Mitosis
Transparent Self-Replicating Page
Tables

Reto Achermann

VMware Research Group

Summer 2018

Reto Achermann?'?, Jayneel Gandhi?, Timothy Roscoe?, Abhishek Bhattacharjee?
'VMware Research Group, 2ETH Zurich, 3Rutgers University RESEARCH Mitosis

WVITWare

ETH:zurich

VImY

Ware
RESEARCH

Page table walks can account for a large fraction of the runtime
Non-uniform memory access (NUMA) effects increase page walk time

Mitosis: reduce NUMA effects on page table walks through page table
replication

Up to 3.4x improvement over worst case scenario
Up to 15% improvement on multi-threaded workloads

Without program modifications

Target Hardware Configuration: Big Memory Machines

128 GB 128 GB

Bandwidth & capacity limited per processor socket

= More bandwidth & capacity <~ Multi-socket
Xeon E7v3 Xeon E7v3 machines

128 GB 128 GB

Host: vrg-10 / vrg-11
4x14x2 CPU E7-4850 v3 @ 2.20GHz
512 GB RAM

= Up to 16 sockets possible max. 24TB RAM

Big Memory Machine Characteristics

128 GB 128 GB

About half the bandwidth
and double the latency to
Xeon E7 v3 Xe\’ v3
remote node

128 GB 128°GB

Host: vrg-10 / vrg-11
4x14x2 CPU E7-4850 v @ 2.20GHz
512 GB RAM

Xeon® 7 v3

Smelt (OSDI’16)

175(
-150(
r125(

r100(
1750
500
250
()

oo O O

16-socket machines this
can be 1000 cycles latency |

Data Allocation Strategies for NUMA Machines

= Well studied in literature
= Carrefour (Dashti et al)
= Blackbox Concurrent Data Structures (Calciu et al)
= Shoal (Kaestle et al)

= Different policies in the OS (humactl)
= First touch (local allocation)
" |nterleave
= mbind

Focus mainly on
data allocation,

ignore page table
placement

{

Virtual to Physical Address Translation

Processes deal with virtual addresses

0x40000 0x930
47 1211
Virtual Page Number
int my awesome_ function(void)
uint64_t *foo = malloc(4096);
// foo = ©x400008930 LN B On every memory
(MMU) access!
foo[294] = 42;
// 1211
return 0; Physical Frame Number
0x2000 0x930

!

0x2000930

memory knows physical addresses

Translation Lookaside Buffers — Caching Translations since 1965

Each memory access
_ has to be translated!
TLB Hit (fast path)

Virtual Address
0x40000930

TLB Miss (slow path)

47 39 38 30 29 2120 12 11 0

Page Table Root
Pointer

Page table walk

Up to 4 memory accesses

TLB Reach is Limited

Lookup for every memory access!
Fast cache to store the resolved translations. Overlaps L1 cache access.

It’s tiny | RAM capacity is growing faster than TLB capacity

On our machines:

TLB reach: (64+1024)4K /512G =0.008% (4k pages)
(32+1024)2M /512G =0.4% (2M huge pages)

(4+0)1G /512G =0.78% (1G huge pages)

ETH:zurich

How does NUMA affect the page walk time?

10

Micro Benchmark: Effects of Page Table Placements

OS: Modified Linux kernel

. . * Force page table allocation to node O
Xeon E7 v3 Xeon E7 v3

Runtime: use numactl / libnuma to
1. Restrict where the program runs

Xeon E7 v3 Xeon E7 v3

2. Allocate data from a fixed node

128 GB 128 GB

Host: Workload:
4x14x2 CPU E7-4850 v3 @ 2.2GHz * HPCC RandomAccess, 1 Thread, 64G table size
512GB RAM

e Perf to obtain the performance counters

11

Effects of page-table Placements — Base Case: Data & Page Tables Local

HPCC RandomAccess

Xeon E7 v3 _ Xeon E7 v3

i

Normalized Runtime
N

1
X P /3 Xeon E7 v3 I I
0
Local
Local
m Walk Time % of Runtime B Norm. Total Runtime

B Norm. Walk Duration

12

Effects of page-table Placements — Case 1: Data Remote / Page Tables Local

HPCC RandomAccess

Xeon E7 v3 _ Xeon E7 v3

L

Xeon E7 v3

Normalized Runtime
N

P

0
Local Remote
Local Local
m Walk Time % of Runtime B Norm. Total Runtime

B Norm. Walk Duration

13

Effects of page-table Placements — Case 2: Data Local / Page Tables Remote

HPCC RandomAccess

Xeon E7 v3 _ Xeon E7 v3

L

Normalized Runtime
N

1
Xeon E7 v3 Xeon F7v3 I I I I
P 0
Local Remote Local
Local Local Remote
m Walk Time % of Runtime B Norm. Total Runtime

B Norm. Walk Duration

14

Effects of page-table Placements — Case 3: Loaded Page Table Node

HPCC RandomAccess

128 GB 128 GB

Xeon E7 v3 _ Xeon E7 v3

L

Xeon Ead

Normalized Runtime
N

Local Remote Local Local
Local Local Remote Remote
+ Load
m Walk Time % of Runtime B Norm. Total Runtime

B Norm. Walk Duration

15

ETH:zurich

How often happens the page table to be remote?

16

Page table allocation statistics - Multi-threaded Workloads

128 GB

Xeon E7 v3 Xeon E7 v3

Xeon E7 v3

128 GB

How are the page tables allocated ?

How do they change over time?

Methodology:
Let the workload run and dump the page table
every 30s.

Breakdown and diff between two dumps

17

ETH:zurich

$./pagerank hugegraph.bin -nthreads 112

PTablesLevell
PTableslLevel2
PTablesLevel3
PTableslLevel4d
Code2M
Data2M

Datadk

Codedk
NUMACode2M
NUMAData2M
NUMACode4dk
NUMAData4dk

Total Migrationns

44k [11M
71 [24k
1[24

0

(W)
—
1 1 1 1 1
1 1 1 1 1

o B e B e B e B e S e B e B |

3M
3k
84

3M]
4k]

Remote: 62%

(+67,-90)
(40, -0)
(40, -0)
(40, -0)
(40, -0)
(40, -0)

(+47k, -4M)
(40, -0)
(40, -0)
(+0,-9)
(40, -0)

(+4M, -1)

| 24k [1M
| 9@ [11k
| o[o
| o[o
| o[--
| e[--
| om [--
| 439 [--
| o[--
|

I

I

8M 1M 1M]
12k 10k 10Kk]
e o
e o

Local: 20%
Remote: 80%

Page tables don’t move

(+66,-0) | 23k
(+0,-0) | 38
(+0,-0) | 3
(+0,-9) | 1
(+0,-0) | (%}
(+0,-0) | (%}

(+48k, -4M) | oM
(+0, -0) | 176
(+0,-0) | 0
(+0,-0) | o
(+0,-0) | (%}

(+4M,-0) | 4M

[T s T e T e T e B B e B s T s T s B s B |

Local:
Remote: 81%

Remote > # Local

> % Remote!

(+67,-0)
(+9,-9)
(+9,-9)
(+0,-0)
(+9,-9)
(+9,-9)

(+48k, -4M)
(+90,-9)
(+9,-9)
(+0,-0)
(+9,-9)

(+4M,-0)

[IM 1M 1M
[4k 3k 4k
e 0 @
@ o @

L B e Y s T s I s TN s B s B s B s B |
1
1
1
1
1
1

Local: 20%
Remote: 80%

(+64,-9)
(+0,-0)
(+0,-0)
(+0,-0)
(+0,-0)
(+0,-0)

(+48k, -4M)
(+0,-0)
(+0,-0)
(+0,-0)
(+0,-0)

(+4M, -9)

18

ETH:zurich

vmware
RESEARCH

Mitosis — Transparent self-replicating
page tables on Linux / x86

Page Table Replication in a NUMA Machine

Xeon E7 v3

P
73 — Xec

' |r/<|

Xeon E7 v3

The key idea is keep page-tables local

Replication of page tables on each NUMA node
1. Native page tables for processes
2. Extended page tables for virtual machines

Keeping replicas consistent

s [abmaady)
/| S .- «“f
e S L it W
i :.;’fg‘ = 3 / h S
e &L

without sending the Kernel
on an island to deal with iz
the parliament there 20

Mitosis

Use the local Manage and find Keeping page table
replica on the page table replicas replicas consistent
current processor efficiently with each other

221

1) Programming the Translation Base Register (x86: cr3)

Reading

= Different CR3 values depending on
the node you are running

= This may cause confusion in the
kernel

= We look up the master replica and
re-build the original CR3 value
from it.

Writing

" Need to write the pointer to the
local page table root

" Lookup the local page table and
re-build the CR3 value from it.

22

2) Keeping Track of Replicas

= a page descriptor for each physical page
= Conversion functions: page table pointer <~ page descriptor pointer

pte_page pte_page pte_page pte_page

page table page table

|

page_virt

page table page table

page_virt page_virt page_virt

v

replica replica replica > replica

struct page struct page struct page struct page

Add a pointer to the next replicas in the page descriptor
= Circular list of replicas 23

ETH:zurich

3) Keeping Page Tables Consistent
--- Oh no....

Access in NO

Kemel Mode

vealloc_fault

Noncontiguous
memory area address

Kemel paPe table
entry lixup

Ininterrupt, softirg,
critical region, or
kernel thead

= |n a nutshell:
1.

YES Addeess ina NO

memory region
1o User Mode stack

good_area

bad_area
ee—

3. Walk page table and allocate missing
tables

4. Allocate a new frame & update the PTE

—

l)amandf’aging Demand Send Kill process “Fixup code”
+ Deal with Copy-on-Write, NUMA balancing, huge pages, disk 10, (opy On Wite paging SIGSEGY e O
he Linux Kern

NUMA policies,

24

https://www.safaribooksonline.com/library/view/understanding-the-linux/0596002130/

3) Linux Memory Management 10000ft View

task_struct

“process”

\ 4

Which regions have been allocated
protection & permissions

Allocation policy / backing file

vm_area_struct vm_area_struct vm_area_struct pam

mm_struct

“address space”

The architecture specific page tables
corresponding to the regions

{_L =

ETH:zurich

26

ETH:zurich

Make the call sites replication aware

PV-Ops: Para-Virtualization in the Linux Kernel

PV-Ops unified the kernel to run both, native and paravirtualized
environments

A table of function pointers to native functions, or hypervisor calls for Xen,
VMware VMI

* Allocation / deallocation of page tables of all levels alloc_pte / release_pte
* Create/ extract entries make_pte/ pte_val

* Setor clear entries in the page tables set_pte/ clear pte

* Reads / writes to the CR3 register read_cr3 / write_cr3

28

ONE DOES NOT SIMI' ‘
; \\‘& &

Mitc

_GHANGE LINUX ME“II!_IY SUBSYSTEM

PV-Ops: Modifications to the page table are handled, right ?

PV-Ops intercept

* Allocation / deallocation of page tables of all levels alloc_pte / release_pte

* Create/ extract entries make_pte / pte_val
* Setor clear entries in the page tables set_pte/ clear_pte
* Reads / writes to the CR3 register read_cr3 / write_cr3

PV-Ops don’t intercept

 Reads *ptep / pte_write(*ptep)
* Writes in special occasions e.g. write protects *orig_pte = *pte

30

And then things get dirty...

= |ntel Architectures Software Developer’s Manual states

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

= What's the problem with this snippet

((*ptep) || (*ptep))
// do something

}

= Used in file maps, write protection, NUMA balancing, swap entries, ...
31

Access and dirty bits matter

1. Program allocates memory, Kernel faults in

some anonymous RAM, updates all replicas

Xeon E7v3 2. Program runs, writes to the allocated page

3. Kernel reads the entry for some policy
mechanism

((*ptep) || (*ptep)) {
// do something

}

4. Kernel doesn’t see the dirty / accessed bit,
concludes wrong decision.

32

Reading Page Table Entries

Two possible cases (ptep)
1. If the entry is a leaf then all { ote = 0;
replicas point to the same page. (bte t*p - (ptep) {
pte |= *p;
2. If the entry is not a leaf, then the } ote:
entries point to different page }

tables!

33

ETH:zurich

It’s actually what we had to do!

34

= Results

Results: Single Threaded Workloads

w

= ™ .
N 1w

[EEY

Normalized Runtime

O
o U

HPCC RandomAccess

Local Remote Local Local
Local Local Remote Remote
B Norm. Walk Duration
+ Load

B Norm. Total Runtime
m Walk Time % of Runtime

N w

Normalized Runtime

O = . .
o U, 1N U1 w

HPCC RandomAccess with Mitosis

Local Remote Local Local
Local LocaL Remote Remote
B Norm. Walk Duration
+ Load

B Norm. Total Runtime

m Walk Time % of Runtime 36

Results: Multi-threaded Workloads - Memcached

Memcached GET on vrg-11
1.2
1

7-10%
Improvement

" |nitialization (not profiled)
= Pre-allocated SLABs

= Population of the DB state. 0.8

S 0.6

© 0.4

= Benchmark goz
= Parallel GET of randomly chosen keys= 0

Runtime

= Accessed by 112 threads in parallel Localalloc Localalloc + Interleaved Interleaved
NUMA + NUMA
Balancing Balancing

B No Replication ™ Replication

37

XSBench on vrg-11

= “The XSBench proxy app models 1.2 8-15%
the most computationally £ 1 Improvement
C
intensive part of a typical Monte 2 °°
. ” 2 0.6
Carlo transport algorithm g
®© 04
-
T . i o 0.2
Initialization (not profiled) = .
" Allocation of the data structures Localalloc Localalloc + Interleaved Interleaved
= Benchmark NUMA + NUMA
Balancing Balancing

= Full XSBench Simulation
B No Replication M Replication

38

Overheads: Memory

Memory overhead for page descriptor: it depends on kconfig. At most 0.4%

Memory Overhead of 400GB working set

1 Replica: (206k + 410 +4 + 1) = 806MB (0.19%)
4 Replica: =2418MB (+0.59%)

39

Overheads: Virtual Memory Operations

MMAP MUNMAP
3 3
© ©
© ©
e 2 2 2
() (]
Copmmntund S wwidiid
0 0
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
B Default M Replication B Default ™ Replication

Overhead

O = N W

MPROTECT

1 2 4 8 16 32 64 128

W Default M Replication

40

Future Work

XSBench on 4x2 XeonE3v3 @ 3.5GHz

. . 2.5
Virtual machines use Extended /
Nested Page Tables. ,
= E
s Y é 1.5
‘ f R ¥ i] SL-PTE—I Té 1
:] =
" 7 Mo 0.5
‘ |
Native KVM

Figure 3-12. Nested Translation with 4-KByte pages

Up to 24 Memory accesses B Runtime ™ Walkduration EPT Walks

41

Future Work: Hypervisor Implementation — EPT Only

Guest Virtual Address e — Guest Physical Address —_ —Host Physical Address

42

Future Work: Coopereative Replication of EPT + Guest PT

Guest Virtual Address —_— — Guest Physical Address —_ —Host Physical Address

43

Conclusions

vmware

RESEARCH

= Bad page table placement hurts the performance

= Mitosis avoids a 3.4x slowdown

= Speedup in several of workloads without modifications

= Promising applications in virtual machines

vmware "

