Synthesizing Device Drivers with Ghost Writer

Bingyao Wang
University of British Columbia
Vancouver, Canada
bingyao@cs.ubc.ca

Reto Achermann
University of British Columbia
Vancouver, Canada
achreto@cs.ubc.ca

Abstract

Device drivers are components that enable operating systems
to interact with devices. Unfortunately, they are the main
source of bugs in operating systems, because writing a driver
is an intricate and error-prone process that requires exten-
sive knowledge of devices and operating systems. Further-
more, supporting new devices and accommodating kernel
revisions require significant development effort. To facilitate
the development of device drivers, we present Ghost Writer,
an end-to-end toolchain that allows developers to synthe-
size correct-by-construction device drivers from high-level
specifications. Ghost Writer supports control and data plane
operations (e.g., handling DMA transactions). It makes syn-
thesis tractable by 1) modeling the device interface as a set
of virtual registers that abstract the hardware details and
2) leveraging behavior trees to model operations on virtual
registers and synthesize complex operations from simpler
ones. Our prototype can synthesize putc for the PL011 UART
device and send_packet for the VirtIO network device. We
believe that Ghost Writer can be the foundation towards au-
tomating the development of correct-by-construction device
drivers.

CCS Concepts: « Software and its engineering — Oper-
ating systems; Automatic programming.

ACM Reference Format:

Bingyao Wang, Sepehr Noorafshan, Reto Achermann, and Margo
Seltzer. 2023. Synthesizing Device Drivers with Ghost Writer. In
12th Workshop on Programming Languages and Operating Systems
(PLOS °23), October 23, 2023, Koblenz, Germany. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3623759.3624545

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLOS °23, October 23, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0404-8/23/10.
https://doi.org/10.1145/3623759.3624545

Sepehr Noorafshan
University of British Columbia
Vancouver, Canada
snoora@cs.ubc.ca

Margo Seltzer
University of British Columbia
Vancouver, Canada

mseltzer@cs.ubc.ca
Device [
Manual Q

@ AR
el IO \gﬁ

Kernel E Interpretation Programming
Reference Errors Errors

Figure 1. Illustration of the burdensome and error-prone
process of developing device drivers for a particular operat-
ing system.

1 Introduction

Modern computers can support numerous devices, such as
GPUs, SSDs, and Wi-Fi cards, each of which requires a driver.
Device drivers are the interface between the operating sys-
tem and devices, enabling a seamless exchange of commands
and data; they are crucial components and comprise most of
the operating system code [19].

However, device drivers are difficult and tedious to write.
Developers need to understand the device manual, the pro-
tocol specification, and the kernel APIs as shown in Figure 1;
otherwise, they might misconfigure the device [20], violate
the protocol [2], or introduce performance bugs [28]. Since
most drivers run in kernel space, a faulty driver makes a
system vulnerable [12, 32]. As such, researchers have pro-
posed various techniques to isolate drivers [22] and tolerate
faults in them [27]. Commodity operating system vendors,
such as Apple, have moved certain drivers, such as Ethernet
and USB, to user space [3]. Unfortunately, none of these ap-
proaches eliminates the vast number of bugs found in device
drivers [6].

Device drivers are tightly coupled with a particular oper-
ating system, since they rely on kernel functions and pro-
gramming models such as physical memory allocators and
synchronization primitives [16]. Therefore, porting a driver
from one operating system to another requires either a sig-
nificant rewrite or a compatibility layer that emulates the
source operating system’s APIs [14]. However, emulation
comes at the cost of performance and maintenance effort.
The ported driver might use the target operating system’s
APIs in a suboptimal way as shown in Figure 2. Moreover,
since operating systems’ APIs are not stable, developers need

https://orcid.org/0000-0002-0367-5615
https://orcid.org/0009-0000-0927-1665
https://orcid.org/0000-0003-3263-7236
https://orcid.org/0000-0002-2165-4658
https://doi.org/10.1145/3623759.3624545
https://doi.org/10.1145/3623759.3624545

PLOS ’23, October 23, 2023, Koblenz, Germany

void* kzalloc(size_t size, gfp_t flags)

return IOMallocZero(size);

Figure 2. A naive emulation of Linux’s kzalloc() us-
ing IOMallocZero() on macOS. The implementation ig-
nores the second argument, flags, which specifies the
type of memory to allocate. If the ported driver in-
tends to allocate memory for DMA transactions, it should
use I0BufferMemoryDescriptor to avoid creating bounce
buffers [4].

Hardware Community Third Party

Vendors Developers Developers

> g g e &

Linux Copy-Paste FreeBSD Misused macOS
Driver Errors Drivers KPIs Drivers

Figure 3. Illustration of the dependency chain caused by
porting device drivers to multiple operating systems.

to keep the compatibility layer up to date to support new
kernels while ensuring backward compatibility.

Practically speaking, device driver developers often treat
Linux drivers as reference implementations, because official
device manuals are not always available. If that reference
driver is buggy, ported ones likely inherit the bugs. Addition-
ally, developers need to keep track of upstream changes and,
if necessary, integrate them into the ported driver, which
creates a long dependency chain shown in Figure 3.

To facilitate writing and porting device drivers, we intro-
duce Ghost Writer, an end-to-end toolchain that transforms
a high-level device specification into a C, C++, or Rust driver
implementation. Ghost Writer leverages a novel device dri-
ver synthesis technique based on behavior trees (Section 3).
Its user-guided search algorithm exploits the layered archi-
tecture present in modern device drivers and synthesizes
drivers hierarchically (Section 4.1). This approach decouples
the semantics of high-level device operations from their im-
plementation and enables search space reductions that make
the synthesis process efficient (Section 4.2).

Our prototype, while not yet feature complete, provides
preliminary evidence about the feasibility of the approach
and is already capable of synthesizing simple driver func-
tions (e.g., transmitting a character over a UART) and DMA
transactions (e.g., sending a network packet over a VirtIO
network card). Ghost Writer provides the foundation for the
next steps toward automating the development of correct-
by-construction device drivers (Section 5).

2 Background

A behavior tree is a mathematical model of task planning
based on observations in a system [10]. They are widely used

Wang, et al.

Root Node
Sequence Node
Fallback Node

Parallel Node

Condition Node

a>b) |RE=a RE=b Action Node

a<=b

Figure 4. lllustration of a behavior tree in standard notation,
which can be used to write the maximum of two numbers, a
and b, to the register RE.

in video game development to model the behavior of non-
player characters [18] and in robotics to control robots in a
dynamic environment [23]. Behavior trees have been shown
to generalize traditional control structures such as finite
state machines, hierarchical state machines, and decision
trees [8]. However, their key strength is enabling hierarchical
construction of complex tasks from simple ones.

A behavior tree is composed of four types of nodes: 1) A
single root node denotes the entry point of a behavior tree
and has exactly one child. 2) Control flow nodes are internal
nodes that define an execution policy for their children, such
as sequence, fallback, and parallel. 3) Execution nodes are
leaf nodes that perform operations: condition nodes eval-
uate predicates, while action nodes execute user-defined
instructions. 4) Decorator nodes have a single child and de-
fine custom behaviors, such as loops and negation. Figure 4
shows a behavior tree that models computing the maximum
of two numbers and writing the result to a register.

Execution in behavior trees resembles function calls. When
a behavior tree is executed, the root node invokes its child,
which then executes and returns success if the execution
succeeds or failure otherwise. Control flow nodes use the
status a child returns to determine whether to execute the
next child. Specifically, a sequence node executes its children
in turn and immediately returns failure if a child fails (i.e.,
it implements a logical AND of all its children). A fallback
node is similar to a sequence node but immediately returns
success as soon as any child succeeds and returns failure
only if no child succeeds (i.e., it implements a short-circuit
OR among its children). A parallel node runs all its chil-
dren in parallel and returns success if a developer-specified
number of its children succeed.

3 Ghost Writer

Ghost Writer (Figure 5) is composed of three components:
specifications, a synthesizer, and a code generator. To illus-
trate how these components interact, we synthesize putc(char
ch) for the PrimeCell UART PLO011 [5] as a running example.

Synthesizing Device Drivers with Ghost Writer

Driver function
to be synthesized

E* Device
Specification Goal
Registers, Shared Conditions

Memory, Interrupts

: Poevi .
5 g Device Class] @ Synthess
: Specification Engine

: Protocol-level

i Interfaces and Helpers

glﬂﬁ os
Specification

Behavior Trees
Kernel APIs and as Intermediate !
Programming Model Representations

F
[«
<
C++ O
<

</>
Generate source code

from synthesized
Behavior Trees

o o8 Code
| %=J Generator
Construct the Behavior '

Tree that can satisfy the |
goal conditions i

Figure 5. [llustration of interactions between Ghost Writer
components while synthesizing a driver function.

3.1 Specifications

Ghost Writer uses three different types of specifications: a
device specification, which describes a device’s behavior,
a device class specification, which describes the behavior
common to all devices in a particular category (e.g., UART),
and an operating system specification, which describes
the kernel programming interface. Ideally, these specifica-
tions are provided by the device vendors, the standards or-
ganizations, and the operating system vendors respectively.

3.1.1 Device Specifications. A device specification spec-
ifies the device interface and is composed of two parts: a
register definition file and a behavior definition file.

The register definition file defines a set of virtual regis-
ters, which represent device registers, individual bitfields,
and in-memory data structures. Each virtual register has
a single responsibility and a limited set of possible values.
The top half of Figure 6 defines two registers, UARTDR and
UARTFR, which expose ten virtual registers. UARTDR stores
the character to be transmitted and exposes itself as a virtual
register. UARTFR stores the device status and exposes each of
its bitfields as a virtual register.

The behavior definition file specifies the operations on vir-
tual registers as primitive action nodes, such as read, write,
and wait. Primitive action nodes provide the synthesizer
with a unified interface for accessing device registers and in-
memory data structures. The bottom half of Figure 6 defines
the write operation on UARTDR and the wait operation on
UARTFR.BUSY. The device can transmit a character only if it
is not busy transmitting data. We specify this behavior using
a precondition (Section 4.2.2), which indicates that the value
of the bitfield BUSY must be zero before the driver writes
a character to UARTDR. The driver uses the wait action on
BUSY to wait until the device is no longer busy. Once the
driver has written the character to UARTDR, the device trans-
mits the character. We use a postcondition (Section 4.2.2),
UARTCharTransmitted, to indicate that the character has
been transmitted.

PLOS ’23, October 23, 2023, Koblenz, Germany

// Register Definition File
registers MMIO

{
// Define the 8-bit data register at 0x000
register rw UARTDR: UInt8 @ 0x000;
// Define the 16-bit flag register at 0x018
register ro UARTFR: LittleUIntl6 @ 0x018
{
// Bits 9:15 are reserved
bitfield ro CTS @ 0:0;
bitfield ro DSR @ 1:1;
bitfield ro DCD @ 2:2;
bitfield ro BUSY @ 3:3;
bitfield ro RXFE @ 4:4;
bitfield ro TXFF @ 5:5;
bitfield ro RXFF @ 6:6;
bitfield ro TXFE @ 7:7;
bitfield ro RI @ 8:8;
b
b

// Behavior Definition File
WriteRegister(MMIO.UARTDR, value)

- Preconditions: MMIO.UARTFR.BUSY == 0

- Postconditions: UARTCharTransmitted(value)

WailtForRegister (MMIO.UARTFR.BUSY, 0)
- Postconditions: MMIO.UARTFR.BUSY == 0

Figure 6. A simplified device specification for the PL011.
Note that the concepts of virtual registers and behavior trees
are independent of the specification syntax.

3.1.2 Device Class Specifications. A device class spec-
ification is similar to a device specification but defines vir-
tual registers and primitive action nodes common to devices
belonging to a particular category. Additionally, it may de-
fine predicates that can be used in pre- and post-conditions.
These predicates connect the device to the operating system
without exposing device internals. For example, all UART
devices [11], including the PL011, support transmitting char-
acters. Thus, the UART device class specification defines the
predicate UARTCharTransmitted, which acknowledges op-
erating system requests while hiding how a particular device
transmits data.

3.1.3 Operating System Specifications. An operating
system specification describes the interface to kernel service
routines, such as physical memory allocators and timers,
and the interface the driver must implement. For exam-
ple, all UART device drivers must implement the interface
putc(char ch) that the operating system uses to trans-
mit a character while remaining unaware of how the driver
satisfies the request. As such, putc has a postcondition of
UARTCharTransmitted(ch) as shown in Figure 7. This guar-
antees that the character ch has been transmitted after the
function returns.

PLOS ’23, October 23, 2023, Koblenz, Germany

// Operating System Specification
putc(char ch)
- Postconditions: UARTCharTransmitted(ch)

Figure 7. Specification of the interface putc that a UART
driver must implement.

P1 | Collect the set of primitive action nodes

Legends: Action Node Precondition Node [:] Postcondition Node

,---| MMIO.UARTFR.BUSY == 0
WriteRegister
(MMIO.UARTDR, value)

- —[UARTCharTransmitted(value)](-\

(MMIngﬁ:?g:?JSY ol [MMIO.UARTFR.BUSY ==] matches

P2| Define the driver function to be synthesized

putc(ch) F------ [UARTCharTransmitted(ch)]— -

P3| Resolve the postcondition: UARTCharTransmitted(ch)

___ New precondition _ __
to be resolved
WriteRegister

] '
' '
' — '
: MMIO.UARTFR.BUSY == 0 ; (MMIO.UARTDR, ch)

_ Precondition _
resolved by WaitQ

WriteRegister
(MMIO.UARTDR, ch)

MMIO.UARTFR.BUSY ==0 | 1

P5| Generate the implementation of putc() in C++

UARTCharTransmitted(ch)

WaitRegister
(MMIO.UARTFR.BUSY, 0)

void putc(char ch)

while ((LE16ToHost(readRegister16(UARTFR)) & BUSY_MASK) >> BUSY_SHIFT);
writeRegister8(UARTDR, ch);

}

Figure 8. Illustration of the process of synthesizing putc()
for PLO11.

3.2 Synthesizer and Code Generator

Ghost Writer uses behavior trees as intermediate representa-
tions during synthesis and code generation. The synthesizer
is responsible for constructing a behavior tree from prim-
itive action nodes. The code generator then compiles the
synthesized behavior tree to an implementation. Figure 8
depicts an example of this process by synthesizing putc for
the PL011 in C++.

Given a set of primitive action nodes (e.g., write and wait
in P1) and a driver function to be synthesized (e.g., putc in
P2), the synthesizer constructs a behavior tree that represents

Wang, et al.

the function implementation. The synthesizer first finds a
primitive action node that can satisfy the postcondition of
the driver function (P2). It then places the found action node
along with its pre- and post-conditions in the behavior tree
using a sequence node (P3). After that, the synthesizer recur-
sively resolves the preconditions of the found action node
using other primitive action nodes, expanding the behavior
tree until all preconditions are satisfied (P4).

In the PL011 example, the synthesizer finds write (UARTDR)
to satisfy putc’s postcondition. However, this write action
has a precondition that UARTFR.BUSY must be zero, so the
synthesizer finds wait(UARTFR.BUSY) to satisfy that pre-
condition. Since the wait action has no precondition, the
synthesizer finishes constructing the behavior tree. Finally,
the code generator takes the synthesized behavior tree along
with the specification of the target operating system and
generates an implementation in C++ (P5).

Behavior trees exhibit three key characteristics that make
them well-suited for synthesizing device drivers. First, behav-
ior trees differ from abstract syntax trees, which are widely
used in traditional syntax-guided synthesis [1], in that they
do not incorporate programming language specifics within
their structure. This draws a distinct line between the syn-
thesizer that discovers the correct driver logic and the code
generator that ensures correct translation to a driver imple-
mentation. Second, behavior trees are reusable and compos-
able, allowing the synthesizer to synthesize simple driver
functions and use them as building blocks to synthesize
higher-level complex functions (Section 4.1). Third, behavior
trees are expressive and flexible. Existing control flow and
execution nodes are sufficient to model common device and
driver behavior, but when needed, Ghost Writer can cus-
tomize them and introduce new nodes to make the synthesis
more tractable (Section 4.2).

4 Methodology
4.1 User-Guided Hierarchical Synthesis

Modern device drivers have a layered architecture as de-
picted in Figure 9. Developers need to implement the inter-
face required by an upper layer (e.g., block storage) using
the interface provided by a lower layer (e.g., PCle transport).
A well-structured architecture allows developers to reuse as
much code as possible and maintain the driver easily. Ghost
Writer follows the same paradigm: Developers decompose a
driver into multiple layers, specify the interface of each layer,
and use the synthesizer to synthesize the implementation of
each interface. Figure 10 demonstrates a driver decomposed
into N + 1 layers, from layer 0, which provides access to
the device, to layer N, which defines the operating system
interfaces the driver must implement.

The synthesizer uses the primitive action nodes provided
by some layer K where 0 < K < N (1) to construct a be-
havior tree for a function defined in layer K + 1 (2). When

Synthesizing Device Drivers with Ghost Writer

e

' File, VNODE, etc.
Generic
Block Storage Layer
Block 1/0 Requests
Secure Digital
Host Driver
Device-Specific Requests
Secure Digital
Host Controller

[1 osProvided

Dev Provided

Kernel APIs

Layer N Timers, Memory, etc.

Layer 1
Register Accesses

Up
Calls
Layer 0 Transport Layer \In.terrupts,
Timeouts,

' Bus-Specific Requests Asynchronous

Notifications
PCle Bus
USB Host Controller

Figure 9. Illustration of a conventional driver stack. Devel-
opers use the APIs provided by the transport layer to access
the Secure Digital (SD) host controller device and implement
the block storage interface for an SD card reader.

K is zero, the primitive action nodes are imported from the
device and the device class specifications. After synthesizing
all the functions in layer K + 1, the synthesizer uses them
as primitive action nodes (3) to construct behavior trees for
layer K +2 (4). To expose a behavior tree as a primitive action
node, we encapsulate it into an Action View node, which can
be associated with specialization constraints, preconditions,
and postconditions (Section 4.2.3). Additionally, the synthe-
sizer only needs the interface of each primitive action node
during synthesis, allowing developers to synthesize multi-
ple layers in parallel. Our hierarchical synthesis approach
makes it possible to synthesize individual driver functions
efficiently and at scale.

4.2 Constrained Search Space

One major challenge in program synthesis is the combina-
torial explosion of the search space [9]. In our design, the
search space is the set of all behavior trees that can be as-
sembled from primitive action nodes. Since validating all
the possible candidate behavior trees is neither practical
nor efficient, we prune the search space by 1) using virtual
registers to model the device interface while leaving the im-
plementation of their access methods to the code generator
(Section 4.2.1), 2) leveraging behavior trees to model driver
operations instead of transitions between driver states (Sec-
tion 4.2.2), and 3) extending behavior trees with new sets
of predicates to impose additional constraints on the search
space (Section 4.2.3).

4.2.1 Modeling Device Interfaces. Device drivers inter-
act with devices through registers, shared memory regions,
and hardware interrupts. Hardware vendors tend to make

PLOS ’23, October 23, 2023, Koblenz, Germany

[doAsyncReadWrite J
« »

) M .
read \(% write
Y

Repeat Until 7
‘ Finished Synthesizing ‘
AT Required OS Interfaces ‘

Synthesize Behavior Trees
From Layer0's T 3
Building Blocks I

Layer N

Layer 1 , T ‘

Layer 0 { j/ .

Figure 10. [llustration of a driver synthesis stack that resem-
bles the conventional driver stack. The synthesizer uses the
primitive action nodes provided by a lower layer to synthe-
size functions defined in an upper layer.

Collect Primitive
Behavior Trees Y 1
As Initial Building Blocks ¥

these interfaces as compact as possible, so it is common that a
single device register serves multiple purposes. Additionally,
these interfaces encompass hardware implementation de-
tails, such as endianness, width, and access mode, which the
driver must handle. For example, the PL011 driver can query
the device status by reading UARTFR’s value and examining
its individual bits. Checking a particular bit involves four
operations: a register read, a byte order conversion, a bit-
wise AND, and a right shift. Synthesizing the access method
using these four operations would introduce unnecessary
implementation details to the search space. Instead, we want
the synthesizer to focus on the value of each bit. Thus, the
synthesizer generates device driver functionality in terms
of primitive actions on virtual registers, while the code gen-
erator implements the primitive actions with respect to the
register definition file (Section 3.1.1).

4.2.2 Leveraging Behavior Tree. Recall that behavior
trees generalize finite state machines (Section 2). Modeling
the device driver as a finite state machine requires all states
and transitions to be defined explicitly. Each state captures a
combination of values for all virtual registers, so the synthe-
sizer must explore all possible sequences of transitions from
the initial state to the goal state. In the PL011 example, a
state machine would consist of 512 states for the nine virtual
registers that comprise UARTFR, half of which have the BUSY
bit set to 1. To make a transition to a state where BUSY is 0,
the synthesizer would need to consider up to 65536 possibil-
ities. In contrast, behavior trees emphasize actions instead
of states, so the synthesizer considers only the action nodes
that affect the virtual registers involved in a particular opera-
tion. When we apply this to the PL011, the synthesizer must

PLOS ’23, October 23, 2023, Koblenz, Germany

establish the precondition that the device is not busy before
transmitting a character; it is interested in the value of the
BUSY virtual register only. The synthesizer then searches
among the three primitive action nodes (i.e., read, write, and
wait) that reference the BUSY virtual register and finds the
wait action node that it can use to wait until BUSY becomes
Zero.

4.2.3 Extending Behavior Trees. To further reduce the
search space, we associate action nodes with three different
sets of predicates: specialization constraints, preconditions,
and postconditions. A specialization constraint imposes con-
straints on the type of value an action node can write to a
virtual register, similar to C++20’s concepts [25] or Rust’s
type traits [21]. For example, all physical memory addresses
written to ADDR must be aligned to a 4096-byte boundary.
We express this requirement in the type specification of the
physical memory address. A specialization constraint can
also impose constraints on the access mode of the virtual
register that an action node references. For example, the
write action node can be used on virtual registers that are
writable, whereas wait can only be used on read-only virtual
registers.

Recall that the synthesizer needs to recursively resolve
a precondition using other primitive action nodes when
constructing a behavior tree (Section 3.2). The synthesizer
starts with a subset of developer-specified primitive action
nodes whose postcondition matches the precondition be-
ing resolved. The synthesizer will discard a primitive action
node if it cannot satisfy the node’s specialization constraints
and will not place the node in the behavior tree if it cannot
resolve the node’s preconditions. As such, the synthesizer ex-
cludes all the behavior trees containing this particular action
node from the search space.

5 Current Status and Next Steps

Our prototype can handle control plane operations and has
preliminary support for manipulating in-memory data struc-
tures and handling DMA transactions. Our register definition
language also allows specification writers to describe rela-
tionships, such as grouping and ordering, between registers.
While we demonstrated that it is feasible to synthesize de-
vice drivers using behavior trees, we now highlight some
key challenges and discuss potential strategies to address
them.

Obtaining Specifications. Ghost Writer’s effectiveness
depends on the quality of the specifications provided by var-
ious vendors. Writing these specifications could be as chal-
lenging as writing the driver code, but it is a one-time effort,
because our toolchain can use the same device specification
to synthesize device drivers for multiple operating systems.
Besides, hardware vendors, such as ARM, have begun to
release machine-readable and executable specifications for
their CPUs and ISAs [26]. These specifications enable the

Wang, et al.

verification of programs, compilers, and operating systems.
Similarly, drivers can benefit from the device specifications
released by vendors.

Modeling Standardized High-Level Protocols. Devices
might expose a high-level, standardized command interface
instead of registers. For example, NVMe SSDs support the
DEALLOCATE command [13], which the driver uses to in-
form the device about logical blocks the operating system
no longer needs. We can potentially expand the device class
specification to model such high-level commands using be-
havior trees.

Modeling Kernel APIs. The compatibility layer in ported
device drivers suggests a common set of kernel interfaces
that drivers use. We believe that it is possible to standardize
these interfaces, similarly to how POSIX standardized OS
APIs, and model them as behavior trees, allowing the syn-
thesizer to be agnostic to the kernel implementation. The
operating system specification defines the mapping between
the standardized interfaces and the kernel APIs, which can
be used to translate the usage of kernel services without
introducing a compatibility layer.

Modeling Data Processing. Device drivers can process
data while handling I/O requests [19]. For example, an ether-
net driver might need to calculate the checksum of a packet,
while an audio driver might need to process the audio stream
before sending it to the audio card. We can potentially model
the data processing pipeline in the driver as a sequence of
primitive transformers, each of which does some calculation
on the data and passes the transformed data to the next one.

Dealing with Complex Devices. A complex device can
be viewed as a collection of logical units with well-defined in-
terfaces. For example, a conventional GPU has units that are
responsible for rendering (e.g., managing framebuffers), ac-
celeration (e.g., decoding HEVC streams), handling displays
(e.g., performing link training for DisplayPort), etc. Each unit
can access only a subset of the device interfaces, which limits
the scope of the synthesis. The synthesizer treats each unit
as an independent mini device, synthesizes a mini driver for
each mini device, and assembles the complete driver from
the mini drivers. We envision that this divider-and-conquer
technique will be effective for handling complex devices.

Generating Optimized Code. Currently, the synthesizer
focuses on finding the correct steps to accomplish the goal
of a driver function, and the code generator translates the
synthesized tree into an implementation. However, the syn-
thesized tree can be further optimized to exploit hardware
implementation details. For example, a sequence node with
writes to multiple virtual registers representing different bits
of the same physical register can be replaced by a single
write action node. We envision adding an optimizer between
the synthesizer and the code generator to perform such opti-
mizations.

Supporting Memory Consistency Models. The syn-
thesizer is unaware of the memory consistency model and

Synthesizing Device Drivers with Ghost Writer

assumes that every write to a virtual register is visible to
the device immediately. To ensure that the driver implemen-
tation is correct with respect to the memory consistency
model, we envision adding a secondary synthesizer that
is only concerned with finding the correct places to insert
memory barriers.

Dealing with Concurrency. The current prototype as-
sumes all driver functions are non-reentrant and will be exe-
cuted in a single-threaded environment. There are two main
concurrent scenarios in device drivers. First, the kernel might
have multiple threads that invoke the same driver function,
whereas the device can handle one I/O request at a time. As
such, it is the driver’s responsibility to coordinate requests
submitted by each thread and serialize the access to the de-
vice. Second, the device might provide a mechanism (e.g., a
circular queue) that handles I/O requests asynchronously.
In this case, the driver must not overwrite the request that
has not yet been processed. We plan to encapsulate common
concurrent scenarios as behavior tree templates and letting
the synthesizer fill in the missing pieces.

Handling Errors. Device drivers must be able to handle
failures and notify the kernel accordingly. Currently, the
synthesizer assumes that all nodes will return success when
constructing behavior trees. However, it can use a fallback
node to bind a node that could fail to an error-handling node.
The error-handling node can return success if the driver
function should resume execution after recovering from er-
rors or failure if the execution should abort. We envision
extending behavior trees for the synthesizer to generate
meaningful and flexible error handlers.

6 Related Work

Device driver generation and synthesis has been an active
research area for years. We discuss how Ghost Writer draws
on prior work in these areas and how video games and robot-
ics communities synthesize behavior trees, highlighting the
potential applications of their methodology in our design.

6.1 Device Driver Generation and Synthesis

Early device driver synthesis work focused on embedded mi-
crocontrollers, which have a limited set of interfaces and run
bare metal or specific real-time operating systems [24, 35].
Since these approaches do not draw a distinction between
the device interface and the kernel interface, developers must
specify complete driver behavior for each device. Chen et al.
overcome this drawback with a model-driven approach to
generating drivers for multiple operating systems [7]. While
they can automatically generate about 70% of driver code,
on average, their approach requires developers to specify
correct register programming sequences. In contrast, Ghost
Writer generates this sequence from device specifications.
Modern device driver synthesis targets more complex de-
vices and general-purpose operating systems. Termite [29]

PLOS ’23, October 23, 2023, Koblenz, Germany

and Termite 2 [30] model both devices and operating systems
as finite-state machines and synthesize drivers using a game
theoretic algorithm. Their algorithm recursively computes
all states reachable from the goal state after a single transi-
tion and suffers from state space explosion for devices with
many states. More importantly, device drivers are not lim-
ited to translating operating system requests into a series of
device-specific commands; some perform complex computa-
tions that cannot be modeled as simple state machines [19].
Neither Termite nor Termite 2 supports manipulating in-
memory data structures and allocating memory, while Ghost
Writer overcomes these drawbacks using virtual registers
and behavior trees.

6.2 Behavior Tree Synthesis in Games and Robotics

The video games and the robotics communities proposed
different approaches for synthesizing behavior trees, because
constructing them from scratch is burdensome and error-
prone. These approaches leverage traditional program syn-
thesis techniques with a focus on reactivity and safety in a
highly dynamic environment [17]. For example, Trained Be-
havior Tree [31] exploits the idea of inductive synthesis [36]
and can be used to generate a behavior tree for a non-player
character (NPC) from the traces of the game designer con-
trolling the NPC manually. French et al. [15] present a similar
approach for robots to learn behavior trees from humans’
demonstrations. Scheide et al. [33] leverage both inductive
synthesis and stochastic search [34] to synthesize behavior
trees from a formal grammar that defines the search space
of well-structured behavior trees.

Ghost Writer is motivated by the use of behavior trees in
the video games and the robotics industries, but we focus
on search space reduction and hierarchical behavior tree
construction. Synthesizing drivers directly from traces might
not be feasible, but we imagine deriving device specifications
from the traces and leveraging Ghost Writer to synthesize
the driver. Additionally, we envision using stochastic search
to prune the synthesized behavior trees, thereby reducing
code size and improving runtime performance.

7 Conclusion

We presented a novel approach for synthesizing device dri-
vers in a hierarchical, modular fashion using virtual registers
and behavior trees. Virtual registers enable the decompo-
sition of device interfaces while hiding the hardware im-
plementation details. Behavior trees allow the synthesizer
to reason about operations on individual virtual registers
and assemble complex operations from simpler ones. To the
best of our knowledge, Ghost Writer is the first project that
brings behavior trees to the operating system community
and uses them to model the behavior of an operating system
component. We continue to explore the possibilities enabled
by behavior trees in operating systems.

PLOS ’23, October 23, 2023, Koblenz, Germany

References

(1]

—
[es)
—

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In 2013 Formal Methods in Computer-Aided Design.
1-8. https://doi.org/10.1109/FMCAD.2013.6679385

Anonymous. 2023. Audio cuts with 192 khz 8 channel 16 bit and 24p.
https://gitlab.freedesktop.org/drm/intel/-/issues/8276

Apple. 2023. DriverKit. https://developer.apple.com/documentation/
driverkit

Apple. 2023. IOKit Fundamentals. https://developer.apple.com/
documentation/kernel/iokit_fundamentals/memory

ARM. 2017. PrimeCell UART PL011 Technical Reference Manual.
https://developer.arm.com/documentation/ddi0183/latest/

Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. 2019. Ef-
fective Static Analysis of Concurrency Use-After-Free Bugs in Linux
Device Drivers. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 255-268. https://www.
usenix.org/conference/atc19/presentation/bai

Hui Chen, Guillaume Godet-Bar, Frederic Rousseau, and Frederic
Petrot. 2014. Device driver generation targeting multiple operating
systems using a model-driven methodology. In 2014 25nd IEEE In-
ternational Symposium on Rapid System Prototyping. 30-36. https:
//doi.org/10.1109/RSP.2014.6966689

Michele Colledanchise and Petter Ogren. 2017. How Behavior Trees
Modularize Hybrid Control Systems and Generalize Sequential Be-
havior Compositions, the Subsumption Architecture, and Decision
Trees. IEEE Transactions on Robotics 33, 2 (2017), 372-389. https:
//doi.org/10.1109/TR0.2016.2633567

Wikipedia contributors. 2022. Combinatorial explosion. https://en.
wikipedia.org/wiki/Combinatorial_explosion

Wikipedia contributors. 2023. Behavior tree. https://en.wikipedia.org/
wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
Wikipedia contributors. 2023. UART. https://en.wikipedia.org/wiki/
Universal_asynchronous_receiver-transmitter

National Vulnerability Database. 2022. CVE-2022-32811. https:
//nvd.nist.gov/vuln/detail/CVE-2022-32811
NVM Express. 2022. NVMe Command Set Specifications. https:

//nvmexpress.org/developers/nvme-command-set-specifications/
Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin,
and Olin Shivers. 1997. The Flux OSKit: A Substrate for Kernel and
Language Research. In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles (Saint Malo, France) (SOSP *97). ACM,
New York, NY, USA, 38-51. https://doi.org/10.1145/268998.266642
Kevin French, Shiyu Wu, Tianyang Pan, Zheming Zhou, and
Odest Chadwicke Jenkins. 2019. Learning Behavior Trees From Demon-
stration. In 2019 International Conference on Robotics and Automation
(ICRA). 7791-7797. https://doi.org/10.1109/ICRA.2019.8794104
Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang,
Gang Tan, Trent Jaeger, and Anton Burtsev. 2022. KSplit: Automating
Device Driver Isolation. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 613-631. https://www.usenix.org/conference/osdi22/
presentation/huang-yongzhe

Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ogren, and
Christian Smith. 2022. A survey of Behavior Trees in robotics and
AL Robotics and Autonomous Systems 154 (2022), 104096. https:
//doi.org/10.1016/j.robot.2022.104096

Damian Isla. 2005. GDC 2005 Proceeding: Handling Complexity in the
Halo 2 AL (3 2005). https://www.gamedeveloper.com/programming/
gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
Asim Kadav and Michael M. Swift. 2012. Understanding Modern Device
Drivers. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Wang, et al.

Systems (ASPLOS XVII). ACM, New York, NY, USA, 87-98.
//doi.org/10.1145/2150976.2150987

Roland Kletzing. 2012. MAC 00:00:00:00:00:00 with natsemi DP83815
after driver load. https://bugzilla.kernel.org/show_bug.cgi?id=51791
The Rust Programming Language. 2023. Generic Types, Traits, and
Lifetimes. https://doc.rust-lang.org/book/ch10-00-generics.html
Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev. 2019.
LXDs: Towards Isolation of Kernel Subsystems. In Proceedings of the
2019 USENIX Conference on Usenix Annual Technical Conference (Ren-
ton, WA, USA) (USENIX ATC ’19). USENIX Association, USA, 269-284.
Petter Ogren. 2012. Increasing Modularity of UAV Control Systems using
Computer Game Behavior Trees. https://doi.org/10.2514/6.2012-4458
M. O’Nils, J. Oberg, and A. Jantsch. 1998. Grammar based modelling
and synthesis of device drivers and bus interfaces. In Proceedings.
24th EUROMICRO Conference (Cat. No.98EX204), Vol. 1. 55-58 vol.1.
https://doi.org/10.1109/EURMIC.1998.711776

C++ References. 2023. Constraints and concepts.
cppreference.com/w/cpp/language/constraints
Alastair Reid. 2016. Trustworthy Specifications of ARM® V8-A and v8-
M System Level Architecture. In Proceedings of the 16th Conference on
Formal Methods in Computer-Aided Design (Mountain View, California)
(FMCAD ’16). FMCAD Inc, Austin, Texas, 161-168.

Matthew J. Renzelmann and Michael M. Swift. 2009. Decaf: Moving
Device Drivers to a Modern Language. In Proceedings of the 2009 Con-
ference on USENIX Annual Technical Conference (San Diego, California)
(USENIX’09). USENIX Association, USA, 14.

Cristian Romero. 2017. wlp1s0: Driver has suspect GRO implementa-
tion, TCP performance may be compromised. https://bugs.launchpad.
net/ubuntu/+source/linux/+bug/1664072

Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot
Heiser. 2009. Automatic Device Driver Synthesis with Termite. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (Big Sky, Montana, USA) (SOSP "09). ACM, New York, NY,
USA, 73-86. https://doi.org/10.1145/1629575.1629583

Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun
Raghunath, Michael Stumm, and Mona Vij. 2014. User-Guided Device
Driver Synthesis. In Proceedings of the 11th USENLX Conference on Op-
erating Systems Design and Implementation (Broomfield, CO) (OSDI’14).
USENIX Association, USA, 661-676.

Ismael Sagredo-Olivenza, Pedro Pablo Gémez-Martin, Marco Antonio
Goémez-Martin, and Pedro Antonio Gonzalez-Calero. 2019. Trained
Behavior Trees: Programming by Demonstration to Support Al Game
Designers. IEEE Transactions on Games 11, 1 (2019), 5-14. https:
//doi.org/10.1109/TG.2017.2771831

Takashi Sakamoto. 2022. FireWire: Fix potential use-after-free. https:
//tinyurl.com/linux-firewire-uaf

Emily Scheide, Graeme Best, and Geoffrey A. Hollinger. 2021. Behavior
Tree Learning for Robotic Task Planning through Monte Carlo DAG
Search over a Formal Grammar. In 2021 IEEE International Conference
on Robotics and Automation (ICRA). 4837-4843. https://doi.org/10.
1109/ICRA48506.2021.9561027

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Su-
peroptimization. In Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS °13). ACM, New York, NY, USA, 305-316.
https://doi.org/10.1145/2451116.2451150

Shaojie Wang, S. Malik, and R.A. Bergamaschi. 2003. Modeling and
integration of peripheral devices in embedded systems. In 2003 Design,
Automation and Test in Europe Conference and Exhibition. 136-141.
https://doi.org/10.1109/DATE.2003.1253599

Patrick H Winston. 1970. Learning structural descriptions from exam-
ples. (1970).

https:

https://en.

https://doi.org/10.1109/FMCAD.2013.6679385
https://gitlab.freedesktop.org/drm/intel/-/issues/8276
https://developer.apple.com/documentation/driverkit
https://developer.apple.com/documentation/driverkit
https://developer.apple.com/documentation/kernel/iokit_fundamentals/memory
https://developer.apple.com/documentation/kernel/iokit_fundamentals/memory
https://developer.arm.com/documentation/ddi0183/latest/
https://www.usenix.org/conference/atc19/presentation/bai
https://www.usenix.org/conference/atc19/presentation/bai
https://doi.org/10.1109/RSP.2014.6966689
https://doi.org/10.1109/RSP.2014.6966689
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1109/TRO.2016.2633567
https://en.wikipedia.org/wiki/Combinatorial_explosion
https://en.wikipedia.org/wiki/Combinatorial_explosion
https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://nvd.nist.gov/vuln/detail/CVE-2022-32811
https://nvd.nist.gov/vuln/detail/CVE-2022-32811
https://nvmexpress.org/developers/nvme-command-set-specifications/
https://nvmexpress.org/developers/nvme-command-set-specifications/
https://doi.org/10.1145/268998.266642
https://doi.org/10.1109/ICRA.2019.8794104
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe
https://doi.org/10.1016/j.robot.2022.104096
https://doi.org/10.1016/j.robot.2022.104096
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://doi.org/10.1145/2150976.2150987
https://doi.org/10.1145/2150976.2150987
https://bugzilla.kernel.org/show_bug.cgi?id=51791
https://doc.rust-lang.org/book/ch10-00-generics.html
https://doi.org/10.2514/6.2012-4458
https://doi.org/10.1109/EURMIC.1998.711776
https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/language/constraints
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1664072
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1664072
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.1109/TG.2017.2771831
https://doi.org/10.1109/TG.2017.2771831
https://tinyurl.com/linux-firewire-uaf
https://tinyurl.com/linux-firewire-uaf
https://doi.org/10.1109/ICRA48506.2021.9561027
https://doi.org/10.1109/ICRA48506.2021.9561027
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1109/DATE.2003.1253599

	Abstract
	1 Introduction
	2 Background
	3 Ghost Writer
	3.1 Specifications
	3.2 Synthesizer and Code Generator

	4 Methodology
	4.1 User-Guided Hierarchical Synthesis
	4.2 Constrained Search Space

	5 Current Status and Next Steps
	6 Related Work
	6.1 Device Driver Generation and Synthesis
	6.2 Behavior Tree Synthesis in Games and Robotics

	7 Conclusion
	References

