manage-
ment of two-level page-tables, i.e., the guest and extended page-
tables, on virtualized NUMA servers. vMitosis enables faster address
translation by migrating and replicating page-tables. It supports
two prevalent virtualization configurations: first, where the hyper-
visor exposes the NUMA architecture to the guest OS, and second,
where such information is hidden from the guest OS. vMitosis is
implemented in Linux/KVM, and our evaluation on a recent 1.5TiB
4-socket server shows that it effectively eliminates NUMA effects
on 2D page-table walks, resulting in a speedup of 1.8−3.1× for Thin
(single-socket) and 1.06 − 1.6× for Wide (multi-socket) workloads.

CCS CONCEPTS

· Software and its engineering→Operating systems;Virtual
memory.

KEYWORDS

NUMA; TLB; Linux; KVM; 2D page-tables; replication; migration

ACM Reference Format:

Ashish Panwar, Reto Achermann, Arkaprava Basu, Abhishek Bhattachar-

jee, K. Gopinath, and Jayneel Gandhi. 2021. Fast Local Page-Tables for

Virtualized NUMA Servers with vMitosis. In Proceedings of the 26th ACM In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’21), April 19ś23, 2021, Virtual, USA. ACM,

New York, NY, USA, 17 pages. https://doi.org/10.1145/3445814.3446709

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446709

1 INTRODUCTION

Applications suffer non-uniform memory access (NUMA) latencies
on modern multi-tier memory systems. As computer systems em-
brace even more heterogeneity in the memory subsystem, with
innovations in die-stacked DRAM, high-bandwidth HBM, more
socket counts and multi-chip module-based designs, the speed dif-
ferences between local and remote memory continue to grow and
become more complex to reason about [52, 78]. Carefully placing,
replicating, and migrating data among memory devices with vari-
able latency and bandwidth is of paramount importance to the
success of these technologies, and much work remains to be done
on these topics.

However, while there is at least prior work on data placement
for application pages [2, 18, 24, 41, 62], kernel data structures have
been largely ignored from this discussion, primarily due to their
small memory footprint. Consequently, most kernel objects are
pinned and unmovable in typical OS designs [33, 58, 59]. We argue
that the access latency of kernel objects is gaining importance. This
paper focuses on one critical kernel data structure, the page-table,
and shows that virtualized NUMA servers must carefully reason
about its placement to enable high performance.

Why focus on page-tables? Page-tables are vital to overall system
performance. First, big-memory workloads require DRAM accesses
on frequent page-table walks due to high TLB miss rates [4, 14, 30].
As system memory capacities grow to meet ever-increasing work-
load data demand, page-tables grow proportionally outstripping
the coverage of hardware TLBs. Larger address spaces require ad-
ditional levels in page-tables (e.g., Intel’s 5-level page-tables). TLB
misses under virtualization are already expensiveśa 2D page-table
walk over guest page-tables (henceforth gPT) and extended page-
tables (henceforth ePT) requires up to 24 memory accesses that
will increase to 35 with 5-level page-tables. Finally, a page-table
walk does not benefit from memory-level parallelism as it is an
inherently serial processśeach long DRAM access adds latency to
address translation [14].

On a single socket machine, frequent 2D page-table walks have
been shown to add 10-50% execution overhead on important ap-
plications [4, 30, 44]. However, in this paper, we show that these
overheads are as high as 3.1× on multi-socket machines due to
sub-optimal page-table placement.

Misplacement of page-tables occurs in two use-cases on NUMA
machines. First, Thin workloads/VMs (i.e., those fitting within a
single NUMA socket) are occasionally migrated across NUMA sock-
ets. Commodity OSes and hypervisors use migration to improve

194

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446709
https://doi.org/10.1145/3445814.3446709

ASPLOS ’21, April 19ś23, 2021, Virtual, USA A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath, and J. Gandhi

resource utilization and performance isolation. Some real-world
examples include VMware vSphere that performs periodic NUMA
re-balancing of VMs every two seconds [65], and Linux/KVM that
migrates processes to improve load-balancing and performance
under memory sharing on NUMA systems [22, 74]. While data
pages are often migrated along with the threads, current systems
usually pin kernel objects in memory [33, 59]. Consequently, work-
load/VM migration can make page-tables permanently remote. Sec-
ond, Wide workloads/VMs (i.e., those spanning multiple NUMA
sockets) experience remote page-table walks due to a single copy
of the page-table; their virtual-to-physical address translations are
requested from multiple sockets but each page-table entry is local
to only one of the sockets.

We highlighted the importance of careful page-table placement,
for native systems, in our recent work Mitosis [1]. In contrast, in
this paper, we analyze the effect of NUMA on 2D page-tables and
present vMitosis ś a system that extends the design principles of
Mitosis to virtualized environments.

vMitosis provides various mechanisms to mitigate NUMA effects
on 2D page-table walks for both the use-cases discussed above. Our
design applies migration and replication to page-tables to ensure
that TLB misses are serviced from local memory. While replication
and migration are well-known NUMA management techniques,
virtualization-specific challenges make their practical realization
non-trivial. For instance, a hypervisor may or may not expose the
host platform’s NUMA topology to a VM. We refer to VMs exposed
to the host NUMA topology as NUMA-visible and to VMs not
exposed to such information as NUMA-oblivious.

In the NUMA-oblivious configuration, the guest OS is exposed
to a flat topology in which all memory and virtual CPUs (vCPUs)
are grouped in a single virtual socket. This configuration provides
great flexibility to cloud service providers as NUMA-oblivious VMs
can be freely migrated for maintenance, power management, or
better consolidation. Further, CPUs and memory can be added to
or removed from NUMA-oblivious VMs dynamically, irrespective
of NUMA locality. Most of the VMs on major cloud platforms are
available under this configuration [67].

In contrast, NUMA-visible VMs mirror the host NUMA topol-
ogy in the guest OS. It allows performance-critical services to tune
their performance; some important workloads are NUMA-aware
by design (e.g., databases [45, 71]), while others leverage OS-level
optimizations. NUMA-visible VMs, however, disable hypervisor
features such as vCPU hot-plugging, memory ballooning, and VM
migration [43, 54]. This is because the current system software stack
cannot adjust NUMA topology at runtime. Thus, NUMA-visible

VMs limit the resource management capabilities of the hypervi-
sor. However, the choice of a particular configuration is use-case
specific, and hence we handle both configurations in our design.

We implement our design in Linux/KVM and evaluate it on a
4-socket NUMA server with 1.5TiB memory. We show that vMitosis

improves performance by migrating and replicating gPT and ePT.
The performance improvement is 1.8 − 3.1× for Thin workloads
with page-table migration, and 1.06−1.6× forWideworkloads with
page-table replication. Our evaluation shows that the page-table
walks of many applications become less susceptible to the effect of
NUMA while using 2MiB pages. However, some applications gain
up to 1.47× speedup with vMitosis over using 2MiB pages.

Table 1: NUMA support for page-tables in state-of-the-art

systems. (*) Replication is possible in Mitosis only if the

server’s NUMA topology is exposed to the guest OS.

System
Guest page-tables Extended page-tables

Migration Replication Migration Replication

Linux/KVM No No No No
Mitosis via Replication* Yes* No No
vMitosis Yes Yes Yes Yes

Contributions over Mitosis: Our recent proposal Mitosis repli-
cates the page-tables on native systems. vMitosis makes several
novel contributions overMitosis (see Table 1). First,Mitosis relies
on the availability of the server’s NUMA topology for replicating
the page-tables. In bare-metal servers, the OS extracts platform spec-
ifications fromACPI tables. However, the hardware abstract layer in
virtualized systems often hides platform details from the guest OS.
Therefore,Mitosis can replicate gPT only in the NUMA-visible VMs.
vMitosis supports both the VM configurations; it re-uses Mitosis in
the NUMA-visible VMs but introduces two novel techniques for
replicating gPT in the NUMA-oblivious VMs (ğ 3.3).

Second,Mitosis does not provide ePT-level optimizations; vMito-

sis does. Finally, vMitosis handles page-table migration differently
fromMitosis. To migrate page-tables,Mitosis first replicates them
on the destination socket, configures the system to use the new
replica, and then releases the old replica. In contrast, vMitosis incre-
mentally migrates page-tables when the OS/hypervisor migrates
data pages (ğ 3.2). For single-socket workloads, incremental page-
table migration of vMitosis provides similar address translation
performance as the pre-replicated page-tables ofMitosis but with
lower space and runtime overheads.

2 ANALYSIS OF 2D PAGE-TABLE PLACEMENT

We start by uncovering the sources of remote DRAM accesses dur-
ing page-table walks and quantifying their impact on performance
with a range of memory-intensive applications listed in Table 2.
We focus on classes of workloads prevalent in data processing or
virtual machine deployments that experience high TLB miss rates.
Further, a non-negligible fraction of their page-table accesses is
serviced from DRAM (i.e., miss in the cache hierarchy) due to their
random access patterns. Many other big-memory workloads are
known to exhibit such characteristics [14].

To simplify the discussion, we partition workloads into two
groups to separately demonstrate the two use-cases that lead to
remote page-table accesses. In the first use-case (referred to as Thin)
a workload executes within a single NUMA socket. In the second
use-case (referred to as Wide) a scale-out workload spans multiple
NUMA sockets using all the CPUs and memory of the system. Our
experimental platform is a 4-socket Intel Xeon based Cascade Lake
server with 96 cores and 1.5TiB of DRAM (see ğ 4 for more details).

2.1 Analysis of ThinWorkloads

Thin workloads are often migrated across NUMA sockets to reduce
power consumption, improve load-balancing, and optimize perfor-
mance when memory sharing is possible across VMs [22, 74]. We
observe that migration of VMs or workloads makes page-tables
remote. We first describe how the gPT and ePT become remote, and
then quantify the performance impact of remote page-tables.

195

Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Table 2: Detailed description of the workloads.

Workload Description

Memcached A multi-threaded in-memory key-value store [50]

Wide 1280GB dataset, 4B keys, 24B queries 100% reads
Thin 300GB dataset, 20GB slab, 9M queries

XSBench Monte Carlo neutron transport compute kernel [73]

Wide 1375GB input, g=2.8M, p=75M
Thin 330GB input, g=0.68M, p=15M

Canneal Simulates routing cost optimization in chip design [15]

Wide 380GB dataset, # 1200M elements
Thin 64GB dataset, # 240M elements

Graph500 Generation, search and validation on large graphs [6]

Wide 1280GB, scale=30, edge=52, 4 iterations
Redis Single-threaded in-memory key-value store [64]

Thin 300GB dataset, 0.6B keys, 100% reads.
GUPS Measures the rate of random in-memory updates [38]

Thin 1 thread, 64 GB input, 1B updates.
BTree Measures index lookup performance [77]

Thin 1 thread, 330GB input, 3.4B keys, 50M lookups.

Consider, for example, a case where the hypervisor migrates a
VM from one NUMA socket to another. In this case, the hypervisor
migrates the VM’s memory to the new socket with NUMA-aware
data migration. During such a migration, the hypervisor also mi-
grates the gPT since gPT pages are like any other guest data pages
to a hypervisor. However, hypervisors pin ePT pages in memory
and thus the ePT becomes remote after VM migration.

Alternately, if aNUMA-visible guest OS migrates one of its work-
loads to another virtual NUMA socket, gPT accesses become remote.
This happens because kernel data structures, including page-tables,
are pinned in typical OS designs today. If ePTwere populated by the
hypervisor on a different NUMA socket prior to workload migra-
tion, then ePT also becomes remote post migration. In long-running
cloud instances, it is therefore easy to observe that any combination
of local/remote gPT and ePT can arise depending on how and when
workloads are migrated.

It is important to highlight that ePT may become remote even
without migration. ePT pages are allocated in response to virtu-
alized page-faults that are referred to as ePT violations. A vCPU
raises an ePT violation when a required translation is absent in the
ePT. If fixing a virtualized page-fault requires an ePT page alloca-
tion, the hypervisor allocates the page from the local socket of the
vCPU that raised the fault. However, ePT is shared across all vCPUs
of a VM. Thus, it is possible that ePT pages are allocated on one
NUMA socket by a guest workload, but the same translations are
later re-used by other guest workloads running on other sockets.

We quantify the performance impact of remote page-tables with
seven different configurations listed in Figure 1b: the first character
denotes if gPT is allocated from local (L) or one of the remote
(R) sockets while the second character denotes the same for ePT.
For these experiments, we modify the guest OS (Linux) and the
hypervisor (KVM) to control the placement of gPT and ePT on
specific sockets. The workload threads and data pages are always
co-located on the same NUMA socket. This allows us to measure
the NUMA effects of page-table walks in isolation.

Figure 1a shows the runtime, normalized to the best-case config-
uration LL in which all page-tables are local. Considering the first
four bars for each application, we observe that when one of the
levels of page-table (LR, RL) is allocated on a remote socket, the run-
time of the application increases by 1.1−1.4×: the impact of remote
gPT is almost the same as remote ePT. As expected, performance
drop is higher when gPT and ePT are both remote (RR).

In the experiments so far, we ensured that the remote socket is
idle. This enables remote page-table accesses to experience uncon-
tended (optimistic) latency. In a real execution scenario, however,
the remote socket may be executing other independent applica-
tion(s). Memory accesses from other processes would thus inter-
fere with remote accesses to page-tables under consideration. To
measure the impact of contended remote access latency, we add
interference by executing STREAM micro-benchmark [49] on the
remote socket. LRI, RLI, and RRI represent these configurations
where ePT, gPT, or both experience contended remote accesses,
respectively. As expected, the impact of remote page-table accesses
is more pronounced under these configurations. In the worst case,
remote page-tables can cause 1.8 - 3.1× slow down.

2.2 Analysis of WideWorkloads

A Wide workload uses resources from two or more NUMA sockets
while sharing the same gPT and ePT. For these workloads, each
translation entry is remote to all but one socket in the system,
irrespective of where their page-table pages are placed. A single
copy of the page-table therefore inevitably leads to remote page-
table accesses forWide workloads.

However, unlike Thin workloads, regular data accesses of Wide

workloads are interspersed with their page-table walks that makes
it hard to isolate the impact of remote gPT/ePT accesses. Hence, we
adopt a different methodology to estimate the severity of remote
page-table walks for Wide workloads: we perform an offline 2D

0

0.5

1

1.5

2

2.5

3

3.5

GUPS BTree Redis XSBench Memcached Canneal

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

LL LR RL RR LRI RLI RRI

(a) Performance impact of remote page-table walks.

Config CPU Data gPT ePT Interference

LL A A A A None
LR A A A B None
RL A A B A None
RR A A B B None
LRI A A A B B
RLI A A B A B
RRI A A B B B

(b) CPU, data, gPT and ePT placement.

Figure 1: Performance impact of misplaced gPT and ePT on Thin workloads (left) and details of the configurations (right). A,

B represent two different sockets in the system (e.g., A=0, B=1). łIž represents interference due to a different workload.

196

ASPLOS ’21, April 19ś23, 2021, Virtual, USA A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath, and J. Gandhi

0

0.2

0.4

0.6

0.8

1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Memcached XSBench Graph500 Canneal

L
e

a
f
P

T
E

 D
is

tr
ib

u
ti
o
n Local-Local Local-Remote Remote-Local Remote-Remote

(a) NUMA-visible virtual instance

0

0.2

0.4

0.6

0.8

1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Memcached XSBench Graph500 Canneal

L
e
a

f
P

T
E

 D
is

tr
ib

u
ti
o

n Local-Local Local-Remote Remote-Local Remote-Remote

(b) NUMA-oblivious virtual instance

Figure 2: Analysis of 2Dpage-tablewalk ofWideworkloads onNUMA-visible andNUMA-obliviousVMson a 4-socketmachine.

Bar for each socket (represented by the number) shows the fraction of 2D page-table walks that results in Local-Local, Local-

Remote, Remote-Local orRemote-Remote leaf PTE access in gPT and ePT, when TLBmisses are serviced for one of the threads

running on that socket.

page-table walk analysis to investigate: (1) what fraction of vir-
tualized page-table walks results in one or more remote DRAM
accesses and (2) how different configurations of virtualization, i.e.,
NUMA-visible and NUMA-oblivious, impact page-table placement.
We discuss the methodology and summarize the observations.

Our analysis focuses on the placement of leaf page-table entries
(PTEs) since their access latency dominates address translation
performance; higher-level PTEs are more amenable to caching by
the hardware. We run the workloads to completion and dump
the gPT and ePT during their execution periodically once every 5
minutes. We analyze these dumps offline with a software 2D page-
table walker. To estimate the local/remote access ratio of page-table
walks, we perform address translation for each guest virtual address
and record the NUMA socket on which the corresponding leaf
PTEs from gPT and ePT are located. Depending on the placement
of leaf PTEs, each 2D page-table walk is classified into one of the
four groups: Local-Local, Local-Remote, Remote-Local and Remote-

Remote. The first word denotes if the gPT leaf PTE is local or remote
(for a particular socket), and the latter denotes the same for the ePT.
We repeat this process on all NUMA sockets to estimate the ratio
of local/remote DRAM accesses for 2D page-table walks.

Figure 2a shows the classification of 2D page-table walks in
the NUMA-visible configuration. Best translation performance is
expected when most page-table walks fall into Local-Local group.
However, we find that < 10% page-table walks resulted in local
memory accesses for both gPT and ePT. Intuitively, this is not
surprising. In a system with 𝑁 NUMA sockets, each PTE (in either
ePT or gPT) is local to only one and remote to the other 𝑁 − 1
sockets. Assuming a uniform distribution of PTEs, the probability
of a 2D page-table walk resulting in local access in both levels is
only 1/𝑁 2. Hence, on our 4-socket system, we expect only about
1/42 ≈ 6% page-table walks to fall into the Local-Local group. In
fact, for a thread running on any socket, out of the 16 possible
combinations of leaf PTE placement in gPT and ePT, only one
configuration is Local-Local, while nine are Remote-Remote, and
three in each Local-Remote and Remote-Local. Thus, more than 50%
2D page-table walks result in two remote memory accesses (one
for gPT and ePT each) while more than 35% result in one remote
access due to either gPT or ePT, in expectation.

Note that there can be exceptions to these observations. For
example, Canneal’s memory footprint is only 380GB that is slightly

above the capacity of a single NUMA socket on our server (350GB).
Further, it has a single-threaded memory allocation phase. Hence,
almost all memory and page-tables were allocated from a single
NUMA socket (i.e., Socket-3). In this case, more than 80% of the
total 2D page-table walks are Local-Local for threads running on
Socket-3 (25% of the total threads), while almost all page-table
walks are Remote-Remote for the rest of the threads. This example
also shows that the local (default) memory allocation policy can
skew the placement of page-tables. Therefore, some threads may
experience poorer locality than the others.

Figure 2b shows the same analysis for NUMA-oblivious VMs. In
this case, Local-Local page-table walks are almost non-existent. This
is not surprisingśthe invisibility of NUMA topology in the guest
OS leads to an arbitrary placement of gPT pages. Consequently,
even for a small workload like Canneal, almost all page-table walks
involve at least one remote DRAM access. Hence, NUMA-oblivious
deployments experience higher address translation overheads.

Summary: In this section, we analyzed how remote page-table
accesses originate, resulting in up to 3.1× runtime overhead for
Thin workloads. Moreover, we showed that a significant fraction
of page-table accesses is remote for Wide workloads that span
multiple NUMA sockets.

3 DESIGN AND IMPLEMENTATION

Our goal is to ensure that memory accesses in 2D page-table walks
get serviced from local memory. We achieve this goal by applying
two well-known NUMA management techniques ś migration and
replication. vMitosis supports three virtual machine configurations:
one NUMA-visible (referred to as NV) and two variants of NUMA-

oblivious VMs. We refer to the NUMA-oblivious variants as NO-P
(para-virtualized) and NO-F (fully-virtualized). Table 3 provides a
brief overview of vMitosis in the context of different configurations
and the current state-of-the-art systems.

3.1 vMitosis: Design Overview

Migration: We propose page-table migration for Thin workloads.
vMitosis takes a two-fold approach to enable the migration of gPT
and ePT. First, we co-locate page-tables with data pages. Second,
we integrate page-table migration with the data page migration
policies of the OS/hypervisor. These mechanisms can be enabled
independently in each layer.

197

Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Table 3: Migration and replication of 2D page-tables in vMitosis as compared to the state-of-the-art virtualized systems.

Config. State-of-the-art vMitosis

Page-Table

Migration

NV
gPT: replicate and delete old replica in guest [1] gPT: migrate incrementally with data migration in the guest OS
ePT: no migration ePT: allocated to be co-located with data pages in the hypervisor

NO-P gPT: migrates with data migration in the hypervisor gPT: migrates with data migration in the hypervisor
NO-F ePT: no migration ePT: migrate incrementally with data migration in the hypervisor

Page-Table

Replication

NV
gPT: replicate in the guest OS [1] gPT: replicate in the guest OS [1]
ePT: no replication ePT: replicate in the hypervisor

NO-P
gPT: no replication gPT: replicate in the guest with hypercalls
ePT: no replication ePT: replicate in the hypervisor

NO-F
gPT: no replication gPT: replicate in the guest OS with data migration in hypervisor
ePT: no replication ePT: replicate in the hypervisor

Replication: We propose page-table replication forWide work-
loads and VMs. A hypervisor has direct access to the NUMA topol-
ogy of the system. Therefore, ePT can be replicated by extending
theMitosis design [1]. For replicating gPT, the guest OS needs to:
(1) know the number of NUMA sockets the VM is using, (2) allocate
gPT replicas on different sockets, and (3) identify the scheduler map-
ping of vCPUs to NUMA sockets to load each vCPU with its local
gPT replica. A NUMA-visible guest OS replicates gPT easily since
NUMA topology is exposed to the guest OS. However, a NUMA-

oblivious guest OS requires additional techniques to fulfill these
requirements. We propose two different techniques to handle this:
the first technique is based on para-virtualization while the second
technique is fully-virtualized. We discuss the trade-offs involved in
these techniques in ğ 3.3

3.2 vMitosis: Page-Table Migration

General design: We start by allocating page-tables from the local
NUMA socket of the workload (similar to current systems) but
additionally use a simple policy to determine when to migrate
them. First, we maintain some metadata for each page-table page to
decide whether it is placed well or needs to be migrated. Note that a
page-table is a tree of physical address pointers wherein page-table
entries (PTEs) in the internal levels point to the next-level page-
table pages while leaf PTEs point to the application data pages. For
each page-table page, we maintain an array with an entry for each
NUMA socket; each array element represents the number of valid
PTEs that point to its NUMA socket.

Based on this metadata, we say that a page-table page is placed
well if it is co-located with most of its children. While we proac-
tively try to allocate page-tables close to data, the system software
runtime can migrate workloads and data pages at runtime. To ac-
count for dynamic scheduling activities in the system, we track
page-table placement by piggybacking on PTE updates that happen
in the page migration path. Since current systems use sophisticated
techniques to co-locate data and threads, PTE updates due to data
page migration serve timely hints to vMitosis to trigger the mi-
gration of page-tables as soon as they become remote. We now
discuss how gPT and ePT migration works under different modes
of virtualization.

3.2.1 Page-TableMigration in NVConfiguration. If a Thinworkload
is running in a NUMA-visible VM, the guest OS’s NUMA-aware
scheduler may move the workload from one socket to another. As

a result, both the gPT and the ePT may get misplaced and remain
remote for the rest of the workload life cycle starting from the
point of migration. For NUMA-visible VMs, we expect that the
guest OS employs automatic NUMA balancing to co-locate the data
and threads of its workloads. In this case, the guest OS will migrate
data pages to the new socket but not the gPT.

We leverage the fact that leaf PTEs in gPT get updated when
the guest OS migrates application data pages. vMitosis tracks these
migrations and updates the counter values in the corresponding
page-table pages. As soon as most of the PTEs in a leaf gPT page
point to a remote socket, vMitosis notices the misplacement of
the page and migrates it. Hence, incremental data migration in
vMitosis automatically triggers the migration of leaf gPT pages first.
Further, the migration of leaf gPT pages results in updated counter
values for the internal (higher) level gPT pages that in turn triggers
their migration. This way, page-table migration is automatically
propagated from the leaf level to the root of the gPT tree.

ePT migration works similarly in the hypervisor. However, opti-
mizing ePT placement requires an additional consideration. Note
that a single vCPU may allocate the entire memory for its VM, e.g.,
when the VM boots with pre-allocated memory or a single guest
thread initializes all the memory. Similar to current hypervisors,
vMitosis allocates ePT pages on the local socket of the vCPU that
requests memory. For a Wide VM, all ePT pages may therefore get
consolidated on a single socket while data pages are distributed
across multiple sockets. In these cases, the guest OS can migrate
data pages at runtime to improve memory access locality. However,
NUMA migrations of the guest OS may not be visible to the hy-
pervisor. For example, a guest OS’s data page migration does not
trigger an ePT violation if the ePT entries of both the old and new
data pages are already allocated. The invisibility of guest NUMA
migrations can therefore lead to misplaced ePT. To handle such
cases, we occasionally invoke automatic page-table migration to
verify the co-location invariant and migrate misplaced ePT pages.

3.2.2 Page-Table Migration in NO-P and NO-F Configurations. Un-
der NUMA-oblivious deployments, we expect the hypervisor to
co-locate the threads and data pages of guest applications. Note
that when the hypervisor migrates guest data pages, gPT is au-
tomatically migrated since a gPT page is like a regular VM data
page for the hypervisor. Therefore, we do not need to consider
a separate gPT migration mechanism for NUMA-oblivious VMs.
However, ePT becomes remote if the hypervisor migrates guest

198

ASPLOS ’21, April 19ś23, 2021, Virtual, USA A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath, and J. Gandhi

applications or the entire VM. We use the same technique here
as discussed above: migration of guest physical pages trigger ePT
migration in vMitosis from the leaf level to the top of the ePT tree.
This way vMitosis achieves local page walks for both ePT and gPT

in all configurations.

3.2.3 Linux/KVM Implementation. We implement ePT and gPT mi-
gration in Linux/KVM as an extension to the pre-existing automatic
NUMA balancing technique called AutoNUMA [21]. AutoNUMA
periodically invalidates PTEs in a process’s page-table to induce
minor page faults. These faults act as a hint for the OS to assess
whether a remote socket dominates memory accesses for a data
page. In addition to allocating page-tables from the local socket
during workload initialization, we rely on AutoNUMA-driven data
page migration to drive the migration of page-tables.

In our implementation, we avoid interfering with regular page-
table updates by implementing page-table migration as another
pass on top of AutoNUMA. To do so, we first wait for AutoNUMA
to complete fixing the placement of data pages in a specific virtual
address space range, and then scan the corresponding page-tables
to update the counters and migrate the page-tables if necessary.
This allows vMitosis to benefit from AutoNUMA’s dynamic rate
limiting heuristics that adjust the frequency of scanning based on
the rate of data page migration. In the normal case where no page-
table migration is needed, we rarely scan page-tables causing no
interference in the common case.

To ensure correctness while migrating a gPT page, we acquire
a write lock on the per-process mmap_sem semaphore. This is
needed to avoid consistency issues in the presence of split page-
table locks in Linux where each page-table page can be locked
independently by different threads [26]. We acquire and release
the lock for each gPT page migration separately to avoid latency
issues. However, we do not expect this to be a performance issue
as page-table migration is an infrequent operation and migrating
a page-table page takes only a few microseconds. In KVM, all ePT
updates are already protected by a per-VM spin lock. Therefore,
vMitosis does not require additional locking for ePT migration.

3.3 vMitosis: Page-Table Replication

General design: We enable local address translation for Wide

workloads by replicating their page-tables. We recently proposed
page-table replication for native execution on NUMA machines in
Mitosis. However, two levels of the page-tables and the hardware
abstraction layer of the hypervisor make it non-trivial to extend
Mitosis to virtualized environments. This subsection introduces our
replication support in vMitosis which builds on the Mitosis design
while highlighting the subtle differences and challenges involved
in extending such a design.

We extend Mitosis to replicate ePT in both NUMA-visible and
NUMA-oblivious configurations. In the NUMA-visible configura-
tion, we also re-use Mitosis to replicate gPT. However, the gPT

replication technique of Mitosis is insufficient for NUMA-oblivious

VMs since the guest OS has no visibility into the NUMA topology.
We propose two new techniques to replicate gPT for such VMs.
The first technique replicates gPT via para-virtualization. In this
approach, the guest OS relies on the hypervisor to identify NUMA

topology, vCPU to NUMA socket mapping, and allocate gPT repli-
cas. The second technique is fully-virtualized wherein the guest
OS replicates gPT by discovering the NUMA topology and vCPU
scheduling information with a micro-benchmark. Additionally, it
leverages the commonly-used łlocalž memory allocation policy of
the hypervisor [72] to allocate gPT replicas from different sockets.

3.3.1 ePT Replication. The design and implementation of ePT repli-
cation is common across all VM configurations. We introduce the
following four components in the hypervisor for replicating ePT:

(1) Allocating ePT replicas: We extend the ePT violation handler
to allocate replicas on all NUMA sockets eagerly, i.e., each ePT

page allocation is followed by the allocation of its replicas. To
allocate ePT replicas from the desired sockets, we introduce
a per-socket łpage-cachež that reserves some pages on each
socket and uses them to allocate ePT pages. When the free
memory pool in a NUMA socket falls below a threshold, the
page-cache reclaims memory from the socket by migrating
some data pages to another socket or by swapping them out.

(2) Ensuring translation coherence: The updates to ePT are managed
solely by the hypervisor. ePT updates occur when a VM allo-
cates a new data page or due to various hypervisor actions like
page-sharing, live-migration, working set detection, etc. These
updates are performed by the hypervisor on the ePT. We eagerly
update all replicas when an ePT entry is modified, followed by
a TLB flush to ensure translation coherence for the entire VM.

(3) Assigning local ePT replica: Each virtual CPU (vCPU) of a VM
is managed by the hypervisor as a user-level thread scheduled
on any physical CPU (pCPU). When a vCPU is scheduled, we
provide it with the local ePT replica to ensure that ePT page-
table walks are performed entirely within the local socket.

(4) Preserving the semantics of access and dirty bits: ePT is refer-
enced by the hardware on a TLB miss. Recent architectures
have also introduced access and dirty bits on ePT [39]. The
hardware page-table-walker sets these bits when a physical
page is accessed or modified; the hypervisor is not involved in
their updates. For these bits, ePT replicas may be inconsistent
since a hardware page-table walker will set them only on its
local replica. However, this inconsistency does not compromise
correctness. Hypervisors use these bits in various contexts e.g.,
to decide whether a page needs to be flushed before it can be
released. To ensure correctness, we OR the value of these bits on
all replicas when the hypervisor queries them; the return value
is the same as it would be if all replicas were always consistent.
Similarly, if the hypervisor clears the access or dirty bits, we
reset them on all the replicas.

With these four components, derived from the native Mitosis

design and adapted to virtualized systems, we enable ePT replication
for virtual machines. Next, we discuss how gPT is replicated under
different virtualization scenarios.

3.3.2 gPT Replication in NV Configuration. This is the simplest
case for replicating gPT since the physical topology is exposed to
the guest OS. We modify the guest OS to reserve the page-cache,
allocate gPT replicas on different sockets and program each thread’s
page-table base register with its local replica. We leverage the open-
source version ofMitosis [61] to replicate gPT in this configuration.

199

Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis ASPLOS ’21, April 19ś23, 2021, Virtual, USA

3.3.3 gPT Replication in NO-P Configuration. In this configuration,
the NUMA topology is not visible inside the VM. The guest OS
requires two main pieces of information to replicate gPT: (1) how
many sockets are being used by the VM and (2) how vCPUs are
scheduled on these sockets. This information is required to identify
how many replicas the guest OS should allocate and configure
each vCPU with its local replica. We use para-virtualization to
resolve both these challenges where the guest OS relies on explicit
hypervisor support as discussed below:

(1) Identifying socket IDs of vCPUs: The guest OS queries the physi-
cal socket ID from the hypervisor for all its vCPUs to determine
how many replicas need to be allocated.

(2) Allocating gPT page-caches on specific sockets: The guest OS
populates a per-socket łpage-cachež based on the number of
sockets that the VM is currently using on the host. To ensure
local allocation of each page-cache on the physical server, the
guest OS requests the hypervisor to pin these page-cache pages
onto their intended sockets.

This design allows the hypervisor to perform NUMA-aware
scheduling and change the vCPU to pCPU mapping. To adapt to
such scheduling changes, the guest OS queries the vCPU to socket
IDmapping at regular intervals and updates the vCPU to gPT replica
mapping as required.

3.3.4 gPT Replication in NO-F Configuration. The goal is to repli-
cate gPT entirely within the guest OS without support from the
hypervisor and para-virtualization. We achieve this by exploit-
ing two common properties of NUMA systems: (1) two hardware
threads from different sockets exhibit higher communication la-
tency compared to threads within the same socket [17, 40], and
(2) OS/hypervisors commonly use local memory allocation policy
wherein memory is preferably allocated from the same NUMA
socket where the requesting application thread is running [72].

We exploit the first property to construct virtual NUMA groups
within the guest OS using a micro-benchmark that measures the
pair-wise cache-line transfer latency between all vCPUs. Based
on these measurements, vMitosis assigns vCPUs to virtual NUMA
groups such that the communication latency is low between any
two vCPUs in the same group and high for any two vCPUs from
different groups.

For example, consider Table 4 that shows the cost of transferring
a cache line between different vCPU pairs on our experimental
platform. Given this cost metric, vMitosis forms four groups of vC-
PUs (0,4,8), (1,5,9), (2,6,10), and (3,7,11) where each tuple represents
a virtual NUMA group. These virtual groups have a one-to-one
correspondence with our physical server topology, and hence, we
identify the affinity groups of the vCPUs without relying on para-
virtualization. In general, we find that the virtual NUMA groups
constructed by our micro-benchmark always mirror the host topol-
ogy, even under interference from other VMs and workloads.

We next leverage the hypervisor’s local memory allocation policy
to allocate gPT replicas from the local physical socket of each virtual
NUMA group. For this, we select one vCPU from each group in the
guest to allocate memory for its page-cache immediately upon boot.
The vCPU allocates and accesses its page-cache to enforce page
allocation in the hypervisor via ePT violations. From this point,
each virtual NUMA group references its replica, and gPT replication

Table 4: Time to transfer a cache line (in ns) between dif-

ferent vCPU pairs. The table is shown partially from the

192x192 matrix we profiled on our system.

0 1 2 3 4 5 6 7 8 9 10 11

0 - 125 125 126 50 125 126 126 55 125 125 126
1 - - 125 126 126 50 125 125 125 52 126 125
2 - - - 126 125 126 62 126 125 125 55 125
3 - - - - 125 125 126 50 125 126 125 55

4 - - - - - 125 125 126 62 126 125 125
5 - - - - - - 125 126 125 55 125 126
6 - - - - - - - 126 126 126 50 125
7 - - - - - - - - 125 126 125 52

works as discussed before. When a gPT page is released, we add it
back to its original page-cache pool.

In this approach, it is possible that a replica page could not be
allocated locally e.g., due to unavailability of free memory on the
local socket. For these cases, we expect the hypervisor’s NUMA-
balancing technique to migrate misplaced replica pages to their
expected sockets. Note that different NUMA groups reference dif-
ferent copies of gPT replicas. Therefore, all accesses for each replica
page originate from the same socket. It makes it easier for the hy-
pervisor to identify which of the gPT replica pages are misplaced
(if any) and migrate them. In our evaluation, we show that the over-
heads of misplaced gPT replicas are moderate even in the worst
case (when all gPT accesses are remote) because most gPT accesses
are already remote in existing systems.

Note that replicating gPT via NO-P or NO-F involves a trade-
off regarding the ease of deployment and performance guarantees.
NO-P guarantees high performance by providing explicit hypervi-
sor support to the guest OS for satisfying all the requirements of
gPT replication. However, cross-layer communication makes NO-P
harder to deploy. NO-F is easy to deploy but may lead to suboptimal
performance in rare cases when non-local replicas get assigned to
vCPUs. Our evaluation shows that NO-F and NO-P provide similar
performance in the common case (see ğ 4.2.2).

3.3.5 Linux/KVM Implementation. KVM maintains a descriptor
to store the attributes of each ePT page. We use the original ePT
pages as the master copy and store references to the corresponding
replicas within their descriptors. We then intercept writes to the
master ePT and propagate them to all the replicas within the same
acquisition of a per-VM spin lock to ensure eager consistency. If a
vCPU is rescheduled to a different NUMA socket, we invalidate the
old ePT for the vCPU and assign a new replica based on its new
socket ID.

We replicate gPT using the open-source implementation ofMi-

tosis in the NV configuration. We also useMitosis as the core gPT
replication engine for NO-P and NO-F configurations but augment
it with two different guest modules. In NO-P, the guest module
issues hypercalls to the hypervisor to determine the physical socket
ID of all its vCPUs and allocate local gPT replica for each vCPU
group. Under the NO-F configuration, the kernel module builds
the necessary virtual NUMA groups with a micro-benchmark and
allocates one replica page-cache for each group. These modules
periodically update their vCPU to NUMA group mappings to adapt
to hypervisor level scheduling changes.

200

ASPLOS ’21, April 19ś23, 2021, Virtual, USA A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath, and J. Gandhi

3.4 Deploying vMitosis

vMitosis supports per-process/per-VM migration and replication
of page-tables. Users can enable or disable page-table migration
at runtime (enabled system-wide, by default), while replication
requires explicit selection by the user.

It is important to highlight that that the choice of migration or
replication depends on the classification of a workload as either
Thin (migration) orWide (replication). Our paper primarily focuses
on łmechanismsž for various real-world scenarios. Hence, we used
simple heuristics (e.g., number of requested CPUs and memory size)
and user inputs (e.g., numactl) to classify VMs/processes as Thin or
Wide. We leave investigating more sophisticated policies as future
work, e.g., based on the cpuset allocation, hardware performance
counters etc.

4 EVALUATION

We evaluate vMitosis on real hardware with a selection of memory-
intensive workloads. We conduct page-table migration experiments
for Thin (ğ 4.1) and page-table replication experiments for Wide

workloads (ğ 4.2). We further explore the trade-offs between repli-
cation and migration (ğ 4.3). In all cases, we exclude workload
initialization time from performance measurements.

Evaluation platform: We conduct all measurements on an Intel
4x24x2 Xeon Gold 6252 (Cascade Lake) server with 1.5TiB DDR4
physical memory in total, divided equally among four NUMA sock-
ets. The processor runs at a base frequency of 2.10 GHz with a
per-socket 35.75MiB L3 cache. It contains a private two-level TLB
per core with 64 and 32 L1 entries for 4KiB and 2MiB sized pages,
and a unified L2 TLB with 1536 entries. We enable hyperthreading
and disable turboboost.

Software configuration: We use Linux v4.17-vMitosis as both the
host and the guest OS [61], and KVM as the hypervisor. We pin
vCPUs to pCPUs, use numactl to select the memory allocation
policy, and selectively enable/disable automatic NUMA-balancing
and transparent huge pages (THP) depending on the configuration
being tested. When enabled, THP is used in bothśthe guest OS and
the hypervisor.

Virtual machines: We configure two VMs using libvirt for
the KVM hypervisor, each with 192 vCPUs and 1.4TiB of DRAM.
NUMA-visible VM divides the DRAM and vCPUs into four virtual
sockets with a one-to-one mapping between physical and virtual
sockets. NUMA-oblivious VM exports the entire server as a single
socket system.

4.1 Evaluation with Page-Table Migration

This subsection focuses on Thin workloads that fit into one NUMA
socket. We show that vMitosis mitigates the effects of remote page-
table walks when the workload is migrated and scheduled on an-
other NUMA socket.

Evaluation methodology: We select the NUMA-visible VM con-
figuration to explore various page-table configurations for these
experiments. In the NUMA-visible case, NUMA controls reside in
the guest OS and the hypervisor maintains a 1:1 mapping between
virtual to physical sockets. We focus on the worst-case situation
that occurs when the guest OS migrates one of its workloads; in
this case, gPT and ePT both become remote as discussed in ğ 2.1.

We profile the execution for five configurations listed in the table
at the top of Figure 3. LL represents the best-case performance with
local page-tables. RRI represents Linux/KVM where ePT and gPT

are both remote after workload migration. We measure vMitosis in
three configurations; RRI+e replicates only ePT, RRI+g replicates
only gPT while RRI+M replicates both ePT and gPT. Additionally,
we execute workloads with 4KiB and 2MiB pages.

Description of results: We show the benchmark results in Figure 3.
The base case (LL) has both the ePT and gPT on the local NUMA
socket. With 4KiB pages, all workloads experience performance
loss when either ePT or gPT is remote. The worst-case occurs when
both are remote, resulting in a slowdown of 1.8 − 3.1×. For all
six workloads, vMitosis eliminates the overhead of remote page-
table walks by migrating both levels of the page-tables (RRI+M),
achieving the same performance as the best case. The effect of ePT
or gPT migration is similar as RRI+e and RRI+g contribute roughly
half to the overall speedup.

With THP enabled, the difference between the base case and
the remote configurations is less visible due to fewer TLB misses

Config. gPT ePT Config. gPT ePT Config. gPT ePT

LL Local Local - - - RRI Remote+Interference Remote+Interference
RRI+e Remote+Interference Migrated RRI+g Migrated Remote+Interference RRI+M Migrated Migrated

0

0.5

1

1.5

2

2.5

3

3.5

G
U

P
S

(2
6
0

s
)

B
T

re
e

(4
1
7

s
)

R
e

d
is

(3
9
1

s
)

X
S

B
e
n
c
h

(1
9
3

s
)

M
e

m
c
a
c
h
e

d
(3

6
8

s
)

C
a

n
n
e

a
l

(2
5
6

s
)

G
U

P
S

(7
9
s
)

B
T

re
e

(N
A

)

R
e

d
is

(2
8
2

s
)

X
S

B
e
n
c
h

(1
1
7

s
)

M
e

m
c
a
c
h
e

d
(N

A
)

C
a

n
n
e

a
l

(1
6
5

s
)

G
U

P
S

(1
9
6

s
)

B
T

re
e

(3
1
1

s
)

R
e

d
is

(3
5
3

s
)

X
S

B
e
n
c
h

(2
1
1

s
)

M
e

m
c
a
c
h
e

d
(3

9
2

s
)

C
a

n
n
e

a
l

(1
7
5

s
)

. . .

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

LL RRI RRI+e RRI+g RRI+M

Using 4KiB Pages Using 2MiB Pages Using 2MiB Pages + Fragmentation in Guest OS

3
.1
x

2
.5
4
x

1
.9
7
x

1
.7
6
x

2
.4
1
x

2
.2
6
x

1
.0
2
x

1
.4
7
x

1
.0
3
x

1
.3
5
x

2
.4
x

1
.8
3
x

1
.5
9
x

1
.8
0
x

1
.9
6
x

2
.2
0
x

Figure 3: Workload performance with and without ePT and gPT migration. Bars are normalized to base case (LL). Absolute

runtime for the base case in brackets. Numbers at the top show speedup with vMitosis over the worst-case setting (RRI).

201

Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Config. Data Allocation ePT gPT Config. Data Allocation ePT gPT Config. Data Allocation ePT gPT

F First-touch First-touch First-touch FA First-touch + Balancing First-touch First-touch I Interleaved Interleaved Interleaved
F+M First-touch Replicated Replicated FA+M First-touch + Balancing Replicated Replicated I+M Interleaved Replicated Replicated

0

0.25

0.5

0.75

1

1.25

1.5

F

F
+

M F
A

F
A

+
M

I

I+
M F

F
+

M F
A

F
A

+
M

I

I+
M F

F
+

M F
A

F
A

+
M

I

I+
M F

F
+

M F
A

F
A

+
M

I

I+
M

Memcached
(602s)

XSBench
(777s)

Graph500
(930s)

Canneal
(4504s)

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

1
.1

9
x

1
.2

0
x

1
.2

2
x

1
.6

1
x

1
.3

6
x

1
.1

7
x 1
.3

3
x

1
.0

6
x

1
.1

x 1
.2

7
x 1
.1

3
x

1
.1

6
x

(a) Using 4KiB pages

0

0.25

0.5

0.75

1

1.25

1.5

F

F
+

M F
A

F
A

+
M

I

I+
M F

F
+

M F
A

F
A

+
M

I

I+
M F

F
+

M F
A

F
A

+
M

I

I+
M

Memcached
(NA)

XSBench
(616s)

Graph500
(580s)

Canneal
(2549s)

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

0
.9

8
x

1
.0

2
x

1
.0

1
x

0
.9

8
x

1
.0

1
x 0
.9

7
x

1
.1

2
x

1
.0

5
x

1
.0

1
x

(b) Using 2MiB pages

Figure 4: NUMA-visible: Workload performance with and without vMitosis, normalized to the base case (F). Runtime (in sec-

onds) for the base case are in brackets. Numbers at the top show speedup with vMitosis over the corresponding memory

allocation policy of Linux/KVM.

with 2MiB pages. Therefore, vMitosis provides a relatively modest
speedup, except for Redis andCanneal that gain 1.47× and 1.35× im-
provement.Memcached and BTree result in out-of-memory (OOM)
due to the well-known internal fragmentation problem with 2MiB
pages that leads to memory bloat (discussed in ğ 5).

We also measure performance with THP where the guest OS’s
physical memory is fragmented. Fragmentation is well-known to
limit 2MiB page allocations, increasing TLB pressure. To fragment
the guest OS’s memory, we first warm up the page-cache by reading
two large files into memory. The total size of these files exceeds
memory capacity of the socket where applications execute. We then
access random offsets within these files for 20 minutes. This process
randomizes the guest OS’s LRU-based page-reclamation lists. When
the application allocates memory, the guest OS invokes its page
replacement algorithm to evict inactive pages. Since we accessed
files at random offsets, the eviction usually frees up non-contiguous
blocks of memory, forcing the allocator to use 4KiB pages. However,
background services for compacting memory and promoting 4KiB
pages into 2MiB pages remain active.

With THP enabled and fragmented guest OS, vMitosis recovers
the performance that was lost due to the lack of 2MiB page alloca-
tions, resulting in up to 2.4× speedup.Memcached and BTree were
able to complete their execution in this case since fewer 2MiB pages
were allocated due to fragmentation. Both these applications also
observed significant performance gain with vMitosis. Note that host
physical memory is not fragmented and ePT maps guest physical
to host physical memory with 2MiB pages. Therefore, the speed up
here is lower than when both layers use 4KiB pages.

Summary: vMitosis effectively mitigates the slowdown caused by
remote page-table walks by integrating the migration of ePT and
gPT with that of data pages. Overall, vMitosis provides up to 3.1×
speedup without THP. With THP, we gain up to 2.4× and 1.47×
speedup with and without fragmentation.

4.2 Evaluation with Page-Table Replication

We evaluate the performance benefits of ePT and gPT replication
in two settings: NUMA-visible and NUMA-oblivious.

4.2.1 Replication in a NUMA-Visible Scenario. We first measure
the speedup due to gPT and ePT replication by giving guest OS
access to the NUMA topology.

Evaluation methodology: We set up the guest OS to replicate gPT
in our NUMA-visible VM and the hypervisor to replicate ePT. We
execute Wide workloads (shown in Table 2) inside the VM. We
use local memory allocation on the host to match guest memory
mappings to the host’s NUMA mappings, and pin each vCPU to a
pCPU of the respective socket. We use different memory allocation
policies in the guest and run each configuration with and without
vMitosis. Moreover, we run each workload with and without THP.

The table on top of Figure 4 shows the configurations. F repre-
sents workload executionwith first-touch (local) memory allocation
in the guest OS while FA represents auto page migration enabled
on top of first-touch memory allocation. Configuration I represents
interleaved memory allocation wherein pages (including gPT and
ePT pages) are allocated from all four sockets in round-robin. The
vMitosis counterpart for each of these configurations is represented
with the suffix +M. For example, configuration F+M represents
replicated gPT and ePT combined with the first-touch allocation
policy for data pages.

Description of results: Figure 4a shows the relative runtime of
workload execution under six configurations, normalized to the
base case (F). We show the absolute runtime (in seconds) for the
base case below the workload name. Replicating both gPT and ePT

with vMitosis provides 1.06 − 1.6× speedup without any workload
changes. Performance improvements due to vMitosis are generally
higher in configurations with local memory allocation (i.e., F and
FA)śthis is because local allocation leads to skewed page-table walk
traffic in Linux/KVM. Even with a balanced distribution of page-
tables (configuration I), replicating page-tables via vMitosis provides
more than 1.10× speedup for all workloads.

We run the same workloads with THP enabled and show the
results in Figure 4b. All workloads benefit from THP except Mem-

cached that resulted in OOM. Further, we have found that replicat-
ing the ePT alone does not make much of a difference when THP
is enabled. Except for Canneal, improvements due to vMitosis are
negligible. Canneal gains 1.12× and 1.05× speedup in first-touch
with NUMA balancing and interleaved policies, respectively.

4.2.2 Replication in aNUMA-Oblivious Scenario. We next evaluate
how vMitosis can improve performance when the NUMA topology
is not exposed to the guest OS.

202

ASPLOS ’21, April 19ś23, 2021, Virtual, USA A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath, and J. Gandhi

Config. Data Allocation ePT gPT

OF First-touch First-touch First-touch
OF+M(pv) First-touch Replicated Replicated with para-virtualization
OF+M(fv) First-touch Replicated Replicated with full virtualization

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d
 R

u
n

ti
m

e OF OF+M(pv) OF+M(fv)

1
.2

x
1

.2
x

1
.2

4
x

1
.2

5
x

1
.4

x
1

.4
x

1
.1

9
x

1
.2

x
Memcached XSBench Graph500 Canneal Memcached XSBench Graph500 Canneal

(605s) (730s) (999s) (4269s) (NA) (622s) (592s) (2508s)

Using 4KiB Pages Using 2MiB Pages

Figure 5: NUMA-oblivious: Workload performance, normal-

ized to the base case (OF). Runtime for the base case in brack-

ets. Numbers at the top show speedup with vMitosis wher-

ever significant.

Evaluation methodology: For these experiments, we use Wide

workloads in three different configurations as listed in the table
on top of Figure 5 using the first-touch allocation policy at the
hypervisor and pinning vCPUs to pCPUs to ensure stable perfor-
mance. These settings are consistent with standard virtualization
practices [72].

A NUMA-oblivious VM views the system as a single virtual
socket. Therefore, only the local memory allocation policy is pos-
sible in the guest OS, unlike the NUMA-visible scenario. The base
case (OF) represents vanilla Linux/KVM with first-touch mem-
ory allocation. We evaluate the two vMitosis variants against the
baseline. Configurations OF+M(pv) and OF+M(fv) represent our
para-virtualized and fully-virtualized solutions, respectively. We
enable ePT replication in both the variants.

Description of results: Results are shown in Figure 5, normalized
to the base case (OF) with its runtime beneath the workload name.
All configurations benefit from vMitosis: ePT and gPT replication
provides performance improvements of 1.16 − 1.4× over the base-
line using 4KiB pages. Enabling THP, we see similar performance
characteristics for all configurations. Due to fewer TLB misses and
reduced cache footprint of page-tables, we see a statistically in-
significant speedup of up to 1% with vMitosis.

The performance of both vMitosis variants is roughly similar in
all cases. This is an important result highlighting that our fully-
virtualized approach of replicating gPT entirely within the guest OS
can deliver similar performance as the para-virtualization based ap-
proach. Hence, in common cases, a guest OS integrated with vMito-

sis can experience the same performance benefits of gPT replication
as if they were replicated with explicit hypervisor support.

Impact of misplaced gPT replicas (4KiB pages): We notice that our
fully-virtualized approach may fail to achieve the best-case perfor-
mance in some cases. While a vMitosis enabled guest OS can always
discover the NUMA mappings of its vCPU’s, the placement of gPT
replica pages depends on the state of the hypervisor. Therefore, if
the hypervisor fails to allocate gPT replicas from a vCPU’s local
socket (e.g., if free memory is not available), vMitosis may assign
non-local gPT pages to some vCPUs. While we expect these cases to
be rare, we evaluate the worst-case overhead of non-local replicas
in our fully-virtualized approach OF+M(fv).

For these experiments, we artificially create a situation that
mimics misplaced gPT replicas by configuring each thread’s page-
table base register 𝑐𝑟3 to point to one of the remote replicas. For
example, we configure threads running on socket-0 to use socket-
1’s copy of the gPT and so on. This leads to 100% remote memory
accesses for gPT. We then evaluate performance with and without
replicating ePT.

Disabling ePT replication isolates the impact of misplaced gPT

replicas. Our experiments showed a moderate 2%, 4%, and 5% slow-
down over Linux/KVM for Graph500, XSBench, andMemcached,
respectively. These results are in-line with our expectations: we
do not expect high overheads since non-replicated page-tables in
Linux/KVM already result in about 75% remote gPT accesses on a
4-socket system, on average. If ePT replication is enabled, vMito-

sis outperforms Linux/KVM even if all gPT replicas are misplaced.
This is also expected since vMitosis reduces the overall number of
remote page-walk accesses in this case ś misplaced gPT adds 25%
remote accesses but replicated ePT eliminates 75% remote accesses,
on average.

Summary: We have shown that vMitosis improves application
performance by replicating gPT and ePT in both NUMA-visible

and NUMA-oblivious configurations. While 2MiB pages perform
well even without replicated page-tables, they are susceptible to
out-of-memory errors due to internal fragmentation.

4.3 Replication vs. Migration of Page-Tables

In ğ 4.1, we profiled execution in a static setting by allocating data
and page-tables on different sockets and later migrating page-tables
close to data. However, scheduling policies of the OS/hypervisor
have a dynamic effect on the placement of page-tables. In this
subsection, we demonstrate a live migration example usingMem-

cached as a representativeworkload.We demonstrate livemigration
in both the guest OS and the hypervisor, and compare the effect of
page-table replication and migration in both these cases.

Evaluation methodology: For this evaluation, we select a Thin
Memcached instance with a 30GiB dataset and execute it in both
NUMA-oblivious and NUMA-visible configurations. We initialize
the cache and start querying the key-value store while measuring
the throughput over time. After about five minutes, we migrate
Memcached from Socket-0 to Socket-1. At this point, all memory
accesses become remote for a few minutes until NUMA balancing
starts migrating data pages.

Description of results: We first consider the NUMA-visible case
(Figure 6a) and evaluate five configurations. Configurations RRI,
RRI+e, RRI+g and RRIM+M are similar to the ones used in ğ 4.1.
Ideal-Replication represents pre-replicated page-tables wherein
page-table accesses are always local.

Initially, all five configurations operate at 35M operations per
second, and then they experience a sharp drop in the throughput
afterMemcached gets migrated to another NUMA socket. In vanilla
Linux/KVM (RRI) even after NUMA balancing has co-located the
dataset of Memcached, the throughput is restored to only about
50% of its pre-migration level. When either ePT or gPT migration
is enabled via vMitosis (RRI+e or RRI+g), we experience a simi-
lar pattern initially but reach 65% of the initial throughput in a

203

Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis ASPLOS ’21, April 19ś23, 2021, Virtual, USA

0

5

10

15

20

25

30

35

40

T
h

ro
u

g
h

p
u

t
(m

il
li

o
n

 o
p

s/
se

c)

Time (minutes)

RRI RRI+e RRI+g RRI+M Ideal-Replication

0 4 8 12 16 20

migration point

(a) Workload migration by a NUMA-visible guest OS

0

5

10

15

20

25

30

35

40

T
h

ro
u

g
h

p
u

t
(m

il
li

o
n

 o
p

s/
se

c)

Time (minutes)

RI RI+M Ideal-Replication

0 4 8 12 16 20

migration point

(b) VM migration by KVM hypervisor

Config. ePT

RI

Remote
+

Interference

RI+M Migrated

Ideal-Replication

Replicated
before

Migration

Figure 6: Throughput of a Thin Memcached instance before, during and after migration. In the NUMA-visible case (a), the

guest OS migratesMemcached. In the NUMA-oblivious case (b), the hypervisor migratesMemcached’s VM.

few minutes. The best outcome is obtained with the migration of
both ePT and gPT (RRI+M), where 100% of the throughput is re-
gained. While the initial drop is less dramatic when using ideal
pre-replicated page-tables, our page-table migration technique also
quickly restores the throughput by migrating page-tables with data
pages. In the long run, vMitosis achieves the same behavior as ideal
page-table replication.

In theNUMA-oblivious case, the hypervisor-level NUMA balanc-
ing migrates guest data pages as well as the gPT when it migrates
the VM. Hence, there are only three configurations in Figure 6b.
Configuration RI represents the baseline Linux/KVM system where
ePT is remote after VM migration. We evaluate vMitosis in two
configuration where RI+M represents vMitosis with ePT migration
and Ideal-Replication represents pre-replicated ePT.

Since gPT is automatically migrated by the hypervisor, the loss
in Memcached’s throughput in Linux/KVM in Figure 6b (RI) is
lesser than the loss in the NUMA-visible case of Figure 6a (RRI): RI
experiences ≈ 35% drop (local gPT, remote ePT) compared to 50%
of RRI (remote gPT, remote ePT). However, this is still a significant
performance loss considering that VM migration has completed
from the system point of view. vMitosis restores the full performance
by migrating ePT (RI+M); this behavior is also close to an ideal ePT
replication scenario.

4.4 Memory and Runtime Overheads

We quantify the runtime overhead of our implementation with
a micro-benchmark that invokes common memory management
related system calls mmap, mprotect, and munmap ś similar to
the methodology discussed in Mitosis [1]. The micro-benchmark
repeatedly invokes these system calls with different virtual memory
region sizes. We measure throughput as the number of PTEs up-
dated per second for each system call when invoked at 4KiB, 4MiB
and 4GiB granularity on three system configurations: Linux/KVM,
vMitosis with migration, and vMitosis with replication. In vMitosis

configurations, replication or migration of ePT and gPT is enabled
simultaneously. Table 5 shows our measurements. We make the
following observations based on these results.

First, the exact overhead of replication depends on the specifics
of a particular system call. For example, the cost of mmap and
munmap system calls is dominated by the time taken to allocate
and free pages, respectively. In contrast, mprotect only updates

certain page-table bit, and therefore experiences significantly higher
overhead due to replication. The overhead also depends on the size
of the memory region. For smaller virtual memory area per system
call, the overhead of context switching dominates that of updating
page-table replicas. Hence, the overheads are low in the 4KiB case
but more pronounced in the 4MiB and 4GiB cases.

Secondly, Linux/KVM and vMitosis (in its default migration
mode) both maintain a single copy of the page-tables. Hence, their
throughput is roughly similar in all cases. Thinworkloads, therefore,
do not experience runtime overhead in vMitosis before or after mi-
gration or when they are never migrated across sockets. This is an
important benefit that justifies the value of integrating page-table
migration with that of data pages. In contrast, replication-based
page-table migration (as inMitosis) involves expensive page-table
updates. Furthermore, the overhead of replication increases linearly
with the number of replicas.

Third, through separate profiling of these overheads for ePT and
gPT, we observe that the cost of updating gPT replicas dominates the
overall replication overheads. In general, ePT updates are infrequent
ś ePT is updated when memory pages are first allocated to a VM
which is a one time operation in the common case. Furthermore,
the cost of updating ePT is dominated by VM-exits. Hence, ePT
replication contributes only a marginal overhead in Table 5.

Table 5: Throughput (measured asmillion PTEs updated per

second) of different system calls when invoked with dif-

ferent virtual memory region sizes using 4KiB mappings.

Numbers in parentheses represent throughput normalized

to Linux/KVM.

Syscall Size Linux/KVM
vMitosis

(migration)

vMitosis

(replication)

mmap

4KiB 0.44 0.44 (1.0×) 0.40 (0.91×)
4MiB 1.10 1.10 (1.0×) 1.08 (0.98×)
4GiB 1.11 1.10 (1.0×) 1.08 (0.98×)

mprotect

4KiB 0.82 0.83 (1.01×) 0.69 (0.84×)
4MiB 30.88 31.34 (1.01×) 9.05 (0.29×)
4GiB 31.82 31.81 (1.0×) 8.97 (0.28×)

munmap

4KiB 0.34 0.34 (1.0×) 0.30 (0.88×)
4MiB 6.40 6.60 (1.03×) 4.92 (0.75×)
4GiB 6.62 6.64 (1.0×) 4.75 (0.72×)

204

ASPLOS ’21, April 19ś23, 2021, Virtual, USA A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath, and J. Gandhi

Table 6: Memory footprint of 2D page-tables for a 1.5TiB

workload using 4KiB pages with different replication fac-

tors. Numbers in parentheses represent memory consump-

tion of page-tables as a fraction of workload size.

replicas ePT gPT Total

1 3GB 3GB 6GB (0.4%)
2 6GB 6GB 12GB (0.8%)
4 12GB 12GB 24GB (1.6%)

Finally, Table 6 shows the space overhead of vMitosis with differ-
ent replication factors for a representative 1.5TiB workload using
4KiB pages. For a typical densely populated address space, page-
tables consume a small fraction of overall memory (i.e., 0.2% ś since
a 4KiB page-table page maps 2MiB of address space). Therefore,
each 2D page-table replica adds 0.4% memory overhead on virtu-
alized systems, resulting in an overall 1.2% memory overhead on
our four-socket system. With 2MiB large pages, the space overhead
of 4-way replication reduces to 36MiB i.e., a negligible 0.003% of
workload memory footprint. Overall, these space overheads are
moderate compared to the performance benefits of vMitosis.

4.5 Summary of Results

Wehave shown that vMitosis fullymitigates the overheads of remote
page-table walks providing 1.8 − 3.1× speedup for Thin workloads.
It improves the performance of Wide workloads by 1.06 − 1.6× in
the NUMA-visible case and by 1.16 − 1.4× in the NUMA-oblivious

case. We have also shown that vMitosis can restore the performance
of theMemcached server to its initial state within a few minutes
of VM/workload migration. In a few cases, vMitosis provides signif-
icant improvement over Linux THP.

5 DISCUSSION

5.1 Large Pages

Large pages can effectively reduce page-table walk overheads under
ideal conditions, and hence our improvements over Linux THP
are moderate. However, integration of large pages into existing
systems has been extremely challenging [20, 23]. The difficulty
arises due to some fundamental properties of large pages including
but not limited to memory bloat due to internal fragmentation [27,
70], unbalanced memory traffic on NUMA systems due to coarse
granularity of data placement [32], latency and OS jitter due to
systems overhead involved in managing large pages [3, 37], their
negative impact on memory consolidation for VMs [34], and having
to deal with the inevitable external memory fragmentation problem
in long-running systems [33]. Large page support on heterogeneous
platforms adds further complexity in memory management [7, 8].
While researchers have tried to overcome these challenges [44,
55, 57, 59, 79], the magnitude of the problem has forced many
application developers to recommend against using THP [25, 53, 63].
Consequently, the need for large page alternatives is growing [5,
12, 35, 36, 42, 47, 48, 66, 68]. In this paper, we have only shown THP
causing out-of-memory (OOM) error forMemcached andBTree due
to memory bloat, and their below-par performance in a fragmented
system. Readers are referred to well-documented literature on other
THP-related problems (cited above).

However, we do not claim that large pages are useless as many
important applications benefit from them. We only point out that
their utility is use-case specific, and that vMitosis provide significant
performance boost when large pages are unsuitable. Further, vMito-

sis is compatible with Linux THP and even improves performance
when used in tandem.

5.2 Shadow Page-Tables

Under virtualization, address translation overheads can be reduced
by replacing 2D page-tables with shadow page-tables. In shadow
paging, hypervisor-managed shadow page-tables translate guest
virtual addresses directly to host physical addresses [76]. This re-
duces the maximium number of memory references involved in an
address translation to only four (similar to native systems), as com-
pared to 24 with two-level paging. However, shadow page-tables
must be kept consistent with guest page-tables; for this, a typical
hypervisor write protects gPT pages and applies gPT modifications
to its shadow page-tables. This process involves an expensive VM
exit on every gPT update. Shadow page-tables, therefore, involve a
complicated trade-off i.e., optimizing hardware page-table walks at
the expense of high software memory management overheads.

Research has shown that TLB-intensive workloads that allocate
memory once can benefit from shadow-paging [30]. vMitosis sup-
ports migration and replication of shadow page-tables in KVM.
Our experiences with shadow page-tables have been mixed. In the
best-case (when page-table updates are infrequent), shadow paging
combined with migration and replication with vMitosis improves
performance by up to 2× over 2D page-tables, at the expense of
2 − 6× higher initialization time. In the worst-case, shadow paging
degraded performance by more than 5×. We also observed extreme
overheads due to guest kernel’s services that update page-tables
(e.g., some of the workloads did not complete even in 24 hours when
we enabled AutoNUMA in the guest OS). In general, shadow paging
combined with the techniques of vMitosis could be useful for work-
loads that involve little kernel activities (e.g., HPC applications).
The use of shadow paging in its current form does not seem fruitful,
and consequently some hypervisors have abandoned it. However,
techniques that exploit the best of shadow and extended paging
have been explored in the literature [9, 30]; combined with vMitosis,
such techniques could prove to be more powerful on heterogeneous
memory systems.

6 RELATED WORK

Technique to improve NUMA systems performance and address
translation optimizations have been explored extensively in the
literature, albeit independently.

NUMA optimizations: OS-level NUMA optimizations have been
proposed for decades [16, 75]. Applications with complex NUMA
properties can directly leverage system calls to retain control over
the placement of their threads and data [46]. Other applications can
rely on built-in system heuristics that automatically drive NUMA
optimizations [21, 28, 56]. While OS and library support thus far has
focused only on user data pages, we have shown that the placement
of important kernel structures such as page-tables is also crucial
for performance.

205

Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Replication and migration are popular techniques that have been
applied in various contexts [69]. Carrefour is a kernel design that
transparently replicates and migrates application data on NUMA
systems [24]. Shoal provides an abstraction to replicate, partition,
and distribute arrays across NUMA domains. Carrefour-LP opti-
mized large page performance on NUMA systems by judiciously
allocating/demoting large pages [32]. RadixVM used replication
to improve the scalability of the xv6 kernel [19]. Various locking
techniques also employ replication for reducing cross-CPU traffic
to achieve high scalability [18]. In contrast, we apply replication
and migration to improve address translation performance. Our
technique of discovering the server’s NUMA topology is inspired by
Smelt that derived efficient communication patterns on multi-core
platforms via online measurements [40].

Address translation optimizations: These include techniques aimed
at minimizing TLB misses [14, 31, 35], reducing page-table walk
lengths [13], or avoiding memory lookups on TLB misses [10].
Some of these techniques have been incorporated in commercial
systems in various forms including large multi-level TLBs [51],
large pages [44, 55], and hardware page-walk caches [11]. Prior
research has shown that despite these optimizations, large scale
systems are still susceptible to page-table walk latency [12, 44, 57].

Some of the other techniques for reducing TLB miss overheads
include contiguity-aware TLBs that increase translation coverage
without increasing TLB or page size [13, 60] and direct segments
that try to eliminate TLB lookups for most memory accesses [12].
Various application specific and machine learning techniques have
also been explored for accelerating address translation [4, 47]. Espe-
cially for virtualized systems, POM-TLBs were proposed to resolve
TLB misses using a single memory lookup using an in-memory
TLB structure [66] while virtualized direct segments were used
to translate guest virtual addresses directly to host physical ad-
dresses [29]. OS-level address translation optimizations have ex-
plored various policies to overcome the fundamental limitations
of large pages [44, 55, 57, 59, 79]. Different from prior techniques,
vMitosis explores heterogeneity on virtualized page-table walks.
While prior techniques are effective, vMitosis can be used to further
improve their efficiency on NUMA-like systems.

7 CONCLUSION

We highlight that the placement of kernel objects is becoming im-
portant in NUMA systems. Our detailed analysis on a real platform
shows that remote DRAM accesses due to misplaced guest and ex-
tended page-tables cause up to 3.1× slowdown. We present vMitosis

ś a system design to explicitly manage 2D page-tables in different
virtualized environments. vMitosis leverages well-known replica-
tion and migration techniques and effectively eliminates NUMA
effects on 2D page-table walks.

ACKNOWLEDGMENTS

We thank our anonymous reviewers and our shepherd Ding Yuan
for their thoughtful feedback. This work was partly done when
Ashish Panwar and Reto Achermann were interns at VMware Re-
search. Ashish Panwar is also supported by the Prime Minister’s
Fellowship Scheme for Doctoral Research, co-sponsored by CII,
Government of India and Microsoft Research Lab India. Abhishek

Bhattacharjee is supported by NSF career award number 1916817.
Arkaprava Basu’s research is partially supported by Pratiksha Trust,
Bangalore, and by a research grant from VMware.

A ARTIFACT APPENDIX

A.1 Abstract

Our artifact provides x86_64 binaries of our modified Linux kernel
v4.17 and KVM hypervisor, user-space control libraries (libnuma)
and evaluated benchmarks with their input files where appropri-
ate. We further provide source code of our Linux modifications,
benchmarks, user-space libraries and scripts to compile the binaries.

The exact invocation arguments andmeasurement infrastructure
is provided through bash and python scripts which allow reproduc-
ing the data and graphs in the paper on a four-socket Intel Cascade
Lake (or similar) machine with 1.5TiB of main memory.

A.2 Artifact Check-List (Meta-information)

• Algorithm: Migration and replication of the Linux guest OS
kernel and KVM extended page-tables.

• Programs: GUPS, BTree, XSBench, Graph500, Redis,Memcached,
Canneal.

• Compilation: GCC version 7.4.0.
• Binary: Included for x86_64. In addition, source code and scripts
are provided to compile binaries.

• Data set: A netlist is required for Canneal which is automatically
generated by the run scripts.

• Run-time environment: Provided by the supplied Linux ker-
nel binaries for x86_64 hardware, source code given. Scripts
require sudo privileges.

• Hardware: We recommend a four-socket Intel Xeon Gold 6252
with 24 cores (48 threads) and 384GB memory per-socket (1.5TB
total memory) to reproduce results reported in the paper. Other
four-socket x86_64 servers with similar memory and compute
capability are expected to produce comparable results.

• Run-time state: Populated by the workloads themselves.
• Execution: Using bash-scripts on a Linux/KVMplatform. Scripts
to be executed on the host.

• Output: The artifact scripts produce the graphs for each figure
used in the paper.

• Disk space required: 600GB including all datasets. 200GB with-
out fragmentation related experiments.

• Time needed to prepare workflow: 2-3 hours.
• Time needed to complete experiments: 2 weeks excluding
Canneal. 6-7 weeks including Canneal.

• Publicly available: Yes.
• Workflow framework used: None.
• Archived: Yes. DOI: 10.5281/zenodo.4321310

A.3 Description

A.3.1 Availability. All scripts are available in the GitHub reposi-
tory https://github.com/mitosis-project/vmitosis-asplos21-artifact.
All sources including Linux/KVM modifications, benchmarks and
other utilities are included as public git submodules. The artifact
with pre-compiled binaries is also available at https://zenodo.org/
record/4321310.

206

https://github.com/mitosis-project/vmitosis-asplos21-artifact
https://zenodo.org/record/4321310
https://zenodo.org/record/4321310

ASPLOS ’21, April 19ś23, 2021, Virtual, USA A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath, and J. Gandhi

A.3.2 Hardware Dependencies. We recommend a four-socket Intel
Xeon Gold 6252 with 24 cores and 384GB memory per-socket to
reproduce results reported in the paper. Other multi-socket x86_64
servers with similar memory and compute capability should pro-
duce comparable results. Memory sizes are hardcoded in the bina-
ries but they can be adjusted by modifying the workload source, if
required.

A.3.3 Software Dependencies. The compilation environment and
our provided binaries and scripts assume Ubuntu 18.04 LTS, which
also uses the Linux Kernel v4.17. Similar Linux distributions are also
expected to work. In addition to the packages shipped with Ubunty
18.04 LTS, additional packages need to be installed as follows:

$ sudo apt-get install build-essential flex \

libncurses-dev bison libssl-dev \

libelf-dev libnuma-dev python3 git \

python3-pip python3-matplotlib \

python3-numpy wget kernel-package \

fakeroot ccache libncurses5-dev \

pandoc libevent-dev libreadline-dev \

python3-setuptools qemu-kvm virtinst \

bridge-utils libvirt-bin virt-manager

A.3.4 Datasets. The datasets (required only for Canneal) are auto-
matically generated when executing the run scripts. The scripts to
generate them are present in ./datasets/.

A.4 Installation

To install, either download the complete artifact from Zenodo
(https://zenodo.org/record/4321310) (DOI 10.5281/zenodo.4321310),
or clone the GitHub repository from https://github.com/mitosis-
project/vmitosis-asplos21-artifact. The GitHub repository contains
all the scripts required to run the artifact alongwith all pre-compiled
binaries. All sources are included as public submodules in ./sources/.
Pre-compiled binaries are placed in ./precompiled/.

A.4.1 Compiling Binaries. If you plan to use the pre-compiled bina-
ries, you can skip this step. Otherwise use the following commands
to compile binaries from the sources:

$ cd vmitosis-asplos21-artifact/

$ git submodule init

$ git submodule update

$ make

A.4.2 Deployment. If you are running everything on the test ma-
chine, you can skip this step. Alternatively, you can deploy the ar-
tifact from your local system to the target machine under test. To do
so, set your target host-name and directory in ./scripts/configs.sh
and deploy the artifact to the test machine as follows:

$./scripts/deploy.sh

A.4.3 Installing vMitosis-Linux. On your test machine, compile
and install the vmlinux binary from ./sources/vmitosis-linux/

and boot from it. Alternatively, use Debian packages provided in

./precompiled/ to install vMitosis-Linux headers and kernel im-
age on your machine under test.

A.4.4 Installing and Configuring a Virtual Machine. Install a virtual
machine using libvirt on your test machine. An example using com-
mand line installation is provided below (choose ssh-server when
prompted for package installation). Once installed, run the second
command to generate three VM configurations (i.e., NUMA-visible,
NUMA-oblivious and Thin). The appropriate configuration will be
loaded by run scripts themselves.

$ virt-install --name vmitosis --ram 4096 \

--disk path=~/vmitosis.qcow2,size=50 \

--vcpus 4 --os-type linux --os-variant \

generic --network bridge=virbr0 \

--graphics none --console pty, \

target_type=serial --location `URL' \

--extra-args `console=ttyS0,115200n8 serial'

$./scripts/gen_vmconfigs.py vmitosis

We recommend installing Ubuntu18.04 in the VM. To do so,
replace URL with http://archive.ubuntu.com/ubuntu/dists/bionic/
main/installer-amd64/ in the installation command above. In addi-
tion, do the following:

• In ./scripts/configs.sh, edit user names (HOSTUSER, GUES-
TUSER), IP addresses (HOSTADDR, GUESTADDR) and libvirt’s
ID of the VM image (VMIMAGE) as per your installation.

• Setup password-less authentication between guest and host. This
can be done, for example, by adding the RSA key of the host user
in $HOME/.ssh/authorized_keys in the guest and vice-versa.

• Set up guest Linux to auto-mount the artifact directory in the
same path as the host using a network file system such as SSHFS
(e.g., user’s home directory).

• Grant sudo privileges to users in both host and guest; they should
be able to execute sudo without entering password.

• Add your user name to libvirt group in the host.

If you face any issues (e.g., VM fails to boot) with configuration
files generated by ./scripts/gen_vmconfigs.py, create three VM
configurations in ./vmconfigs/ manually ś following detailed
instructions provided in README.md on GitHub repository. Refer
to ./vmconfigs/samples/ for XML configurations that were used
in the paper.

A.5 Experimental Workflow

We provide individual scripts for each figure in the paper, and a
common script to launch all of them in one go. Once you have
prepared the target machine, you can execute the workloads as
described below.

Running experiments: We advise to run the experiments exclu-
sively on a machine i.e., no other compute or memory-intensive
application should be running concurrently. To run all experiments,
individual figures or individual bars in the figures, execute:

207

https://zenodo.org/record/4321310
https://github.com/mitosis-project/vmitosis-asplos21-artifact
https://github.com/mitosis-project/vmitosis-asplos21-artifact
 http://archive.ubuntu.com/ubuntu/dists/bionic/main/installer-amd64/
 http://archive.ubuntu.com/ubuntu/dists/bionic/main/installer-amd64/

Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis ASPLOS ’21, April 19ś23, 2021, Virtual, USA

$./scripts/run_all.sh

OR

$./scripts/run_figure-{1..6}.sh

OR

$./scripts/run_figure-{1..6}.sh BENCH CONFIG

Refer to individual scripts for the list of supported benchmarks
and configurations. The output logs are redirected to ./evaluation/
measured/data/, in a sub-directory named after the benchmark.
They can be processed into CSV files and PDF plots by executing:

$./scripts/compile_report.py --all

Processing 2D page-table dumps for Figure-2 takes some time
(more than 20 minutes for each configuration). To avoid processing
them while compiling the report, remove the --all argument. The
final report will be generated in ./vmitosis-artifact-report/.

A.6 Evaluation and Expected Results

Once you’ve completed all or partial experiments, you can com-
pare the outcomes with the expected results. The reference out-
put logs that were used in the paper are located in the folder
./evaluation/reference/data/. Theywill also be processed into
CSV files and PDF plots while compiling the report.

Collecting results: Copy the final report to your local machine. If
you used the deploy script to copy this artifact to a different target
machine, you can collect the report by executing:

$./scripts/collect-results.sh

Finally, open ./vmitosis-artifact-report/vmitosis.html

in your web browser to see the reference and measured plots side-
by-side. Additionally, you can also check the CSV files of each figure
(both reference and measured) in the report.

REFERENCES
[1] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy Roscoe,

and Jayneel Gandhi. 2020. Mitosis: Transparently Self-Replicating Page-Tables
for Large-Memory Machines. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Lausanne, Switzerland, 2020) (ASPLOS ’20). Lausanne, Switzerland,
283ś300. https://doi.org/10.1145/3373376.3378468

[2] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-
Transparent Page Management for Two-Tiered Main Memory. In Proceedings of
the Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17). Xi’an, China,
631ś644. https://doi.org/10.1145/3037697.3037706

[3] Ibrar Ahmed. 2019. Settling the Myth of Transparent HugePages for
Databases. Online https://www.percona.com/blog/2019/03/06/settling-the-
myth-of-transparent-hugepages-for-databases/.

[4] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017. Do-It-Yourself
Virtual Memory Translation. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). Toronto, ON, Canada, 457ś468.
https://doi.org/10.1145/3079856.3080209

[5] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas, Jayneel Gandhi, Kon-
stantinos Nikas, Georgios I. Goumas, and Nectarios Koziris. 2020. Enhancing and
Exploiting Contiguity for Fast Memory Virtualization. In 47th ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA 2020, Valencia, Spain,
May 30 - June 3, 2020. 515ś528. https://doi.org/10.1109/ISCA45697.2020.00050

[6] James Ang, Brian Barrett, Kyle Wheeler, and Richard Murphy. 2010. Introducing
the Graph500. https://graph500.org/

[7] Rachata Ausavarungnirun, Joshua Landgraf, VanceMiller, Saugata Ghose, Jayneel
Gandhi, Christopher J. Rossbach, and Onur Mutlu. 2017. Mosaic: A GPU Mem-
ory Manager with Application-Transparent Support for Multiple Page Sizes.

In Proceedings of the 50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-50 ’17). Cambridge, Massachusetts, 136ś150. https:
//doi.org/10.1145/3123939.3123975

[8] Rachata Ausavarungnirun, VanceMiller, Joshua Landgraf, Saugata Ghose, Jayneel
Gandhi, Adwait Jog, Christopher J. Rossbach, and Onur Mutlu. 2018. MASK:
Redesigning the GPU Memory Hierarchy to Support Multi-Application Concur-
rency. In Proceedings of the Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’18).
Williamsburg, VA, USA, 503ś518. https://doi.org/10.1145/3173162.3173169

[9] Chang S. Bae, John R. Lange, and Peter A. Dinda. 2011. Enhancing Virtualized Ap-
plication Performance through Dynamic Adaptive Paging Mode Selection. In Pro-
ceedings of the 8th ACM International Conference on Autonomic Computing (ICAC
’11). Karlsruhe, Germany, 255ś264. https://doi.org/10.1145/1998582.1998639

[10] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation Caching: Skip,
Don’T Walk (the Page Table). In Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA ’10). Saint-Malo, France, 48ś59. https:
//doi.org/10.1145/1815961.1815970

[11] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: A mechanism for
speculative address translation. In Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA ’11). San Jose, CA, USA, 307ś317.
https://doi.org/10.1145/2000064.2000101

[12] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient Virtual Memory for Big Memory Servers. In Proceedings of
the 40th Annual International Symposium on Computer Architecture (ISCA ’13).
Tel-Aviv, Israel, 237ś248. https://doi.org/10.1145/2485922.2485943

[13] Abhishek Bhattacharjee. 2013. Large-reach Memory Management Unit Caches.
In Proceedings of the 46th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-46). Davis, California, 383ś394. https://doi.org/10.1145/
2540708.2540741

[14] Abhishek Bhattacharjee. 2017. Translation-Triggered Prefetching. In Proceedings
of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’17). Xi’an, China, 63ś76.
https://doi.org/10.1145/3037697.3037705

[15] Christian Bienia and Kai Li. 2009. PARSEC 2.0: A New Benchmark Suite for
Chip-Multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation.

[16] William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott. 1989. Simple but
Effective Techniques for NUMA Memory Management. In Proceedings of the
Twelfth ACM Symposium on Operating Systems Principles (SOSP ’89). Litchfield
Park, AZ, USA, 19ś31. https://doi.org/10.1145/74850.74854

[17] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe,
and Nir Shavit. 2013. NUMA-Aware Reader-Writer Locks. In Proceedings of
the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (Shenzhen, China) (PPoPP ’13). Shenzhen, China, 157ś166. https:
//doi.org/10.1145/2442516.2442532

[18] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera. 2017.
Black-box Concurrent Data Structures for NUMA Architectures. In Proceedings
of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’17). Xi’an, China, 207ś221.
https://doi.org/10.1145/3037697.3037721

[19] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2013. RadixVM:
Scalable Address Spaces for Multithreaded Applications. In Proceedings of the
8th ACM European Conference on Computer Systems (EuroSys ’13). Prague, Czech
Republic, 211ś224. https://doi.org/10.1145/2465351.2465373

[20] Jonathan Corbet. 2007. Large pages, large blocks, and large problems. Online
https://lwn.net/Articles/250335/.

[21] Jonathan Corbet. 2012. AutoNUMA: the other approach to NUMA scheduling.
https://lwn.net/Articles/488709/.

[22] Jonathan Corbet. 2014. NUMA scheduling progress. Online https://lwn.net/
Articles/568870/.

[23] Jonathan Corbet. 2019. Transparent huge pages, NUMA locality, and performance
regressions. Online https://lwn.net/Articles/787434/.

[24] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013. Traffic Man-
agement: A Holistic Approach to Memory Placement on NUMA Systems. In
Proceedings of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’13). Houston, Texas,
USA, 381ś394. https://doi.org/10.1145/2451116.2451157

[25] Advanced Micro Devices. 2012. Hadoop Performance Tuning Guide.
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/
Hadoop_Tuning_Guide-Version5.pdf.

[26] Linux Kernel Documentation. 2020. Split page table lock. Online https:
//www.kernel.org/doc/html/latest/vm/split_page_table_lock.html.

[27] Nelson Elhage. 2010. Disable Transparent Hugepages. https://blog.nelhage.com/
post/transparent-hugepages/.

[28] FreeBSD [n.d.]. FreeBSD - NUMA. https://wiki.freebsd.org/NUMA.

208

https://doi.org/10.1145/3373376.3378468
https://doi.org/10.1145/3037697.3037706
https://www.percona.com/blog/2019/03/06/settling-the-myth-of-transparent-hugepages-for-databases/
https://www.percona.com/blog/2019/03/06/settling-the-myth-of-transparent-hugepages-for-databases/
https://doi.org/10.1145/3079856.3080209
https://doi.org/10.1109/ISCA45697.2020.00050
https://graph500.org/
https://doi.org/10.1145/3123939.3123975
https://doi.org/10.1145/3123939.3123975
https://doi.org/10.1145/3173162.3173169
https://doi.org/10.1145/1998582.1998639
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2000064.2000101
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/3037697.3037705
https://doi.org/10.1145/74850.74854
https://doi.org/10.1145/2442516.2442532
https://doi.org/10.1145/2442516.2442532
https://doi.org/10.1145/3037697.3037721
https://doi.org/10.1145/2465351.2465373
https://lwn.net/Articles/250335/
https://lwn.net/Articles/488709/
https://lwn.net/Articles/568870/
https://lwn.net/Articles/568870/
https://lwn.net/Articles/787434/
https://doi.org/10.1145/2451116.2451157
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
https://www.kernel.org/doc/html/latest/vm/split_page_table_lock.html
https://www.kernel.org/doc/html/latest/vm/split_page_table_lock.html
https://blog.nelhage.com/post/transparent-hugepages/
https://blog.nelhage.com/post/transparent-hugepages/
https://wiki.freebsd.org/NUMA

ASPLOS ’21, April 19ś23, 2021, Virtual, USA A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath, and J. Gandhi

[29] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2014. Effi-
cient Memory Virtualization: Reducing Dimensionality of Nested Page Walks.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-47). Cambridge, United Kingdom, 178ś189. https:
//doi.org/10.1109/MICRO.2014.37

[30] Jayneel Gandhi, Mark D. Hill, andMichaelM. Swift. 2016. Agile Paging: Exceeding
the Best of Nested and Shadow Paging. In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA ’16). Seoul, Republic of Korea, 707ś
718. https://doi.org/10.1109/ISCA.2016.67

[31] Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar, Adrian Cristal, Mark Hill,
Kathryn McKinley, Mario Nemirovsky, Michael Swift, and Osman Unsal. 2016.
Range Translations for Fast Virtual Memory. IEEE Micro 36, 3 (05 2016). https:
//doi.org/10.1109/MM.2016.10

[32] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexan-
dra Fedorova, and Vivien Quéma. 2014. Large Pages May Be Harmful on
NUMA Systems. In Proceedings of the 2014 USENIX Conference on USENIX An-
nual Technical Conference (USENIX ATC’14). Philadelphia, PA, 231ś242. https:
//www.usenix.org/node/183962

[33] Mel Gorman and Patrick Healy. 2008. Supporting Superpage Allocation Without
Additional Hardware Support. In Proceedings of the 7th International Symposium
on Memory Management (ISMM ’08). Tucson, AZ, USA, 41ś50. https://doi.org/
10.1145/1375634.1375641

[34] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee. 2015. Proactively
Breaking Large Pages to Improve Memory Overcommitment Performance in
VMware ESXi. In Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’15). Istanbul, Turkey, 39ś51.
https://doi.org/10.1145/2731186.2731187

[35] Faruk Guvenilir and Yale N. Patt. 2020. Tailored Page Sizes. In Proceedings of
the ACM/IEEE 47th Annual International Symposium on Computer Architecture.
Virtual Event, 900ś912. https://doi.org/10.1109/ISCA45697.2020.00078

[36] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2018. Devirtualizing Mem-
ory in Heterogeneous Systems. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’18). Williamsburg, VA, USA, 637ś650. https://doi.org/10.1145/
3173162.3173194

[37] Todd Hoff. 2015. The Black Magic Of Systematically Reducing Linux OS Jit-
ter. http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-
reducing-linux-os-jitter.html.

[38] HPCCHALLENGE. 2019. RandomAccess: GUPS (Giga Updates Per Second).
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/.

[39] Intel. 2020. Intel® 64 and IA-32 Architectures Developer’s Manual, Vol. 3C.
Online https://www.intel.in/content/www/in/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html.

[40] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos,
and Timothy Roscoe. 2016. Machine-Aware Atomic Broadcast Trees for Mul-
ticores. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). Savannah, GA, USA, 33ś48. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle

[41] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS: OS Design for Heterogeneous Memory Management in Datacenter. In
Proceedings of the 44th Annual International Symposium on Computer Architecture
(Toronto, ON, Canada) (ISCA ’17). Toronto, ON, Canada, 521ś534. https://doi.org/
10.1145/3079856.3080245

[42] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal.
2015. Redundant Memory Mappings for Fast Access to Large Memories. In
Proceedings of the 42nd Annual International Symposium on Computer Architecture
(ISCA ’15). Portland, Oregon, 66ś78. https://doi.org/10.1145/2749469.2749471

[43] Joe Kozlowicz. 2018. Checking Your Virtual Machine NUMA Configuration. On-
line https://www.greenhousedata.com/blog/dont-turn-numa-numa-yay-into-
numa-numa-nay-checking-virtual-machine-numa.

[44] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16). Savannah, GA, USA, 705ś721. https://doi.org/10.1145/
3139645.3139659

[45] Kieran Laffan. 2020. SQL Server Best Practices, Part I: Configuration. Online
https://www.varonis.com/blog/sql-server-best-practices-part-configuration/.

[46] Christoph Lameter. 2013. NUMA (Non-Uniform Memory Access): An Overview.
Queue 11, 7, Article 40 (July 2013), 12 pages. https://doi.org/10.1145/
2508834.2513149

[47] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2018.
Virtual Address Translation via Learned Page Table Indexes. In Proceedings of
the Workshop on ML for Systems at NeurIPS.

[48] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched Address Translation. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’52). Columbus, OH, USA,

1023ś1036. https://doi.org/10.1145/3352460.3358294
[49] John D. McCalpin. 2019. STREAM: Sustainable Memory Bandwidth in High

Performance Computers. https://www.cs.virginia.edu/stream/.
[50] memcached. 2019. memcached: a distributed memory object caching system.

https://memcached.org.
[51] Timothy Merrifield and H. Reza Taheri. 2016. Performance Implications of Ex-

tended Page Tables on Virtualized x86 Processors. In Proceedings of the12th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
’16). Atlanta, Georgia, USA, 25ś35. https://doi.org/10.1145/2892242.2892258

[52] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. 2009. Op-
erating System Support for NVM+DRAMHybrid Main Memory. In Proceedings of
the 12th Conference on Hot Topics in Operating Systems (Monte Verità, Switzerland)
(HotOS’09). Monte Verità, Switzerland, 14.

[53] MongoDB, Inc. [n.d.]. Recommendation to disable huge pages for MongoDB.
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/.

[54] Djob Mvondo, Boris Teabe, Alain Tchana, Daniel Hagimont, and Noel De Palma.
2019. Memory flipping: a threat to NUMA virtual machines in the Cloud. In
2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris, France,
April 29 - May 2, 2019. 325ś333. https://doi.org/10.1109/INFOCOM.2019.8737548

[55] Juan Navarro, Sitaram Iyer, and Alan Cox. 2002. Practical, Transparent Operating
System Support for Superpages. In 5th Symposium on Operating Systems Design
and Implementation (OSDI 02). Boston, MA. https://www.usenix.org/conference/
osdi-02/practical-transparent-operating-system-support-superpages

[56] Oracle. 2019. Solaris 11.4 - Locality Groups and Thread and Memory Placement.
https://docs.oracle.com/cd/E37838_01/html/E61059/lgroups-32.html.

[57] Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye: Efficient Fine-
grained OS Support for Huge Pages. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’19). Providence, RI, USA, 347ś360. https:
//doi.org/10.1145/3297858.3304064

[58] Ashish Panwar, Naman Patel, and K. Gopinath. 2016. A Case for Protecting
Huge Pages from the Kernel. In Proceedings of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems (APSys ’16). Hong Kong, Hong Kong, Article 15, 8 pages.
https://doi.org/10.1145/2967360.2967371

[59] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge Pages
Actually Useful. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’18). Williamsburg, VA, USA, 679ś692. https://doi.org/10.1145/3173162.3173203

[60] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45).
Vancouver, B.C., CANADA, 258ś269. https://doi.org/10.1109/MICRO.2012.32

[61] Mitosis Linux Project. 2020. Mitosis Linux. Online https://github.com/mitosis-
project/mitosis-linux/. Accessed 20. May 2020.

[62] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page Placement
in Hybrid Memory Systems. In Proceedings of the International Conference on
Supercomputing (Tucson, Arizona, USA) (ICS ’11). Tucson, Arizona, USA, 85ś95.
https://doi.org/10.1145/1995896.1995911

[63] Redis Labs. [n.d.]. Recommendation to disable huge pages for Redis. http:
//redis.io/topics/latency.

[64] Redis Labs. 2019. Redis. https://redis.io.
[65] Breno Leitao Rodrigo Ceron, Rafael Folco and Humberto Tsub-

amoto. 2012. Online https://static.rainfocus.com/vmware/
vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/
SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf.

[66] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. 2017. Rethink-
ing TLB Designs in Virtualized Environments: A Very Large Part-of-Memory
TLB. In Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17). Toronto, ON, Canada, 469ś480. https://doi.org/10.1145/
3079856.3080210

[67] Amazon Web Services. 2020. Amazon EC2 Instance Types. Online https://
aws.amazon.com/ec2/instance-types/.

[68] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. 2020.
Elastic Cuckoo Page Tables: Rethinking Virtual Memory Translation for Paral-
lelism. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’20). Lau-
sanne, Switzerland, 1093ś1108. https://doi.org/10.1145/3373376.3378493

[69] Vijayaraghavan Soundararajan, Mark Heinrich, Ben Verghese, Kourosh Ghara-
chorloo, Anoop Gupta, and John Hennessy. 1998. Flexible Use of Memory for
Replication/Migration in Cache-Coherent DSM Multiprocessors. In Proceedings
of the 25th Annual International Symposium on Computer Architecture (ISCA ’98).
Barcelona, Spain, 342ś355. https://doi.org/10.1145/279358.279403

[70] Indira Subramanian, Cliff Mather, Kurt Peterson, and Balakrishna Raghunath.
1998. Implementation of Multiple Pagesize Support in HP-UX. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference (ATEC ’98). New
Orleans, Louisiana.

[71] Oracle Support. 2019. Enable Oracle NUMA support with Oracle Server. Online
https://support.oracle.com/knowledge/Oracle%20Cloud/864633_1.html.

209

https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/MM.2016.10
https://doi.org/10.1109/MM.2016.10
https://www.usenix.org/node/183962
https://www.usenix.org/node/183962
https://doi.org/10.1145/1375634.1375641
https://doi.org/10.1145/1375634.1375641
https://doi.org/10.1145/2731186.2731187
https://doi.org/10.1109/ISCA45697.2020.00078
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/3173162.3173194
http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle
https://doi.org/10.1145/3079856.3080245
https://doi.org/10.1145/3079856.3080245
https://doi.org/10.1145/2749469.2749471
https://www.greenhousedata.com/blog/dont-turn-numa-numa-yay-into-numa-numa-nay-checking-virtual-machine-numa
https://www.greenhousedata.com/blog/dont-turn-numa-numa-yay-into-numa-numa-nay-checking-virtual-machine-numa
https://doi.org/10.1145/3139645.3139659
https://doi.org/10.1145/3139645.3139659
https://www.varonis.com/blog/sql-server-best-practices-part-configuration/
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1145/3352460.3358294
https://www.cs.virginia.edu/stream/
https://memcached.org
https://doi.org/10.1145/2892242.2892258
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://doi.org/10.1109/INFOCOM.2019.8737548
https://www.usenix.org/conference/osdi-02/practical-transparent-operating-system-support-superpages
https://www.usenix.org/conference/osdi-02/practical-transparent-operating-system-support-superpages
https://docs.oracle.com/cd/E37838_01/html/E61059/lgroups-32.html
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/2967360.2967371
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1109/MICRO.2012.32
https://github.com/mitosis-project/mitosis-linux/
https://github.com/mitosis-project/mitosis-linux/
https://doi.org/10.1145/1995896.1995911
http://redis.io/topics/latency
http://redis.io/topics/latency
https://redis.io
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://doi.org/10.1145/3079856.3080210
https://doi.org/10.1145/3079856.3080210
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/279358.279403
https://support.oracle.com/knowledge/Oracle%20Cloud/864633_1.html

Fast Local Page-Tables for Virtualized NUMA Servers with vMitosis ASPLOS ’21, April 19ś23, 2021, Virtual, USA

[72] Andrew Theurer. 2012. KVM and Big VMs. Online https://www.linux-kvm.org/
images/5/55/2012-forum-Andrew-Theurer-Big-SMP-VMs.pdf.

[73] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014. XS-
Bench - The Development and Verification of a Performance Abstraction for
Monte Carlo Reactor Analysis. In PHYSOR 2014 - The Role of Reactor Physics toward
a Sustainable Future. Kyoto. https://www.mcs.anl.gov/papers/P5064-0114.pdf

[74] Rik van Riel and Vinod Chegu. 2014. Automatic NUMA Balancing. Online
https://www.linux-kvm.org/images/7/75/01x07b-NumaAutobalancing.pdf.

[75] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. 1996. Operat-
ing System Support for Improving Data Locality on CC-NUMA Compute Servers.
In Proceedings of the Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS VII). Cambridge,
Massachusetts, USA, 279ś289. https://doi.org/10.1145/237090.237205

[76] Carl A. Waldspurger. 2002. Memory Resource Management in VMware ESX
Server. In 5th Symposium on Operating System Design and Implementation (OSDI

2002), Boston, Massachusetts, USA, December 9-11, 2002. http://www.usenix.org/
events/osdi02/tech/waldspurger.html

[77] Mitosis workload BTree. 2019. Open Source Code Repository. https://github.com/
mitosis-project/mitosis-workload-btree.

[78] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble
Page Management for Tiered Memory Systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Providence,
RI, USA, 331ś345. https://doi.org/10.1145/3297858.3304024

[79] Weixi Zhu, Alan L. Cox, and Scott Rixner. 2020. A Comprehensive Analysis of Su-
perpage Management Mechanisms and Policies. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 829ś842. https://www.usenix.org/conference/
atc20/presentation/zhu-weixi

210

https://www.linux-kvm.org/images/5/55/2012-forum-Andrew-Theurer-Big-SMP-VMs.pdf
https://www.linux-kvm.org/images/5/55/2012-forum-Andrew-Theurer-Big-SMP-VMs.pdf
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://www.linux-kvm.org/images/7/75/01x07b-NumaAutobalancing.pdf
https://doi.org/10.1145/237090.237205
http://www.usenix.org/events/osdi02/tech/waldspurger.html
http://www.usenix.org/events/osdi02/tech/waldspurger.html
https://github.com/mitosis-project/mitosis-workload-btree
https://github.com/mitosis-project/mitosis-workload-btree
https://doi.org/10.1145/3297858.3304024
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi

	Abstract
	1 Introduction
	2 Analysis of 2D page-table placement
	2.1 Analysis of Thin Workloads
	2.2 Analysis of Wide Workloads

	3 Design and implementation
	3.1 vMitosis: Design Overview
	3.2 vMitosis: Page-Table Migration
	3.3 vMitosis: Page-Table Replication
	3.4 Deploying vMitosis

	4 Evaluation
	4.1 Evaluation with Page-Table Migration
	4.2 Evaluation with Page-Table Replication
	4.3 Replication vs. Migration of Page-Tables
	4.4 Memory and Runtime Overheads
	4.5 Summary of Results

	5 Discussion
	5.1 Large Pages
	5.2 Shadow Page-Tables

	6 Related work
	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experimental Workflow
	A.6 Evaluation and Expected Results

	References

