Mitosis

Transparent Self-Replicating Page Tables

Reto Achermann

VMware Research Group

Summer 2018

ETH zürich

Mitosis - Transparent Self-Replicating Page Tables

Reto Achermann^{1,2}, Jayneel Gandhi¹, Timothy Roscoe², Abhishek Bhattacharjee³

¹VMware Research Group, ²ETH Zurich, ³Rutgers University

TL;DR

- Page table walks can account for a large fraction of the runtime
- Non-uniform memory access (NUMA) effects increase page walk time
- Mitosis: reduce NUMA effects on page table walks through page table replication
- Up to 3.4x improvement over worst case scenario
- Up to 15% improvement on multi-threaded workloads
- Without program modifications

Target Hardware Configuration: Big Memory Machines

Host: vrg-10 / vrg-11 4x14x2 CPU E7-4850 v3 @ 2.20GHz 512 GB RAM Bandwidth & capacity limited per processor socket

■ More bandwidth & capacity ⇔ Multi-socket machines

Up to 16 sockets possible max. 24TB RAM

Big Memory Machine Characteristics

About half the bandwidth and double the latency to remote node

Host: vrg-10 / vrg-11

4x14x2 CPU E7-4850 v3 @ 2.20GHz

512 GB RAM

16-socket machines this can be 1000 cycles latency

Data Allocation Strategies for NUMA Machines

- Well studied in literature
 - Carrefour (Dashti et al)
 - Blackbox Concurrent Data Structures (Calciu et al)
 - Shoal (Kaestle et al)
- Different policies in the OS (numactl)
 - First touch (local allocation)
 - Interleave
 - mbind

Focus mainly on data allocation, ignore page table placement

Virtual to Physical Address Translation

Processes deal with virtual addresses

Translation Lookaside Buffers – Caching Translations since 1965

TLB Reach is Limited

Lookup for every memory access!

Fast cache to store the resolved translations. Overlaps L1 cache access.

It's tiny! RAM capacity is growing faster than TLB capacity

On our machines:

TLB reach:	(64+1024)4K / 512G = 0.008%	(4k pages)
	(32+1024)2M / 512G = 0.4%	(2M huge pages)
	(4+0)1G / 512G = 0.78%	(1G huge pages)

How does NUMA affect the page walk time?

Micro Benchmark: Effects of Page Table Placements

Host: 4x14x2 CPU E7-4850 v3 @ 2.2GHz 512GB RAM OS: Modified Linux kernel

Force page table allocation to node 0

Runtime: use numactl / libnuma to

- 1. Restrict where the program runs
- 2. Allocate data from a fixed node

Workload:

- HPCC RandomAccess, 1 Thread, 64G table size
- Perf to obtain the performance counters

Effects of page-table Placements – Base Case: Data & Page Tables Local

Effects of page-table Placements – Case 1: Data Remote / Page Tables Local

Effects of page-table Placements – Case 2: Data Local / Page Tables Remote

Effects of page-table Placements – Case 3: Loaded Page Table Node

How often happens the page table to be remote?

Page table allocation statistics - Multi-threaded Workloads

How are the page tables allocated ?

How do they change over time?

 Methodology: Let the workload run and dump the page table every 30s.

Breakdown and diff between two dumps

ETH zürich

\$./pagerank hugegraph.bin -nthreads 112

PTablesLevel1	44k [11M	3M	3M	3M]	(+67,-0)	24k	[1M	8M	1M	1M]	(+66,-0)	23k	[1M	1 M	8M	1M]	(+67,-0)	24k [1M	1M	1 M	8M]	(+64,-0)	116k
PTablesLevel2	71 [24k	3k	3k	4k]	(+0,-0)	90	[11k	12k	10k	10k]	(+0,-0)	38	[3k	4k	4k	3k]	(+0,-0)	37 [4k	3k	4k	5k]	(+0,-0)	236
PTablesLevel3	1 [24	84	9	35]	(+0,-0)	0	[0	0	0	0]	(+0,-0)	3	[47	6	29	2]	(+0,-0)	0 0 0	0	0	0]	(+0,-0)	4
PTablesLevel4	0 [0	0	0	0]	(+0,-0)	0	[0	0	0	0]	(+0,-0)	1	8]	0	3	1]	(+0,-0)	0 0 0	0	0	0]	(+0,-0)	1
Code2M	0 []	(+0,-0)	0	[]	(+0,-0)	0	[]	(+0,-0)	0 []	(+0,-0)	0
Data2M	0 []	(+0,-0)	0	[]	(+0,-0)	0	[]	(+0,-0)	0 []	(+0,-0)	0
Data4k	9M []	(+47k,-4M)	9M	[]	(+48k,-4M)	9M	[]	(+48k,-4M)	10M []	(+48k,-4M)	38M
Code4k	338 []	(+0,-0)	439	[]	(+0,-0)	176	[]	(+0,-0)	80 []	(+0,-0)	1k
NUMACode2M	0 []	(+0,-0)	0	[]	(+0,-0)	0	[]	(+0,-0)	0 []	(+0,-0)	0
NUMAData2M	0 []	(+0,-0)	0	[]	(+0,-0)	0	[]	(+0,-0)	0 []	(+0,-0)	0
NUMACode4k	0 []	(+0,-0)	0	[]	(+0,-0)	0	[]	(+0,-0)	0 []	(+0,-0)	0
NUMAData4k	5M []	(+4M,-1)	5M	[]	(+4M,-0)	4M	[]	(+4M,-0)	5M []	(+4M,-0)	20M
Total Migration	ns 0 152	2																					

Local: 38%

Remote: 62%

Local: 20%

Remote: 80%

Local: 19%

Remote: 81%

Local: 20%

Remote: 80%

Remote > # Local

Page tables don't move

> ¾ Remote!

Mitosis – Transparent self-replicating page tables on Linux / x86

Page Table Replication in a NUMA Machine

The key idea is keep page-tables local

Replication of page tables on each NUMA node

- 1. Native page tables for processes
- 2. Extended page tables for virtual machines

Keeping replicas consistent without sending the Kernel on an island to deal with the parliament there

Mitosis

Use the local replica on the current processor

Manage and find page table replicas efficiently

Keeping page table replicas consistent with each other

1) Programming the Translation Base Register (x86: cr3)

Reading

- Different CR3 values depending on the node you are running
- This may cause confusion in the kernel
- We look up the master replica and re-build the original CR3 value from it.

Writing

- Need to write the pointer to the local page table root
- Lookup the local page table and re-build the CR3 value from it.

2) Keeping Track of Replicas

- a page descriptor for each physical page
- Conversion functions: page table pointer ⇔ page descriptor pointer

Add a pointer to the next replicas in the page descriptor

Circular list of replicas

3) Keeping Page Tables Consistent --- Oh no....

In a nutshell:

- 1. find the containing vm_area_struct
- Check the permissions (read / write / exec)
- 3. Walk page table and allocate missing tables
- 4. Allocate a new frame & update the PTE
- 5. Resume execution

+ Deal with Copy-on-Write, NUMA balancing, huge pages, disk IO, NUMA policies,

Understanding the Linux Kernel, Second Edition by Marco Cesati, Daniel P. Bovet

3) Linux Memory Management 10000ft View

PV-Ops: Para-Virtualization in the Linux Kernel

PV-Ops unified the kernel to run both, native and paravirtualized environments

A table of function pointers to native functions, or hypervisor calls for Xen, VMware VMI

- Allocation / deallocation of page tables of all levels
- Create / extract entries
- Set or clear entries in the page tables
- Reads / writes to the CR3 register

alloc_pte / release_pte

make_pte / pte_val

set_pte / clear_pte

read_cr3 / write_cr3

PV-Ops: Modifications to the page table are handled, right?

PV-Ops intercept

- Allocation / deallocation of page tables of all levels
- Create / extract entries
- Set or clear entries in the page tables
- Reads / writes to the CR3 register

alloc pte / release pte

make_pte / pte_val

set_pte / clear_pte

read_cr3 / write_cr3

PV-Ops don't intercept

- Reads
- Writes in special occasions e.g. write protects

- *ptep / pte_write(*ptep)
- *orig_pte = *pte

And then things get dirty...

Intel Architectures Software Developer's Manual states

5 (A)	Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)
6 (D)	Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

What's the problem with this snippet

```
if (pte_young(*ptep) || pte_dirty(*ptep)) {
  // do something
}
```

Used in file maps, write protection, NUMA balancing, swap entries, ...

Access and dirty bits matter

- 1. Program allocates memory, Kernel faults in some anonymous RAM, updates all replicas
- 2. Program runs, writes to the allocated page
- 3. Kernel reads the entry for some policy mechanism

```
if (pte_young(*ptep) || pte_dirty(*ptep)) {
  // do something
}
```

4. Kernel doesn't see the dirty / accessed bit, concludes wrong decision.

Reading Page Table Entries

Two possible cases

- 1. If the entry is a **leaf** then all replicas point to the **same page**.
- 2. If the entry is **not** a **leaf**, then the entries point to **different page** tables!

```
pte_t ptep_read (pte_t *ptep)
{
    pte_t pte = 0;
    FOREACH(pte_t *p : replicas(ptep) {
        pte |= *p;
    }
    return pte;
}
```


OPDATE ALL THE

It's actually what we had to do!

Results: Single Threaded Workloads

Results: Multi-threaded Workloads - Memcached

- Initialization (not profiled)
- Pre-allocated SLABs
 Population of the DB state.
 Benchmark
 Parallel GET of randomly chosen keys
 - Accessed by 112 threads in parallel

 "The XSBench proxy app models the most computationally intensive part of a typical Monte Carlo transport algorithm"

Initialization (not profiled)

- Allocation of the data structures
- Benchmark
 - Full XSBench Simulation

Overheads: Memory

Memory overhead for page descriptor: it depends on kconfig. At most 0.4%

Memory Overhead of 400GB working set

```
1 Replica: (206k + 410 + 4 + 1) = 806MB (0.19\%)
```

4 Replica: = 2418MB (+0.59%)

Overheads: Virtual Memory Operations

Future Work

Virtual machines use Extended / Nested Page Tables.

Figure 3-12. Nested Translation with 4-KByte pages

Up to 24 Memory accesses

Future Work: Hypervisor Implementation – EPT Only

Future Work: Coopereative Replication of EPT + Guest PT

Conclusions

Bad page table placement hurts the performance

Mitosis avoids a 3.4x slowdown

Speedup in several of workloads without modifications

Promising applications in virtual machines

