
Bachelor’s Thesis Nr. 88 b

Systems Group, Department of Computer Science, ETH Zurich

Barrelfish USB Subsystem

by

Reto Achermann

Supervised by

Prof. Timothy Roscoe, Dr. Kornilios Kourtis

August 2013

Abstract

In the early days, connecting devices with a computer involved many different
connectors and the attachment of the devices had to be done before the host
computer was powered on. The universal serial bus (USB) has replaced many of
those old-fashioned connectors and provides a unified and universal connector
with hot-plug support. The versatility of the USB makes it an indispensable way
of connecting devices with a host computer. Therefore having USB support in
an operation system is a precondition for extensibility and usability in the sense
of extending the storage capacity with mass storage devices or to provide a way
of user input with a USB keyboard. In the context of the multi-kernel operating
system Barrelfish, the USB subsystem has to be designed in a distributed fashion
and run as pure user-level services. The design idea is to separate the USB stack
into two parts. An USB Manager that provides the USB driver interface and
handles the configuration of the host controller hardware and a USB client
driver for each attached USB device. The USB subsystem should provide hot-
plug capabilities that the USB client drivers are started and terminated when
a device is attached respectively detached on an USB port.

Contents

1 Introduction and Motivation 7
1.1 Introduction . 7
1.2 Thesis Outline . 8

2 Related Work 9
2.1 USB for DROPS . 9
2.2 The USB/IP Project . 9
2.3 USB for the L4 Environment . 9

3 Barrelfish 10
3.1 USB on Barrelfish . 10
3.2 Capabilities . 11
3.3 Device Manager . 11
3.4 Device Drivers in Barrelfish . 11
3.5 Flounder . 12
3.6 Naming and Interface References 13

4 USB Architecture 14
4.1 USB Topology . 14

4.1.1 Host . 14
4.1.2 USB Devices . 15
4.1.3 Interfaces . 18
4.1.4 Endpoints . 18
4.1.5 Attachment and Detachment of Devices 18

4.2 USB Stack . 18
4.2.1 USB Device Drivers . 18
4.2.2 The USB Driver Interface (USBDI) 19
4.2.3 The Host Controller Driver Interface (HCDI) 20
4.2.4 The Host Controller Interface (HCI) 20

4.3 Human Interface Device (HID) Class 21
4.3.1 Accessing the Device . 22
4.3.2 Class Specific Details . 22

4.4 Transfer and Endpoint Types . 22
4.4.1 USB Transfer Types . 22

1

5 Pandaboard 24
5.1 The PandaBoard . 24
5.2 The USB Subsystem . 24

5.2.1 USB Host Subsystem in the OMAP44xx SoC 25
5.2.2 High-Speed Multiport USB Host Subsystem 25
5.2.3 USB system on the board 28
5.2.4 Verifying the Setup using the ULPI interface 30

5.3 Barrelfish on PandaBoard . 32
5.3.1 HS USB Host Subsystem Initialization 32
5.3.2 Getting the Device Capability 32
5.3.3 Driver Startup . 35
5.3.4 Interrupt handling . 36

6 System Design 39
6.1 USB Subsystem Architecture . 39

6.1.1 USB Manager . 39
6.1.2 USB Client Driver . 41
6.1.3 USB Library . 41

6.2 USB Subsystem startup . 41
6.2.1 Preparations to Spawn in Kaluga 42
6.2.2 Spawn . 44
6.2.3 USB Manager . 44
6.2.4 Device Attachment . 45
6.2.5 USB Client Driver . 45

6.3 USB Host Controller . 46
6.3.1 Initializing the Generic Part 46
6.3.2 Initializing the EHCI Controller 47

6.4 Device Attachment Process . 48
6.4.1 New Device Attached Event 48
6.4.2 Exploring Hub Ports . 49
6.4.3 Device Allocation and Initialization 50
6.4.4 Driver Startup . 51
6.4.5 The USB Device Tree . 53
6.4.6 Driver-to-Device / Device-to-Driver Association 54

6.5 Device Detachment Process . 55
6.5.1 Client Driver Shutdown 55
6.5.2 Freeing up Resources . 55
6.5.3 Hub detachment . 55

6.6 USB Manager Interface . 56
6.6.1 Connect . 56
6.6.2 Request Handling . 57
6.6.3 Transfer Management . 57
6.6.4 Referencing Devices and Transfers 57

6.7 USB Library . 57
6.7.1 USB Manager Binding . 58
6.7.2 USB Manager Interface Abstraction 59
6.7.3 Class Specific Functionality 59
6.7.4 General Definitions . 59

6.8 USB Client Driver Interface . 61
6.8.1 Detach Notification . 61

2

6.8.2 Transfer-Done Notification 61
6.9 USB Keyboard Driver . 62

6.9.1 Setting up Transfers . 62
6.9.2 Transferred Data . 62
6.9.3 Learning the Modifier Keys 64
6.9.4 The Idle Rate . 64

6.10 Example Usage . 64

7 Discussion 66
7.1 Setting up Fish . 66
7.2 Limitations . 66

7.2.1 USB Transfer Types . 67
7.2.2 USB Manager and USB Driver Interface 67
7.2.3 Host Controllers . 67
7.2.4 USB Quirks . 68
7.2.5 Error Handling . 68
7.2.6 Power Requirement Check 68
7.2.7 Device Driver Lookup . 69
7.2.8 Hot-Plug . 69
7.2.9 Single Threaded USB Manager 69
7.2.10 Different SoC Support . 69
7.2.11 64-bit Support . 69
7.2.12 PCI . 70
7.2.13 Keyboard . 70

7.3 Future Work . 70
7.3.1 USB Class Support . 70
7.3.2 Flounder Interfaces: Using THC 70
7.3.3 Adding USB 3.0 Support 71
7.3.4 Resource Allocation . 71
7.3.5 Muxing and Power/Clock Management 71
7.3.6 Capabilities . 72
7.3.7 Hot Plugging and Multiple Devices 72
7.3.8 Starting USB Client Drivers and SKB 72

3

List of Figures

4.1 USB Topology . 15
4.2 USB Stack . 19

5.1 OMAP44xx HS USB Subsystem 26
5.2 Pandaboard USB System . 29
5.3 Barrelfish Startup with SoC Driver (Planned) 33

6.1 USB Subsystem Architecture . 40
6.2 USB Subsystem startup . 42
6.3 Host Controller Software Struct 46
6.4 USB Library Initialization Sequence 58
6.5 USB Usage Example . 65

4

List of Tables

5.1 Clock and Power Settings . 27
5.2 Settings of the CONTROL CORE PADs 28
5.3 EHCI INSNREG05 ULPI Register 31
5.4 Overview of Steps Executed by Kaluga 35

6.1 USB Manager Command Line Arguments 44
6.2 EHCI Capability Registers . 47
6.3 EHCI Operational Registers . 48
6.4 USB Device Descriptor . 52
6.5 USB Device Classes by USB-IF [29] 53

7.1 Overview of Implemented Transfer Types 67
7.2 Overview of Supported Host Controllers 68

5

Listings

5.1 Reading out the ULPI Vendor id 31
5.2 Kernel Modification for Adding the Device Range Capability . . 34
5.3 Requesting the Capability from Monitor 34
5.4 Added Function to the Monitor Blocking Interface 37
5.5 Added Function to the Barrelfish Library 38
6.1 Getting the Port Status of a Hub 49
6.2 Finding a free device address . 51
6.3 USB Manager Interface Definition 56
6.4 USB Library: USB Manager Interface Abstraction 60
6.5 USB Library: Class Specific Functions 61
6.6 USB Client Driver Interface . 61
6.7 USB Transfer Setup . 63

6

Chapter 1

Introduction and
Motivation

1.1 Introduction

In the early days, different devices were connected using various different kind
of ports such as PS/2 or RS-232 for keyboards / mice, parallel port for printers
and Firewire for cameras. The problems with these ports were, that they could
not be used interchangeably limiting the number of devices and their lack of
hot-plug functionality.

The inventors of the USB had a clear vision in mind. The USB specification
[19] gives three main points motivating why USB was introduced:

• Connection of the PC to the telephone

• Ease-of-use with just one connector for many devices

• Port expansion with hubs to provide more attachment points

The success of the Universal Serial Bus (USB) is indisputable. Today, most
of these old-fashioned ports such as the serial interface are hard to find on
modern computers especially on portable devices. These ports were replaced by
USB ports providing a small and uniform interface for connecting various kinds
of devices to the host computer.

Overall, the USB standard is getting more and more important as many
of today’s peripheral devices are connected to a computer using an USB cable.
One of the main benefits of the USB is, that the USB wires can not only be used
for pure communication purposes between host and device, but also provides
power up to 500mA[19] to the device over the same wire1. This enables the
devices to become usable by using just a single cable connection. Hence portable
devices can be charged why there are connected to the host computer during
the synchronization process for instance.

Furthermore the not only peripheral devices can be connected via USB, but
also two computers may use the USB for communication as it is done with
smartphones or tablets nowadays (mostly with the smartphone or tablet in the

1The Wireless USB standard is the exception [23]

7

device mode). With a transfer speed of up to 10 Gbps, as announced in a
press release early this year [7], together with support of up to 127 different
devices concurrently [19] the USB provides a fast, uniform and extensible way
to connect the different devices with a host computer.

Despite the versatility of devices using USB as a connection to the host
computer they all must2 obey the standards defined by the USB specification
[19]. If the host operating system provides a reasonable framework for accessing
the USB, the development of a new driver for a device is expected to be much
easier than for traditional devices. This claim is backed by the fact that USB
device drivers do not access any hardware registers directly and operate only via
the USB interconnect. The only part of the USB subsystem that has hardware
registers is the USB host controller. The operation system has to provide the
needed abstractions of the underlying host controllers [13, 12, 3, 14] as well as
for managing the bus.

To sum up, having USB support in an operating system is crucial and an
important factor of success. Devices such as keyboards, network cards and
mass storage devices can be attached to the USB and enable the system to
communicate, react to user input and store files.

In order to solve the engineering problem of the USB subsystem in a dis-
tributed operating system, the following questions have to be answered

• How is the USB subsystem initialized?

• How the devices are configured and which instance is responsible for it?

• How the device drivers can access the devices?

• How the data is moved from the driver to the device and vice versa?

• How are the device drivers found and started?

• How are the host controllers abstracted?

• How are the detach / attach events handled?

• How must the interfaces be defined to meet the specification requirements?

Answering these questions form a basis to come up with a design and se-
mantics of a USB Subsystem. Of course, this list is not complete and many
other questions arise while implementing the system.

1.2 Thesis Outline

The thesis consists of several parts. In Chapter 2 an overview of related work
is given. Chapter 3 outlines some specialties in Barrelfish. Chapter 4 briefly
introduces the main aspects of the USB architecture. Chapter 5 shows the
PandaBoard hardware configuration and the changes that were made to Bar-
relfish. Chapter 6 talks about the design of the USB subsystem followed by a
discussion of limitations and future work in Chapter 7.

2As always there are devices that have some bugs and that do not follow the specifications
entirely, referring to the USB quirks of FreeBSD [8]

8

Chapter 2

Related Work

Modern operating systems such as FreeBSD [8], Linux [15] or Microsoft Windows
[5] have their own implementation of the USB stack providing different interfaces
and usage semantics. However, all of the mentioned operating systems fall
into the category of monolithic kernels and their drivers live mostly in kernel
space. Hence, they not really suite the design principles of a microkernel based
operating system such as Barrelfish [2, 20].

2.1 USB for DROPS

The L4 operating system [17] is based on a micro kernel and uses user-level
services to provide the necessary OS services. In the year 2003 an attempt to
bring USB to the L4 system was attempted by Gerd Griessbach [11]. He took
the Linux 2.4.20 USB Stack [15] and mapped the API to the message passing
interface of the L4 kernel. That way the Linux USB stack could be used as is
and a wrapper library ensured the communication between the different servers.
The number of different API calls made the overall system complex.

2.2 The USB/IP Project

In 2005, the USB/IP project [10] came up with a different approach by ab-
stracting the communication via the network stack. The USB requests are
encapsulated inside the IP packets and transmitted over the network. Basically
there are two components in the system a client, which makes use of a virtual
host controller interface and a server that uses a stub device driver library. The
USB requests are exchanged between the two modules.

2.3 USB for the L4 Environment

In 2008, Dirk Vogt investigated in his Master Thesis [30] how the Linux [15]
USB stack can be ported to the L4 environment. He took up the idea of the
USB/IP project with the stub driver and the virtual controller interface. As a
result of his work, he ported the Linux 2.6 USB Stack to L4 by preserving the
Linux API such that the Linux client drivers can be ported easily to L4.

9

Chapter 3

Barrelfish

The Barrelfish operating system1 is a research project of the Systems Group at
ETH Zurich2 in collaboration with Microsoft Research. As a multi-kernel oper-
ating system [20] supporting many different architectures, the kernel is viewed
as a CPU driver which exports the hardware abstraction of the underlying hard-
ware architecture. The kernel provides only a basic set of necessary services such
as memory mappings, context switching and message passing. Other function-
ality such as memory management is provided by user-level servers. The system
design follows the trend of a distributed systems architecture [2].

This section will outline some special aspects that are related for implement-
ing a USB subsystem on Barrelfish.

3.1 USB on Barrelfish

In 2009, there was an attempt to bring USB functionality to the Barrelfish oper-
ating system. Animesh Trivedi provided an USB implementation for Barrelfish
in the context of his master thesis about hot plugging in a multikernel operating
system[28]. In his master thesis he solved the problem stated in the introduc-
tion with tree different processes and a library. First the USB manager which
is responsible for management related activities i.e. the bus driver, secondly
the EHCI host controller driver which handles the hardware specific part of the
USB stack and third the USB client driver which is responsible for the operation
of the USB device. In addition to that, the USB memory library takes control
of the memory allocation and management, since there are many constraints
about the alignment of the different data structures used by the host controller
hardware.

His implementation focused on the EHCI [13] host controller and a mass
storage driver. Therefore, the support of HID devices in particular the USB
keyboard is missing in his implementation.

With the evolution of Barrelfish and the changes that were made to the
API, this USB implementation is not working anymore. According to the com-
ments in the code and the FIXME file, the code contains some bugs as well as
inconsistencies with the coding guidelines.

1http://www.barrelfish.org
2http://www.systems.ethz.ch

10

http://www.barrelfish.org
http://www.systems.ethz.ch

3.2 Capabilities

Barrelfish manages critical system resources such as memory or page tables by
the use of capabilities [21]. The capabilities are stored in a dedicated region
called the CSPACE in each domain. Only the kernel can access and manipulate
the capabilities in the CSPACE directly. User-level domains only deal with ref-
erences (caprefs) to those capabilities stored in their own CSPACE. Not only
resources are tracked via capabilities, but also many privileged system calls are
in fact capability invocations where the caller needs to present the capability to
get the system call executed.

All capabilities are typed and there exists rules how to retype them into a
more specific type such as creating a frame capability out of a RAM capability.
The rules prohibit certain retype operations because of security related issues
e.g. a page table capability must never be mapped as a virtual memory page.
In order to have access to the memory range of the device a RAM capability of
that range can be retyped to a device frame capability and then mapped into
the virtual address space of the driver domain.

3.3 Device Manager

Since we are dealing with device drivers, we are also have to consider how
they are managed and started. Gerd Zellweger elaborated in his master thesis
[31] how the startup of the device drivers can be coordinated and how they are
managed. The main focus of his thesis was the coordination and synchronization
between processes. The device manager called Kaluga was the result of a case
study in his thesis. Initially, Kaluga was designed to run together with PCI and
the system knowledge base.

3.4 Device Drivers in Barrelfish

Device drivers in Barrelfish are implemented as user-level servers. Each server
exports an interface to provide access to device related features. The interface
can be invoked by the clients using message passing. To simplify the implemen-
tation of message passing Barrelfish comes with a tool called Flounder (Section
3.5). The device driver domain can access the hardware registers directly as
soon as the capability specifying the memory range of the device is mapped in
the virtual memory space of the driver domain. That way the kernel is out of
the data path and the hardware related issues can be tackled by the user-level
server directly.

As stated above, in order to have access to the hardware registers the driver
domain needs a device frame capability. Therefore it is crucial for the driver do-
main to obtain it either the capability is already supplied as a spawn parameter
or can be requested afterwards.

x86 Architecture On x86, besides the IO bus, most of the devices are located
on the PCI bus. The PCI domain is responsible for the initial configuration of
the PCI and hence has the capability for the whole memory range of the PCI
bus. When the PCI driver is finished with configuring the bus, the device driver

11

domains for the device located on the bus are spawned by Kaluga. The device
driver domain requests the needed capability from the PCI domain afterwards.

ARM Architecture System on a Chip (SoC) based architectures like the
Texas Instruments OMAPP44xx [27] have every supported device at a pre-
defined memory location inside the chip and hence do not have a PCI bus. With
no PCI bus there is no PCI domain which hands out the device capabilities and
thus obtaining a device capability on the ARM architecture was an open issue
which had to be solved. Section 5.3.2 describes the changes to the Barrelfish
kernel that were needed to obtain the device capability.

Mackerel

Once the hardware registers are accessible by the device driver domain the de-
vice can be configured. Accessing hardware registers involves a lot of shifting
and masking which is tedious and error prone. Barrelfish solves this problem
by a tool called Mackerel [24]. Mackerel comes with a domain specific lan-
guage (DSL) that allows transcribing the register interface as it is defined in the
specification documents in a natural way. After some basic checks such as un-
common register sizes or overlapping registers, Mackerel generates C code from
the Mackerel file. The framework hides all the bit shift and masking behind a
consistent interface and therefore simplifies and reduces the bugs when access-
ing the hardware registers. The only thing that has to be done is initializing it
with the virtual base address of the device.

3.5 Flounder

As explained in Section 3.4, in Barrelfish every device driver runs in its own
user-space domain. Each driver domain acts as a server and exports a service
interface. Other domains, the clients, need a way to invoke the service interface.
This can be abstracted by a communication channel between server and client
each invocation involves sending messages between the two domains.

In Barrelfish the message passing is called inter-dispatcher communication
(IDC) [1]. As with Mackerel for hardware register access, Barrelfish uses a
tool called Flounder with its own DSL to abstract the low level implementation
details. The service interface is defined using the Flounder interface DSL and fed
into the interpreter. Out of the DSL interface specification, Flounder generates
C code which is then included by both client and server domains. The generated
C code contains stubs for each function of the interface.

The server exports the interface and gets a reference of its own service back
where as the client binds to the service using this reference. In general the com-
munication is two way and in order to handle the messages, callback functions
have to be registered which are then called by the generated stubs.

Flounder supports asynchronous messages and synchronous messages with
remote procedure call (RPC) semantics. A message is sent like a normal func-
tion invocation. The sender of the message calls one of the generated transmit
functions on the Flounder binding.

12

3.6 Naming and Interface References

We have seen in the previous section that Flounder provides a framework for
message passing in Barrelfish. To send a message, a channel between the two
domains has to be opened during the binding process. In order to bind, the
location where the service is running has to be known. From that, two questions
arise: how are the services referenced and how can one get such a reference?

Interface references (iref) A service is started by exporting the imple-
mented interface. As a return value of the exporting process, the server gets
an interface reference (iref) back. The iref is an integer value that uniquely
identifies the exported service. The client uses this iref as a parameter for the
binding process when the communication channel is initialized.

Naming The client does not know the iref of the server’s interface a priori.
After the export process, the server has to register the returned iref with the
name service. The service name-iref association is then stored in the system
knowledge base (SKB) [25] which runs as another OS service3. A client that
wants to bind with the exported service can obtain the iref by doing a name
service lookup which queries the SKB for the iref information.

3The SKB is a database where every piece of information of the system can be stored,
analyzed and queried.

13

Chapter 4

USB Architecture

The USB architecture is completely defined in the Universal Serial Bus Speci-
fication [19] and the different host controller specifications [3, 12, 13, 14]. This
chapter briefly describes some of the most important points concerning the
topology, protocols and interfaces of the USB specification revision 2.0.

4.1 USB Topology

The USB topology can be viewed as a tree rooted at the so-called host. The
USB specification [19] describes the topology as a ”tired start topology” where
the tiers correspond to the depth levels of the tree. Figure 4.1 shows an example
setup with 10 connected device, three of which are forming a compound device
and another three are hub devices. The maximum depth of the topology tree
is 7 starting from the root at depth 1. This implies that only function devices
(Section 4.1.2) can be attached at depth 7 (hubs would be unusable). This is due
to timing constraints and the USB driver has to ensure that these constraints
are not violated.

4.1.1 Host

The host is the root of the USB topology tree. It is not possible to have two
hosts within the same USB topology. The host system consists of two main
parts: the host controller and the root hub.

Host Controller

The host controller is a physical device which resides either on the PCI bus or
within a SoC. In contrast to the other USB devices is the host controller is the
only device in the USB topology whose hardware registers are memory mapped
and can be directly accessed by software. Currently there are four different host
controllers available supporting different USB revisions and register interfaces:

1. Universal Host Controller Interface (UHCI) proprietary standard by Intel
for USB 1.0 [12]

2. Open Host Controller Interface (OHCI) is an open standard by several
companies for USB 1.1 [3]

14

Host
Roothub

FunctionHub Hub

Function

Function

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3

Endpoint 0

Endpoint 1

Interface 1

Interface 2 Endpoint 0

Endpoint 1

Configuration

Le
ve

l 4

Hub

Function

Compound
Device

D
ev

ic
e

St
ru

ct
u

re

Function

Hub

Function

Figure 4.1: USB Topology

3. Enhanced Host Controller Interface (EHCI) was introduced for USB 2.0
[13] and defined by collaboration of several companies.

4. Extensible Host Controller Interface (XHCI) is the 3rd generation of host
controllers and the only one that supports all USB revisions 1.0 to 3.0 [14]

Referring to Section 4.2.3 for more details about the host controller driver
interface or Section 4.2.4 for EHCI specific details. The companies that were
involved in the development of the host controllers can be obtained by the
respective host controller specifications [12, 3, 13, 14].

Root Hub

The root hub is a virtual USB device which is emulated by the host system and
provides at least one port where other devices can be attached. In contrast to
other USB devices, requests are not sent to the device but are rather handled
virtually by the host software accessing the registers on the host controller.
Thus the root hub is the only hub device which has memory mapped registers.
The host controller revision defines the operational capabilities of the root hub.

4.1.2 USB Devices

USB Devices can be split up into two fundamental categories each having differ-
ent usage types and operational capabilities. Despite the elementary difference
there are several things that all USB devices have in common like they are
residing on the network like USB interconnect and have no directly accessible

15

registers. One of the biggest advantage of USB devices is the fact that they can
be attached or detached to the system at any time (hot-plug functionality).

USB Hub Devices

The number of ports provided by the root hub is limited. To overcome this
limitation additional USB hub devices are connected to increase the number of
attachment points in the USB topology as shown in Figure 4.1. That way, from
a single root hub port, attachment points for up to 127 devices can be provided
under the condition to meet the USB specification requirements. This implies
that hubs cannot be attached at depth 7 in the topology because if so they
would provide attachment points that would be unusable1.

High speed hubs contain a transaction translator (TT) that enables the
attachment of full or low speed devices to a high speed hub by translating a
micro-frame (125 us) to a normal frame (1ms).

Besides extra attachment points, USB hubs do not provide new functionality.

USB Function Devices

USB devices that provide some form of functionality such as storage of sensor
data are called functions. Function devices do not provide any additional at-
tachment points and act as the sink or source of a data transfer between host
and USB device. As an example one may want to consider keyboards or mass
storage devices.

Compound Devices It is also possible to combine the two categories above
into a compound device. Compound devices look like a single device with a
single cable, but are in fact a combination of multiple USB devices each of
which having a different address. As an example, one may consider the USB
keyboard with integrated USB hub. Compound devices cannot be attached at
depth 7 since they occupy two depth levels at once.

The Device Descriptor

Each device contains an 18 byte data structure called the device descriptor as
shown in Table 6.4 on page 52. The device descriptor contains all the relevant
information about the connected device such as USB revision number or device
class code. The descriptor can be obtained by executing the GET DESCRIPTOR

request on the default control pipe (see Section 4.4 for an overview of transfer
types). USB devices fall into predefined device classes which are assigned by the
USB-IF2. The class codes are used to identify the device and find a matching
function driver3.

Device Configurations

Each device has at least one configuration. The actual number of configurations
is defined in the device descriptor. During the attachment process the configu-

1It may work, but the USB specification prohibits it due to timing reason
2http://www.usb.org/about
3For some classes, the relevant information is found in the interface descriptor

16

ration value is set. Each configuration is defined by a configuration descriptor
and has a different set of interfaces and endpoints (Sections 4.1.3 and 4.1.4).

Device Speeds

A device falls into one of the following four speed categories depending on the
USB revision and the capabilities of the device.

• Low-Speed (LS). USB 1.x standard with 1.5 Mbps [19].

• Full-Speed (FS). USB 1.x standard with 12 Mbps [19].

• High-Speed (HS). This was introduced by USB 2.0 and supports up to
480 Mbps [19].

• Super-Speed (SS). This was introduced by USB 3.0 and supports up to 10
Gbps [7].

The speed categories are backward compatible e.g. a high speed device may
operate as a full speed device when connected to an OHCI controller.

Device States

Once a device is attached to the USB it has always a clear defined state. De-
pending on the state, the reaction to transfer requests is either undefined or
results in an error condition. The possible device states are

• Attached: This is the initial state when a device is plugged in in a port of
a hub which is already configured.

• Powered: The port was enabled and the device got power. The reset
sequence has not yet been executed.

• Default: The reset sequence was executed and the device responds to the
default address (0x00).

• Address: The device was an unique address assigned using a SET ADDRESS

request.

• Configured: The device is configured by executing a SET CONFIGURATION

request with a valid configuration value. The device is now usable.

• Suspended: Power save mode if there is no bus activity for some time.
The device is not usable in the suspended state.

State transitions usually happen, when a device request is executed. Refer-
ring to the USB specification [19] chapter 9 for a complete description of state
transitions.

17

4.1.3 Interfaces

Each device configuration has at least one interface and each interface contains
at least one endpoint (Section 4.1.4). An interface is characterized by the end-
points it groups together and can be viewed as a representation for a single
feature of a device: if a device has two different features then it also has two
interfaces e.g. a keyboard/track-pad configuration may consist of two interfaces
one for the keyboard and one for the track pad. Figure 4.1 shows an example
with to interfaces and each of which has two endpoints.

4.1.4 Endpoints

Each interface has one or more endpoints associated with it. Each endpoint
has a defined, device dependent endpoint address and data flow direction i.e.
a particular endpoint may be the source or the sink of data flow through the
USB. Endpoints have an associated type supporting pipes of exactly this type
referring to Section 4.4 for an overview of transfer types.

Endpoint Zero There is a special, dedicated endpoint zero, which is used as
the default control pipe for executing device requests such as setting the device
address. The data-flow of the control pipe is bidirectional.

4.1.5 Attachment and Detachment of Devices

Any USB device can be attached to a free port of a hub device. Once a new de-
vice is discovered the host software configures it and updates the USB topology
accordingly. If the attached devices was a hub, then the whole procedure may
be repeated recursively for the potential devices connected to that hub.

When a device is detached an interrupt may be fired again and the status
bits signal that something has changed. The USB software handles the removal
from the topology. If the detached device was a hub, then the whole process
need to be repeated recursively on all child devices.

Section 6.4 will give a more detailed view on the steps to perform when
a device is attached or detached and how it is handled in the suggested USB
system architecture.

4.2 USB Stack

Like the network stack, the USB stack also consists of several layers which
provide different levels of abstractions and ensure independence of the particular
host controller implementation. The USB stack is shown in Figure 4.2.

4.2.1 USB Device Drivers

The top most layer of the USB stack is the USB device driver for a particular
USB device like a USB keyboard. USB device drivers are often referred to as
USB client drivers. This layer knows the particular configuration and usages of
its function device and hence is responsible for setting up the needed transactions
and specific configurations.

18

So
ft

w
ar

e
H

ar
d

w
ar

e

Host Controller

USB Device

USB Device Driver

USB Interconnect

Host Controller Interface (HCI)

Host Controller Driver

Host Controller Driver Interface (HCDI)

USB Driver

USB Driver Interface (USBDI)

USB Device Driver

USB Device

Figure 4.2: USB Stack

USB Device Class Drivers As an alternative option, it is also possible to
introduce another layer at this level. Every USB device falls exactly into one
device class which resembles common functionality by all devices of this class.
A device class driver handles common device class functionality.

USB Hub Drivers The drivers for the USB hubs play a little bit different
role. USB Hub drivers are responsible for recognizing the attach and detach
events on their ports and inform the bus driver that something has changed in
the USB topology. Hub drivers may be implemented as a normal client driver
or within the USB driver.

4.2.2 The USB Driver Interface (USBDI)

The next layer is the USB driver with the USB driver interface (USBDI). This
layer provides services for device configuration, transfer management, event no-
tification as well as status reporting and error recovery. In fact, the USB driver
manages the entire bus. USB client drivers use the exported USB driver inter-
face to issue new USB transfers and manage the device. The USBDI can be
divided into two different interfaces:

Pipe Interface This interface provides methods for managing pipe state such
as opening, closing and starting pipes. This involve setting up the corresponding
data structures. The setup of the data structure involves allocating memory
resources and therefore the pipe interface is on the performance critical path.

19

Command Interface This interface provides management services that al-
lows the client driver to configure its device. The device driver can execute
device requests and change the power state of the device with the management
services.

4.2.3 The Host Controller Driver Interface (HCDI)

The main part of this layer is to abstract the underlying host controller hardware
and provide a host controller independent interface that is accessed by the USB
driver. The HCDI has to implement the following abstractions:

• Host Controller hardware: abstracts the different host controller imple-
mentations and provides an unified interface

• Data transfers: abstracts the data flow across the USB interconnect i.e.
status reporting of the active USB transfers

• Resources: Abstracts the allocation and de-allocation of the resources such
as USB bandwidth for periodic transfers

• root hub: emulates the necessary functionality of a hub device which acts
as the root hub

How the abstractions are implemented and how the exported interface looks
like is up to the host software system. There is only one client that uses the
HCDI and this is the USB Driver. This implies that no USB client driver
directly accesses the host controller driver interface. This ensures that the USB
driver is always aware of what is going on.

4.2.4 The Host Controller Interface (HCI)

Each host controller is a piece of hardware which implements one of the four
different interfaces listed in Section 4.1.1. The USB revision and vendor define
which HCI is used4. The different host controller interface implementations
differ in the number and representation of the hardware registers. In this thesis,
we focus on the Enhanced Host Controller Interface (EHCI).

The Enhanced Host Controller Interface (EHCI)

With the revision 2.0 of the USB specification a new register level interface
was designed called Enhanced Host Controller Interface (EHCI). The EHCI
Specification [13] defines the registers layout and data structures as well as the
operational model for this particular host controller interface. The EHCI with
USB revision 2.0 introduced high-speed (HS) capable devices supporting up to
480 Mbps.

Companion Controllers One has to be aware of the fact that the EHCI
controllers only support HS devices connected directly to the root hub ports.
There are two options for operating full-/low-speed (FS/LS) devices with a
EHCI controller:

4This plays a role for USB revision 1.x compliant host controllers

20

1. Using a companion controller (OHCI or UHCI)

2. Using a HS hub with transaction translator in between

When the FS/LS device is connected to an HS hub, the root hub only sees
the HS hub devices attached to its port. The HS hub then translates the USB
transactions for the FS/LS devices.

When the host controller driver (HCD) recognizes that the attached device
is not HS capable it releases the ownership of that port and hands it over to the
companion host controller (cHC). The cHC is either an OHCI or UHCI controller
and is now responsible for this port. The particular cHC type depends on the
vendor of the EHCI controller5. Further a EHCI controller may have multiple
virtual companion host controllers.

EHCI Register Interface The EHCI register interface can be split up into
three parts and may have additional, vendor specific registers as it is the case
on the PandaBoard. The overall registers size also depends on the number of
root hub ports.

1. PCI Configuration Registers

2. Host Controller Capability Registers

3. Host Controller Operational Registers

It is important to emphasize that the EHCI hardware registers not form a con-
tiguous memory region. Each of the three parts may be located somewhere else.
However, location of the operational registers are not completely independent
of the capability registers because the CAPLENGTH specify there the operational
registers start relative to the capability register base.

4.3 Human Interface Device (HID) Class

As mentioned above, every USB device falls into one device class with its corre-
sponding subclasses and protocols6. The human interface device (HID) class [6]
contains generic definitions and operational models for (mostly7) input devices
such as keyboard and mouse.

The good thing about the device classes is the fact that every device of a
certain class should obey the class specification. For instance, the HID device
class defines the minimum requirements that every HID device should provide.
This enables to have universal drivers e.g. an USB keyboard driver works for
every USB keyboard which follows the HID specification no matter how many
fancy buttons it has. The basic functionality stays the same.

The HID class basically distinguishes two different protocols that can be
used: keyboard and mouse (or none). All HID devices are either low-speed
devices or high-speed devices the latter is more of an exception.

5The cHC implements the UHCI if it is produced by Intel or VIA and implements OHCI
otherwise.

6If there is a special device, it may fall into the ”Vendor Specific” class.
7force feedback of joysticks and LED indicators may be viewed as output

21

4.3.1 Accessing the Device

Every HID class device must implement two different pipes (Section 4.4). First
the default control pipe that is used for configuration of the device and secondly
an interrupt pipe that transfers information about the events (e.g. key-down /
key-up) to the client driver.

4.3.2 Class Specific Details

Since the HID class deals with human input, there are special definitions con-
cerning the different type / sources of input. HID devices use a special data
format which is called a report. A report can be composed of different items
and collections and can be parsed by the USB client driver to extract the related
information. Referring to the HID specification [6] for a complete list of class
specific details. The following three paragraphs emphasize some specialties.

Country Codes The HID reports may contain location information of the
device represented as a country code. This information can be used to load a
language dependent driver setting for instance the Japanese keyboard layout
when the Japanese country code was read.

Units For sensor devices which are also belonging to the HID class it is im-
portant to know the unit of the absolute values in the report. The unit item
of the report defines how the value should be interpreted e.g. a temperature as
Kelvin or Fahrenheit. The HID specification has a set of predefined units.

Physical Information In order to distinguish what triggered the input event,
physical descriptors contain an information qualifier and a designator value of
the event e.g. the left hand. That way multiple sensors of the same type can
be attached and the driver can distinguish if the event happened at the left or
the right hand.

4.4 Transfer and Endpoint Types

The dataflow between host and the USB device is abstracted through so-called
pipes. Each pipe has an associated endpoint (Section 4.1.4) and may be uni-
directional or bi-directional. Pipes support either message based communication
or stream based communication depending on the transfer type. There are four
different USB transfer types each of which has its own characteristics.

4.4.1 USB Transfer Types

Control Transfers Transfers of type control are message based and are used
to control the device e.g. set a new device address or read descriptors. The
messages over the control pipe have a clear defined format and may contain a
data stage that can go in either direction. Every device must provide a control
endpoint which is referred to as the default control pipe or endpoint zero.

22

Interrupt Data Transfers Transfers of type interrupt are of event based
nature and have stream characteristics. Interrupt transfer have a maximum
payload. Once the transfer is started it is polled every x ms. If an event
happens the device initiate the transfer and finishes the transfer. Otherwise the
transfer stays in unfinished state.

Isochronus Data Transfers Transfers of type isochronus are stream based
and are used to transfer data on a regular basis. The bandwidth for the
isochronus transfers are pre-negotiated in advance to ensure that the data can
be transferred within the required latency. As an example for this one may
consider a video camera that transfers a video frame every 40ms.

Bulk Data Transfers Transfers of type bulk data are stream based and can
transfer relatively large amounts of data from or to the device. Bulk data
transfers have no guaranteed bandwidth and use the remaining i.e. the one that
is not occupied by interrupt or isochronus transfers.

23

Chapter 5

Pandaboard

This part of the documentation first gives an overview of the hardware related
issues using the PandaBoard [18] and secondly how they are solved in the Pand-
aBoard specific implementation of Barrelfish. The content of this section briefly
describes on a high level point of view the hardware initialization steps. For
detailed register set up one may consider the OMAPP44xx SoC TRM [27] and
the PandaBoard reference manual [18].

5.1 The PandaBoard

The PandaBoard is an ARMv7 based development board using the Texas In-
struments OMAP44xx SoC [27]. The detailed hardware specifications can be
obtained from the PandaBoard project website1.

First, consider the x86 architecture where the processor die contains the
central processing unit (CPU) and possibly a memory controller. The other
devices such as the PCI bus reside on the main board. In contrast to that,
SoC based architectures have every device already integrated in the chip die.
In SoC designs such as the OMAP44xx the devices in the chip are connected to
receivers on the board via connector pins.

These connectors pins are shared and have to be muxed with the correct
DPAD configurations in order to connect the wires correctly. These input /
output pins can either be connected to an integrated device in the SoC e.g. the
USB host subsystem or driven manually by the general purpose input output
(GPIO) registers. In order to make USB work on the PandaBoard both ways
are needed.

5.2 The USB Subsystem

The Pandaboard’s USB subsystem can be divided into two major parts. On the
one hand there are the devices which are integrated in the OMAP44xx SoC and
on the other hand the board itself which provides the corresponding endpoints
and receivers to the devices in the SoC.

1http://www.pandaboard.org

24

http://www.pandaboard.org

Even the PandaBoard looks quite simple at a first glance, getting the USB
subsystem running involves quite an amount of work and the particular steps
have t be executed in the right order. We will first have a look at the SoC
related setup and then on the board specific initialization sequence.

5.2.1 USB Host Subsystem in the OMAP44xx SoC

The OMAPP44xx technical reference manual [27] describes the three different
USB subsystems of the OMAP44xx each of them serves different purposes. For
enabling USB host functionality only the first of them is of interest.

• High-Speed Multiport USB Host Subsystem

• High-Speed USB OTG Controller

• Full-Speed USB Host Controller

In contrast to the high-speed multiport USB host subsystem, the OTG (on-
the-go) controller is a device mode controller which is connected to the mini
USB port of the board. This port is used to provide power and boot Barrelfish
on the PandaBoard via usbboot [16]. The full-speed USB host controller is only
connected to the finger print reader and hence not to the USB ports on the
board.

The following section describes the building blocks of the HS USB host
subsystem and how initialize it.

5.2.2 High-Speed Multiport USB Host Subsystem

The HS USB host subsystem is composed of several modules as shown in Figure
5.1. It is important to keep in mind, that there are many other modules which
are related to the USB subsystem and have also to be initialized because of the
dependencies.

HS USB Host Controller

This module is the heart of the USB subsystem and contains two different host
controller implementations. The EHCI controller for high-speed devices and
an OHCI controller for full-/low-speed devices. The OHCI controller can be
viewed as the companion controller. However, since there is only a HS USB hub
connected to one of the root hub ports the OHCI controller can be left aside.
The root hub has tree ports, two of which are connected to the channels.

USBTLL and Channels

The USBTLL module on the OMAP44xx SoC can be used to translate the
signal from the host controllers to various other encodings for full-/low-speed
modes to match the receiving modules on the board.

There are two channels connected to the ports of the root hub. Each channel
is owned by exactly one of the two host controllers and therefore provide either
high-speed or full-/low-speed support2.

2On full-/low-speed mode the channel is connected to a serial controller (TTL) or a serial
PHY

25

ULPI Receiver
(U7)

OMAP4460 SoC

PRCM

HS UBS Host Subsystem

HS USB Host
Controller

EHCICortex A9
Interrupt
Controller

USBTLL

OHCI

Channel 0

Channel 1

Clock and
Power

Interrupts

ULPI

ULPI

UMTI

UMTI

USBB1

USBB2

L3
Interconnect

L4 CFG
Interconnect

Figure 5.1: OMAP44xx HS USB Subsystem

Each of the two channels can be configured independently. For using the
EHCI controller with high-speed USB access, the USBTLL module is bypassed
and the channel mode is left in its default state (UMTI-to-UPLI controller). In
general, the non-ULPI channel modes differ in the number and configuration of
the serial lines.

If a channel is connected to the EHCI controller it has to be configured to
use the ULPI mode and hence bypasses the USBTLL module entirely. When
the OHCI controller is used, the channel needs to be in one of the different serial
modes and the USBTLL module is used. For the PandaBoard only channel 0 is
relevant.

Errata According to the OMAP44xx Silicon Errata [26] there is a bug in this
part of the HS USB subsystem. The problem is the following: Assume a channel
is configured to use the ULPI interface and provides high-speed functionality.
Then that channel cannot be reconfigured to use the UMTI mode and full-
/low-speed functionality anymore i.e. it cannot be handed over to the OHCI
controller.

This implies that if there is a high-speed device connected to a channel and
after that a full speed device is connected, the channel fails to operate 3. As
a workaround, one can use a HS hub with transaction translator to connect
full-speed USB devices or to configure the channel as full-speed in first place.

3A signal will stay high forever

26

Register Setting
CM SYS CLKSEL Set the system clock to 38.4 MHz

(0x7)
CM L4PER CLKSTCTRL L4PER interconnect clock forced

wakeup
CM L3INIT HSUSBHOST CLKCTRL enable the HS USB host module

with all functional clocks
CM L3INIT HSUSBTLL CLKCTRL enable the USB TLL module and

the optional channel 0 clock.
CM L3INIT FSUSB CLKCTRL explicitly enable the FS USB mod-

ule (0x2)
CM L3INIT USBPHY CLKCTRL Enable the USBPHY and enable

the optional functional clock.
SCRM AUXCLK3 enable (bit 8) and set divider to 2

(bit 16)

Table 5.1: Clock and Power Settings

Initializing the HS USB Host Subsystem

To enable a module it basically needs power and a clock. The HS USB host
subsystem module is not supplied with a clock and power by default. Therefore
we need to set the correct values into the power, reset and clock management
(PRCM) registers.

Table 5.1 on page 27 shows an overview of the registers and a description
of the settings to apply. Currently is done at the platform dependent kernel
initialization stage of the boot process (refer to Section 5.3.1 for more details).
Since, the module initialization is in fact the work of a PRCM driver, it is
supposed to be moved into a SoC driver (refer to the section about future work
in the end of the documentation)

Clock Requirements It has to be mentioned, that simply applying a clock
to the USB subsystem may not work. The PandaBoard ES manual [18] states
that the clock has to be exactly 19.2 MHz. To achieve this, the system clock is
set to 38.4 MHz and then setting the divider for the reference clock to 2 giving
the required 19.2 MHz.

Module Initialization Sequence As soon as the module has clock and
power, the hardware can be accessed and configured. The OMAP44xx TRM
enumerates the sequence of operations to enable and reset the modules of the
HS USB host subsystem inside the OMAP44xx. The following enumeration
summarizes the steps.

1. Reset the USBTLL Module: USBTLL SYSCONFIG = 0x2

2. Wait until the reset is done.

3. Set up USBTLL Module by writing USBTLL SYSCONFIG register

4. Enable the USBTLL interrupts

27

5. Reset the host controller module: UUH SYSCONFIG = 0x1

6. Wait until the reset is done.

7. Set the host controller module features by writing to the UUH SYSCONFIG

register

8. Set the host configuration to use the external PHY by writing to the
UUH HOSTCONFG register

Connection with the board

The steps in the previous section only enable the USB submodule hardware
inside the OMAPP44xx SoC. However, the wires of the channel are ending up
in a dead end and will not reach the IO pins of the SoC and hence there is no
connection to the board hardware. By activating the correct configuration of
the DPAD registers, the signals will be propagated to the IO pins and further
be received by the corresponding hardware on the board. Table 5.2 shows an
overview over all the needed DPAD configuration settings with the corresponding
mux mode.

Mux Register Muxmode IO Settings
USBB1 ULPITLL CLK 4 (usbb1) input + pull-down
USBB1 ULPITLL DIR 4 (usbb1) input + pull-down
USBB1 ULPITLL STP 4 (usbb1) output
USBB1 ULPITLL NXT 4 (usbb1) input + pull-down
USBB1 ULPITLL DAT0 4 (usbb1) input + pull-down
USBB1 ULPITLL DAT1 4 (usbb1) input + pull-down
USBB1 ULPITLL DAT2 4 (usbb1) input + pull-down
USBB1 ULPITLL DAT3 4 (usbb1) input + pull-down
USBB1 ULPITLL DAT4 4 (usbb1) input + pull-down
USBB1 ULPITLL DAT5 4 (usbb1) input + pull-down
USBB1 ULPITLL DAT6 4 (usbb1) input + pull-down
USBB1 ULPITLL DAT7 4 (usbb1) input + pull-down
FREF CLK3 OUT 0 (fref clk 3) output
KPD COL2 3 (GPIO 1) output
GPMC WAIT1 3 (GPIO 62) output

Table 5.2: Settings of the CONTROL CORE PADs

5.2.3 USB system on the board

The USB system on the PandaBoard consists of two parts as shown in Figure 5.2.
First the ULPI receiver (U7) which connects to the IO pins of the OMAP44xx.
The purpose of the receiver is to transform the ULPI signal from the OMAP44xx
into the USB signal format needed by the USB hub (U8). The ULPI receiver is
connected to the upstream port of the USB/Ethernet hub (U8).

28

ULPI Receiver
(U7)

OMAP4460 SoC

USB Hub (U8)

USB (2x) &
RJ-45 (J9)

Expansion
Connector

(J6)

GPIO_1

GPIO_62

FREF_CLK3

USBB1
ULPIPHY

ULPI Receiver

REFCLK

RESET

Power Cirtuit
(U9)

Power Out

Enable

USB PHY USB Uplink

Power In

Port 1

Port 2

Port 3

Port 4

Port 5

Figure 5.2: Pandaboard USB System

The PandaBoard ES Input Power Circuitry

The USB specification allows devices to consume up to up to 500mA from the
bus. With multiple ports on a hub, this sums up and therefore the power
supplied by the USB OTG port is not enough because the same rule applies
here again: USB delivers only 500mA. This implies that the USB hub needs an
additional power source.

The HS USB hub gets its power by an additional power circuit which is
connected to an external power supply. However, just plugging the cable into the
5V connector of the PandaBoard does not provide power to the USB/Ethernet
hub. To forward the power to the hub, the circuitry has to be enabled explicitly
i.e. driving the GPIO 1 pin to high in this case.

System overview

The big picture of the USB subsystem is shown in Figure 5.2. The PandaBoard
has four different main modules that are related to the USB subsystem:

1. the OMAPP44xx SoC which the USB host controllers

2. the ULPI receiver (U7) which connects to the SoC.

3. a Power circuit (U9) which provides power to the hub

4. the high speed USB hub with 5 ports.

Not all ports of the USB hub can be used freely. One of them is connected
to a Ethernet device and hence is already occupied. The next two of ports are

29

wired to the physical ports (J9) and are usable. The last two are only usable,
when an expansion connector is present on the board (J6).

Initialization of the USB hub

The initialization sequence for the USB hub on the PandaBoard involves several
steps which have to be executed in the correct order. Otherwise the hub may
not be reset correctly and fails to operate.

As mentioned before, there are specific requirements for the clock and hence
it is one of the most crucial steps to provide the ULPI transceiver with the
correct clock. This is done by setting the SYSCLK to 38.4 MHz and derive the
AUXCLK3 from it divided by 2. The AUXCLK3 is then forwarded to the FREF CLK3

which is muxed to one of the IO pins and in the end connected to the ULIP
transceiver.

Initialization Sequence As soon as all the power, mux and clock configu-
ration of the devices inside the OMAP44xx SoC is completed, the USB devices
on the board itself can be reset and enabled. The following list shows the steps
to be performed:

1. Reset the USB hub: drive GPIO 1 to low

2. Reset the USB PHY: drive GPIO 62 to low

3. Give the hardware time to reset

4. Initialze the HSUSB Host System of the OMAP44xx

5. Enable the power to the USB hub again: drive GPIO 1 to high

6. Enable the USB hub again: drive GPIO 62 to high

7. Perform a soft reset of the ULPI PHY through the ULPI interface

One may have noticed that the initialization of the HS USB subsystem inside
the OMAP44xx is encapsulated in the board’s initialization sequence.

The last step will perform a reset of the ULPI PHY between the OMAP44xx
and the ULPI receiver using the ULPI protocol. The following section shows
an example how to execute ULPI commands.

5.2.4 Verifying the Setup using the ULPI interface

The EHCI controller on the OMAP44xx contains a additional registers that can
be used for debugging and configuring purposes of the ULPI transceiver. Table
5.3 shows the layout of the ULPI register of the EHCI controller4. To read or
write something from the external ULPI receiver on the board involves some
steps that have to be done. Listing 5.1 shows an example how the vendor ID
can be read5. The use of Mackerel for this is possible here, but plain register
accesses simplify the example here. For a Mackerel version one may consider
the initialization sequence in the code.

4the ports correspond to the two channels.
5The address of the vendor register depends on the receiver

30

Bits Field Name Description
31 CONTROL Control/Status of the ULPI register access

30:28 RESERVED -
27:24 PORTSEL port selector (1 or 2)
23:22 OPSEL register access is write or read
21:16 REGADDD direct ULPI register address
15:8 EXTREGADD extended register addrss
7:0 RDWRDATA data field

Table 5.3: EHCI INSNREG05 ULPI Register

volat i le uint32 t∗ u l p i r e g = (uint32 t ∗)EHCI ULPI REG ;

/∗ i n i t i a t e a new ULPI ac c e s s ∗/
∗(u l p i r e g) = (ULPI REG VENDOR | ULPI OP READ |

ULPI PORT 1 | ULPI CTRL START) ;

/∗ wait t i l l the ULPI ac c e s s i s f i n i s h e d ∗/
while (∗ (u l p i r e g) & ULPI CTRL START) {

/∗ no−op ∗/
}

/∗ read out the vendor id ∗/
uint8 t vendor id = ∗(u l p i r e g) & 0xFF ;

Listing 5.1: Reading out the ULPI Vendor id

31

The supported access modes and registers are specified in the manual of the
respective ULPI transceiver. For the PandaBoard this is the SMSC USB33200
[22].

5.3 Barrelfish on PandaBoard

As already mentioned before, Barrelfish on the ARM architecture has not the
same functionality as on the x86 architecture. For the development of user-level
device drivers, the missing implementations in the ARM version of Barrelfish
had to be added. This involved changes in the kernel as well as special domains
such as init and monitor.

There are tree main points that have to be implemented:

• Hardware initialization (enabling of clocks and power)

• Obtaining the device capability

• Interrupt handling

This section will briefly discuss the missing functionality and how the needed
functionality is added to the system.

5.3.1 HS USB Host Subsystem Initialization

On x86 the devices are located on the PCI bus in general. Therefore the PCI
domain takes over the initial configuration. On ARM this is not the case and
the SoC sub modules need to be initialized otherwise.

The steps needed to initialize the HS USB Host Subsystem as shown in
the previous section, are currently performed in the kernel during system boot.
The code is executed in the architecture dependent part of the kernel before the
MMU is getting enabled.

However, it has to be emphasized that initializing hardware should not be
part of the kernel. Therefore, that part will be subject to change soon. The
hardware dependent initialization sequences are to be moved out of the kernel
into a chip dependent SoC driver. The other driver domains will only be started
when the SoC driver is done with initializing the hardware. Figure 5.3 shows
how the startup procedure may will look like in the future. How the SoC driver
is started and its responsibilities would fall out of the scope of this thesis and
hence only one idea is given.

In any case, to guarantee a platform independent and reusable device driver,
the device driver domains should not deal with platform specific initialization
tasks such as the HS USB subsystem initialization and therefore expect the
hardware to be in accessible state.

5.3.2 Getting the Device Capability

As explained before, on the x86 architecture the PCI domain gets the capability
of the whole PCI address space and hands over the capabilities of suitable range
to the device driver domains upon request. This is not possible on the ARM
architecture, because there is no PCI bus on the SoC and hence no PCI domain
that has the capability for all devices.

32

Domain Boundary Spawn with caps Messages

KalugaMonitor
1. Obtain the
device capability

SoC Driver

3. SoC driver initializes
hardware modules

2. Spawn the
SoC driver

4. Initialization done
message

USB Manager MMC Driver

5. Spawn other
driver domains

Figure 5.3: Barrelfish Startup with SoC Driver (Planned)

The capability space (CSPACE) is designed in such a way, that there are some
pre-defined slots where special can capabilities are stored. Without an PCI bus,
the ARM architecture does not make use of the IO slot in the TASKCN. This
unused slot can be used to store a capability spanning the whole device range
of the OMAP44xx6. This involves modifications in the kernel, init and monitor
domains.

Kernel Modifications

Creating new capabilities can only be done by the kernel. Listing 5.2 shows
the two additional code lines in the platform specific kernel startup. One has
to notice that the address ranges may differ between the two SoC designs. In
case the SoC has more than one core, this code has to be executed at least on
the core where Kaluga is running in the end. For the PandaBoard, the created
capability is of type DevFrame and spans the whole device range from 1GB to
2GB.

Init Modifications

The kernel places the capability in the CSPACE of the init domain. Init is re-
sponsible for spawning system critical OS services such as the monitor and
memserver. The monitor is a privileged user-level domain which is responsible
for handling privileged operations. The init domain needed to be slightly mod-

6It’s a point of discussion whether using a new slot instead of reusing the existing one is
the better design choice

33

struct c t e ∗ i ocap = c a p s l o c a t e s l o t (
CNODE(spawn state . taskcn) ,
TASKCN SLOT IO) ;

errval t e r r = caps c reate new (ObjType DevFrame ,
0x40000000 , 30 , 30 , iocap) ;

Listing 5.2: Kernel Modification for Adding the Device Range Capability

/∗ va r i ab l e d e f i n i t i o n s ∗/
struct mon i t o r b l o c k i n g r p c c l i e n t ∗ c l ;
errval t e r r ;

/∗ get the monitor b inding ∗/
c l = g e t mon i t o r b l o c k i n g r p c c l i e n t () ;

/∗ va r i a b l e s s t o r i n g the re turn va lue s ∗/
struct cap r e f r eque s t ed caps ;
errval t e code ;

/∗ invoke the monitor s e r v i c e ∗/
e r r = c l−>vtb l . g e t i o c ap (c l , &reques ted caps , &e code) ;

Listing 5.3: Requesting the Capability from Monitor

ified, that it copies the IO capability in to the very same slot in the CSPACE of
the monitor domain.

Obtaining the Capability

The monitor domain has now the needed capability in its CSPACE (IO slot of
the TASKCN). The monitor implements the monitor blocking interface which
already has a function to obtain the IO capability. Listing 5.3 shows how to
obtain it.

It has to be said, that device drivers should not request the capability from
monitor by their own. Instead they should be spawned with only a capability
spanning the device range. This is actually the way, how the USB subsystem is
spawned. (Section 6.2 and limitations below)

Limitations

The current implementation allows every domain to obtain the full device capa-
bility by invoking monitor. This may be a safety critical: there should be just
one process that is allowed to obtain this capability in order to prevent that two
domains are using the same device range concurrently. In general only Kaluga
i.e. the device manager should be able to obtain the device capability exactly

34

Host Controller x86 / x64 ARM
VFS initialization Executed Executed
Environment initialization Executed Executed
SKB Client connect Executed Skipped
SKB execute Executed Skipped
Octopus initialization Executed Executed
Boot modules initialization Executed Executed
Octopus barrier enter Executed Skipped
USB Manager start Skipped Executed
Watch for Cores Executed Skipped
Watch for PCI Root Bridge Executed Skipped
Watch for PCI Devices Executed Skipped
THCFinish Executed Executed

Table 5.4: Overview of Steps Executed by Kaluga

once. Kaluga then starts the device drivers with a capability that spans only
the needed sub range.

5.3.3 Driver Startup

On Barrelfish, Kaluga is responsible for starting up driver domains. So far,
Kaluga was not running on the OMAP44xx because it performed operations
that were not compatible with the OMAP44xx SoC. Most of them are not
needed anyway since the OMAP44xx does not have a PCI bus and the number
of cores is static7 and known in advance.

Kaluga Modifications

On the OMAP44xx, the incompatible steps are skipped and Kaluga is now
working on ARM. Table 5.4 shows the different steps and if they are executed
or skipped.

It has to be said, that the Kaluga API is currently subject to change and
the startup of the device drivers will be handled slightly different by Kaluga.
However, the high level steps that are executed when a device driver is started
are expected to stay more or less the same. The following list resembles the
startup process:

1. Request the device capability from monitor service (once)

2. Look up the driver modules

3. Split up the capability into smaller chunks

4. Marshall the command line arguments

5. Spawn the driver domain with the capability.

7x86 is not static in the sense that you may have an x86 machine with 2 and one with 4
cores. In contrast, a specific SoC design has always the same cores

35

The command line arguments for the USB Manager form a triple containing
the host controller type, the offset from the beginning of the capability and the
interrupt number. Currently these values are hard coded.

The device capability is stored in the ARGCN slot8. That way, each driver
domain is started with the needed capability and therefore does not need to
request it afterwards. The driver domain knows exactly where to look for the
capability and can map it in its own virtual address space. This not only sim-
plifies the initialization but also increases the security since the device manager
is aware of the spawned driver domains with the supplied capabilities i.e. no
two domains can request the same capability.

5.3.4 Interrupt handling

So far there was not support for registering interrupt handlers on ARM and the
only interrupt that could be enabled was the timer interrupt. Interrupts are
very important for driver design, because polling a register costs CPU cycles
those can be used in a more useful way. In this section, we will first have a look
on how it is done on x86 and then how this was adapted to work on ARM.

Interrupts on x86 On x86, when a new interrupt handler is registered, a
new interrupt vector is allocated and returned to the caller. These vectors are
allocated one after another. The caller then associates its own device interrupt
with the allocated vector by setting up interrupt routing entry in the APIC [4].
This way of interrupt routing cannot be adapted to the OMAP44xx platform,
since there is no APIC that supports routing of the interrupts.

Interrupts on ARM On the OMAP44xx SoC, each device already has its
interrupt number assigned. Hence, to setup a handler for a device interrupt,
the particular interrupt number must be activated explicitly. This implies that
instead of returning an interrupt vector, the interrupt number must be supplied
to the setup procedure.

Kernel Modifications

Every interrupt in Barrelfish is transformed into a message by the kernel. So far,
in the ARM version of the kernel the code to setup and handle the interrupts
has not been implemented.

The capability invocation handling of the ARM kernel was extended with
the functionality to deal with the capability for the interrupt table. Basically,
the x86 version could be adapted to work on ARM without much changes:
The handler function in the kernel stores interrupt number together with the
supplied local message passing (LMP) endpoint in the interrupt table. When an
interrupt occurs, the kernel does a lookup to get the endpoint in the table and
sends a message to it. The driver domain will eventually receive the message.

8With the API change, the ARGCN slot will contain a reference to another CNODE
containing all the capabilities needed instead of the just one

36

/∗ Al l o ca t e an IRQ on the arm plat t fo rm ∗/
rpc arm irq hand le (in cap ep , in uint32 i rq , out e r r v a l e r r) ;

Listing 5.4: Added Function to the Monitor Blocking Interface

Init Modifications

Barrelfish has a special capability for accessing the interrupt table. The init
domain was adapted to pass this capability to the monitor domain upon spawn.
can be done exactly the same way it is done on x86.

Monitor Modifications

So far, the changes that have been made do not differ fundamentally from their
respective x86 counterparts. This does not hold for the kernel monitor. To allow
activating a specific interrupt, the monitor blocking interface had to be extended
by an additional remote procedure call. Listing 5.4 shows the signature of the
new function. In addition to that, also the message handler functions for the
new RPC function needed to be created.

The way Monitor handles the new RPC call is similar to the existing one:
It uses the IRQ capability it got from init and passes over the endpoint and
the interrupt number to the kernel. However, monitor does not allocate a new
interrupt number, but uses the supplied irq parameter as the interrupt number.
Hence the caller does not get a vector back.

Barrelfish Library Modifications

In addition to the added RPC function in the monitor interface the correspond-
ing library functionality also had to be added. The library function abstracts
the whole message passing steps behind a single function call.

The signature of the new function is shown in Listing 5.5. The new API
function is very similar to the existing inthandler setup function in terms of
signature and semantics. The only difference is in the last argument, which is
now a normal integer and not a pointer i.e. the argument is used to pass the
interrupt number instead of getting the vector back.

The future Implementation

As one can see, the way interrupts are implemented on the ARM architecture
is as closely as possible to the x86 implementation. However the current imple-
mentation has a severe pitfall: Any process can initialize any interrupt number.
This may end up in conflicts where two domains want to set up the very same
interrupt number. The problem can be solved by introducing a new type of
capability which represents a single interrupt number. This interrupt capability
is then presented to the kernel upon calling the inthandler setup function.
Handling it that way also solves the problem that a driver domain has to know
its particular interrupt number of the device. However, this is out of the scope
of this thesis.

37

/∗∗
∗ \ b r i e f Setup an i n t e r r up t handler func t i on to r e c e i v e
∗ dev i ce i n t e r r up t s on the ARM plat form
∗
∗ \param handler Handler func t i on
∗ \param hand l e r a rg Argument passed to #handler
∗ \param i r q the IRQ number to a c t i v a t e
∗/

errval t i n thand l e r s e tup arm (i n t e r r up t h and l e r f n handler ,
void ∗ handler arg , uint32 t i r q) ;

Listing 5.5: Added Function to the Barrelfish Library

38

Chapter 6

System Design

The following chapter describes the architectural design of the USB subsystem
software and gives some details about the implementation. The USB subsys-
tem is based on the FreeBSD [8] implementation and was adapted to suite the
distributed architecture of Barrelfish.

6.1 USB Subsystem Architecture

This section shows how the USB subsystem is composed from a high level point
of view and briefly explains the responsibilities of the different modules. Figure
6.1 gives an overview of the system architecture. At the coarsest scale, the
system is composed of at least two domains running purely user space:

• USB Manager, a single instance in the whole system

• USB client drivers, one particular instance for each connected device

Each of the domains contains different interfaces and sub modules. The fol-
lowing subsections give a brief explanation of them and outline their responsi-
bilities. Later in this chapter a more detailed description for the most important
aspects will be given.

6.1.1 USB Manager

The USB Manager implements the required functionality of the two lowest layers
in the USB stack as shown in Figure 4.2 on page 19. As the name indicates, the
USB Manager domain is responsible for managing the different USB requests,
transfers and devices i.e. all the required USB host functionality.

The exported USB driver interface (USBDI) allows the USB client driver
domains to start/stop the transfers and to execute requests on the device. Sec-
tion 6.6 will give a detailed documentation of the interface. The USB Manager
itself is structured in a layered way with the host controller driver at the bottom
and the USB driver interface at the top. The layers basically correspond to the
layers of the USB stack.

39

USB Interconnect

Host Controller Hardware

Root Hub

Port 0 Port 1 Port 2 Port 3

USB Mass storage USB Keyboard

OHCI Controller
Driver

HCDI

UHCI Controller
Driver

HCDI

EHCI Controller
Driver

HCDI

xHCI Controller
Driver

HCDI

USB Driver Interface

USB Keyboard
Device Driver

USB Mass Storage
Device Driver

Hardware

Software

OHCI Companion
Controller

EHCI Controller

Domain
Boundary

Interface

libusb libusb

Module
Boundary

USB Hub Driver

USB Manager

USB Client Drivers

USB Hub Driver

Figure 6.1: USB Subsystem Architecture

Host Controller Driver (HCD)

To ensure the functionality of the USB Manager, at least one USB host controller
has to be configured before the USB Manager service is started. There exist
four different modules at the lowest layer of the USB Manager stack. The
modules handle the hardware specific details for each of the four different host
controllers1.

Each of the host controller modules implements the generic host controller
driver interface (HCDI) which abstracts the different host controller hardware
interfaces and operational models. The HCDI is only used by the USB driver,
i.e. only within the USB Manager, and is never directly accessed from any USB
client driver. Besides the initialization, the handling of interrupts has to be
done host controller specific as well.

Device Management

Each host controller maintains a list of attached devices on its owned ports2.
As soon as a new device is attached or a device is detached, the USB manager
handles the (de-)allocation of the device resources as well as the dealing with
the startup and shutdown of the corresponding USB client driver.

1Currently, there is only the EHCI controller implemented.
2With USB Rev. 2.0 each port of the root hub can be owned by either the EHCI controller

or one of its companion controller.

40

USB Hub Driver

As already explained in Section 4.1.2, hub devices are special USB device. The
USB Manager has an integrated USB hub driver that handles all the configura-
tion and state management of the attached hub devices, hence there is never a
separate domain for a hub device driver. Whether or not to separate the USB
hub driver from the USB Manager may be a point of argument. Section 6.4 will
show why it might be beneficial to treat the USB hub drivers special.

Transfer and Request Management

The USB Manager handles the different transfers and USB device requests is-
sued by the USB client drivers or by the integrated hub driver. This involves
managing the different transfer queues, checking for transfer completion and
setting up the corresponding data structures for tracking the transfers. The
exported HCDI is used to deal with the host controller specific details of the
transfer management process.

6.1.2 USB Client Driver

Every USB client driver runs in a separate domain and uses the exported USB
manager interface (Section 6.6) to communicate with its device. In general, the
USB driver does not deal with the USB Manager interface directly but make
use of the functionality provided by the USB library.

Each USB client driver exports the USB device driver interface (Section 6.8)
to allow the USB Manager sending notifications when the device is detached or
the transfer has completed.

In addition to that, every USB client driver exports the device specific in-
terface to allow other domains to use the functionality of the device e.g. the
keyboard interface. Device specific interfaces fall not into the scope of this thesis
and are hence just mentioned here.

6.1.3 USB Library

Each domain in the USB subsystem, the USB Manager and the USB client
drivers, links to the USB library. The USB library is used for two main purposes.

First, the USB library contains general data structure definitions such as
descriptors and error codes as well as the related functions to manipulate them.
It has to be emphasized, that some of the data structures exist also in an
extended form in the USB Manager.

The second purpose of the USB library is to provide a simplified way to
invoke the USB Manager service. The underlying details such as the connection
state are hidden from the USB client drivers. By doing that, added sanity checks
ensure correct data format, request validation and error handling. This will be
given in more detail in Section 6.7.

6.2 USB Subsystem startup

The startup process of the whole USB subsystem involves several steps and the
collaboration of different system domains. In general, the startup process can

41

Host Controller
with root hub

Hardware

Software

USB Keyboard

Domain Boundary

USB Manager

USBDI

USB Client Driver
(Keyboard) Interface / Library

Basic System Startup

Reaction to Attachment

3a

4

Kaluga

Monitor

1 2

Not implemented
behavior

5a

5b

7a

7b

7 8

9

10

Spawn
3b

6

libusb

Figure 6.2: USB Subsystem startup

be divided into two parts which happen as a reaction to different events:

• USB Manager startup on system start

• USB client driver startup on a device-attach-event

Figure 6.2 shows the sequence scheme with the steps to be executed when the
USB subsystem is spawned (solid arrows) and the reaction to a device attached
event (dotted arrows). This section gives only a high level description of the
reaction to the attach event. For further details how the attachment works refer
to Section 6.4.

Initial System State

The initial situation for the figure is as follows: all the necessary OS services
have been started and are ready to serve requests. The hardware is initialized
and can be accessed i.e. the SoC specific initialization sequence was executed.
However the host controller hardware has not yet been configured. Kaluga is
running and is about to spawn the device driver domains.

6.2.1 Preparations to Spawn in Kaluga

As already explained in Section 3.4, Kaluga [31] is responsible for starting the
device drivers in the Barrelfish operating system. During the initialization pro-
cess, Kaluga parses the modules and finally reach the point where the USB
Manager is about to be started. Currently, the startup routine is hard coded in
Kaluga and will be subject to change to support a more general way for starting

42

device drivers on SoC3. Kaluga locates the device driver binary by looking it
up in the modules and gets the related driver information. Next, the required
arguments for the spawning procedure have to be compiled.

In the following sections, the numbers in brackets (x) denote the step indi-
cated by an arrow in Figure 6.2.

Prepare the Device Capability

After the driver information of the USB Manager module are found, Kaluga re-
quests the needed capability from the kernel monitor by invoking get io cap()

(1) and gets it back as a return value from the RCP invocation (2). After this
step Kaluga possesses a device frame capability of the whole 1GB device range
of the OMAP44xx4.

Next, Kaluga spits up the big capability into smaller chunks. Since we are
dealing with memory ranges we can make use of the memory manager library
(libmm) which will do the splitting of the capability.

Command Line Arguments

After the previous step has completed, the capability has now a range that is
suitable for the USB Manager. The physical start address represented by the
capability is known and the offset can be calculated5.

The next step is compiling the command line arguments together. Table
6.1 shows how the USB Manager expects the command line arguments to be
formatted. The number of expected arguments differ depending on which archi-
tecture the USB Manager is executed. The reason for the two different formats
is the way interrupts are handled on the two architectures.

As already explained in Section 5.3.4, the OMAP44xx SoC does not have
an advanced programmable interrupt controller (APIC) [4] and thus cannot
route device interrupts to arbitrary interrupt lines to the processor. Hence the
interrupt number of the device has to be supplied via an argument6.

• The first argument tells the USB Manager which host controller is to be
initialized. The values for the first argument are either "ohci", "uhci",
"ehci" or "xhci". Currently there is just the EHCI implementation avail-
able (referring to Section 7.2 for further details on limitations)

• The next parameter is the offset from the beginning of the supplied device
capability to the location where the host controller registers start. Ob-
viously this value should be as close to zero as possible, to avoid that a
driver can write into other devices registers.

• The third parameter is architecture dependent and contains the corre-
sponding interrupt number of the device. The device driver domain, here
the USB Manager, parses the interrupt number and enables the interrupt
with that number.

3See Section 7.3 on page 70 for a discussion about that topic
4It is also possible on other SoC, the kernel has to ensure that the correct range is covered

and the capability is placed into the IO slot
5An offset of 0 would be preferable, but due to 4kb page constraints this is not always

possible
6An alternative would be to pass a capability representing the interrupt

43

Architecture Parameters Example
ARM [host controller] [offset] [IRQ] ehci 0x1000 109
x86 [host controller] [offset] ehci 0x0

Table 6.1: USB Manager Command Line Arguments

The parsing of the command line arguments by the USB Manager is designed
in such a way that multiple host controllers can be started. Each host controller
needs an argument tuple with 2 respectively 3 elements. Thus, by concatenating
multiple such tuples one after another, the USB Manager will parse those and
initializes a host controller for each tuple7. The current implementation just
deals with the EHCI host controller type and ignores others.

6.2.2 Spawn

Kaluga has now everything ready to initiate the spawn of the USB Manager.
The spawning of new driver domains is not done by Kaluga itself, but is deferred
like any other domain to the spawn domain. The only difference is that the
driver domain is spawned with the capability. The request is sent via a message
(3a) containing the name of the driver binary as well as the command line
arguments and the capability for the ARGCN slot. The spawn domain starts the
USB manager (3b).

6.2.3 USB Manager

The first step of the USB Manager is checking the command line arguments for
the correct count and mapping the capability in the ARGCN slot in its own virtual
address space. If the USB Manager fails to map the device frame capability or
there is a wrong number of supplied arguments, the domain exists with an error
condition.

As soon as the device capability is mapped, the command line parameters
are parsed. The Mackerel base address is set as the address of the mapped
capability plus the offset from the command line arguments. Depending on
the architecture, the specific interrupt is activated or a new interrupt vector is
allocated and the interrupt routing is set up.

The USB Manager starts accessing the host controller hardware registers
and executes the needed configuration steps depending on the host controller
type (4). Section 6.3 shows the steps for the EHCI controller. After this step
the host controller hardware is operational. During the configuration process,
the first USB device is also initialized: The root hub. The root hub is always
present and emulated by the host controller driver.

In the last step, the USB Manager exports its service to enable the client
driver domains connecting to the USB manager (refer to Section 6.6 for the
interface specification). The USB Manager is now ready to use and waits for
new devices to be attached.

7The device manager has to ensure, that no controller is initialized twice

44

6.2.4 Device Attachment

This section gives a high level view of steps involved when a new device is at-
tached to the USB. Section 6.4 will outline some specific points in more detail.
A new device is attached (5a) on one of the root hub ports8 and an interrupt
(port change detected) is risen (5b) by the host controller hardware. The inter-
rupt handler function of the USB Manager defers the handling of the interrupt
to the host controller specific interrupt handler.

The host controller specific handler function reads the interrupt status regis-
ter of the host controller hardware to determine the type of the interrupt. With
a port change detected interrupt, the root hub ports need to be explored and
the USB Manager initiates the exploration process.

There are two possibilities how the exploration process can end: either a
device was removed or a device was connected9. We are interested in the latter
case. The information from the exploration process on the root hub (6) tells the
USB Manager to allocate a new device in its device list.

The newly allocated device gets its address and is configured with its ini-
tial configuration by the USB Manager. During the configuration process, the
device information are read and parsed such that the USB client driver can be
determined. The USB Manager performs a lookup for the client driver binary
using the class and vendor information read from the device. A new domain is
spawned (7) if a suitable binary exists.

Detour via Kaluga The way the USB Client drivers are spawned is a sim-
plified way. The USB Manager should not be aware of the different client driver
binaries available in the system and therefore pass the information about the
new device to Kaluga (7a). Kaluga processes the information, keeps track of
the devices and looks up the most suitable device driver binary. If there is one,
Kaluga initiates the spawning process of the new driver domain (7b). This way,
Kaluga is always aware of the current driver domains running in the system.
However, this functionality is currently not implemented.

6.2.5 USB Client Driver

The first step that every USB client driver has to do is initializing the USB
library. As part of the initialization sequence the USB library binds to the
USB Manager (8). Section 6.7 will give more details about the initialization
and connecting process. As soon as the connection to the USB Manager is
established the USB client driver starts configuring the device by allocating the
needed transfers and registering of the callback functions. The USB Manager
translates the requests and transfers using the HCDI (9) to the host controller
specific formats and sends notifications about the outcome of the transfers to the
client driver. The transfers are executed on the device via the USB interconnect
(10).

Capabilities USB client drivers differ from normal device drivers in the way
that they do not need a device frame capability for accessing their device, since

8In general this can be any port of any hub. The steps on normal hubs differ to the root
hub in terms of interrupt handling

9This can be distinguished by evaluating the port status, see Section 6.4.2

45

Domain Boundary

Interface / Library

Points to

USB Manager

Struct

Variable / Fields

Host Controller List

usb_host_controller

next

hcdi_functions

controller

devices

interrupt_handler

Host Controller
Driver Interface

usb_ehci_hc

usb_device[127]

transfer_queues

Mackerel Base

roothub data

usb_controller

QH lists

Is related with

Figure 6.3: Host Controller Software Struct

USB function devices do not have any memory mapped registers and are ac-
cessed entirely through the USB interconnect. The USB host controller is the
only device of the USB subsystem that has memory mapped registers. It is an
open point of discussion whether or not each USB client driver should have a
capability for its own device.

6.3 USB Host Controller

Each host controller is represented in the USB Manager with two different data
structures.

• The generic USB host controller structure contains hardware independent
data which is used at the USB driver level.

• The hardware dependent host controller structure contains all the hard-
ware specific details which are abstracted by the generic part.

Figure 6.3 shows a simplified structure. The generic host controllers form a dou-
bly linked list, since the USB Manager may be in charge of managing multiple
host controllers, e.g. companion controllers, at once.

6.3.1 Initializing the Generic Part

The generic part contains pointers and values which are filled in during the ini-
tialization procedure of the specific host controller. The generic host controller

46

Offset Size Identifier Description
00h 1 CAPLENGTH Capability Register Length
01h 1 Reserved N/A
02h 2 HCIVERSION Interface Version Number
04h 4 HCSPARAMS Structural Parameters
08h 4 HCCPARAMS Capability Parameters
0Ch 8 HCSP-PORTROUTE Companion Controller Port Route

Table 6.2: EHCI Capability Registers

contains a pointer to the hardware specific host controller as well as a field in-
dicating the type of the controller. The transfer queues track the created USB
transfers and are filled upon setting up new USB transfers.

6.3.2 Initializing the EHCI Controller

This section explains how the hardware dependent part is initialized by using
the example of the EHCI controller. The data structure of the hardware specific
host controller contains many hardware dependent fields such as the Mackerel
base or the queue heads (QH) lists for the transfers. Since the host controller
driver is required to emulate the root hub device, the related data structures
and values for the root hub also have to be stored. One may notice, that the
two controller structures are connected in a circular fashion.

Initialize the Mackerel Base

The register interface of the EHCI controller consists of three parts. First, there
are the PCI related registers, which are not of interest here as they are used by
the PCI domain. Next, there are the capability registers (Table 6.2) and the
operational registers (table 6.3). This two registers sets can be arbitrary far
apart from each other and therefore the Mackerel base initialization has to be
done in tree steps.

1. Initialize the capability register base part of the Mackerel base

2. Read the CAPLENGTH register to get the offset

3. Initialize the operational register base part of the Mackerel base

After the initialization of the Mackerel base, both register regions are accessible
via Mackerel and the configuration sequence of the EHCI controller can be
started.

Host Controller Initialization

Section 4.1 of the EHCI specification [13] defines the steps that have to be done
for a proper initialization of the host controller hardware. The following list
summarizes how these steps are implemented in the initialization procedure.

1. Halting10 the controller and reset the controller hardware

10It may be the case, that the hardware was used by the BIOS on system boot

47

Offset Size Identifier Description
00h 4 USBCMD USB Command
04h 4 USBSTS USB Status
08h 4 USBINTR USB Interrupt Enable
0Ch 4 FRINDEX USB Frame Index
10h 4 CTRLDSSEGMENT 4G Selector (64 Bit Addressing)
14h 4 PERIODICLISTBASE Frame List Base Address
18h 4 ASYNCLISTADDR Next Asynchronus List Address
1C-3Fh 4 Reserved -
40h 4 CONFIGFLAG Configured Flag Register
44h 4 PORTSC(1-N PORTS) Port Status / Control

Table 6.3: EHCI Operational Registers

2. Allocate the initial queue heads for the transfer lists.

3. Initialize interrupt transfer queues each with a terminate queue head.

4. Link the queue heads that they form the 2ms intervals

5. Allocate and initialize the periodic frame list and store address in register

6. Initialize the asynchronous queue and store address in register

7. Allocate and initialize the root hub device

8. Set the USBCMD register values

9. Take over port ownership of all ports

10. Enable the interrupts in the USBINTR register

11. Enable power on the root hub ports

As soon as these steps are executed, the host controller is up and running.
For a detailed sequence of instructions for the steps in the enumeration above,
please refer to the code. Keep in mind that the USB Manager will have to deal
with interrupts after this step completes thus the interrupt handler must be set
beforehand.

6.4 Device Attachment Process

The previous section about subsystem startup outlined the steps to be done on
a domain level view. This section gives some implementation specific details as
well as some detailed steps to be performed inside the USB library and the USB
manager.

6.4.1 New Device Attached Event

When a new device is attached to a hub port, an interrupt is risen. However,
depending on the point of attachment i.e. directly at the root hub or on another
hub, a different interrupt will happen and therefore the interrupt handling is a
bit different:

48

1. root hub If a device is directly attached to one of the root hub ports then
the port change detected bit of the USBSTS register is driven high. The host
controller knows that something changed on the ports of the root hub and can
initiate the exploration process.

2. Normal hub Devices that are connected to a hub other than the root
hub, do not change anything on the ports of the root hub. Each hub - except
the root hub - starts an interrupt transfer upon initialization. As soon as a new
device is attached on one of the ports, the hub device executes the transfer and
the host controller recognizes a transfer complete interrupt. The data of the
interrupt transfer contains the hub status.

6.4.2 Exploring Hub Ports

As soon as the interrupt was fired and determined on which hub and port some-
thing has changed, the hub port can be explored to see what has happened. In
the exploration process of a hub, the hub driver executes a GET STATUS requests
to obtain the state of each of a port. Listing 6.1 shows an example how to
such a request is executed. The return value of the request is a four byte data
structure containing two words: wPortStatus and wPortChange (see [19] for a
detailed definition). To determine if there is a new device or not, two bits of
interest:

• C PORT CONNECTION: This bit indicates whether there was a change on the
connect status (bit = 1) of this port or not (bit = 0).

• PORT CONNECTION: This bit indicates if there is something connected to
that port (bit = 1) or not (bit = 0)

By a combination of the information from these two bits it is clear that a
new device was attached on that port when there was a change in the current
connect status (C PORT CONNECTION = 1) and the there is something connected
to that port (PORT CONNECTION = 1).

/∗ po in t e r to a hub device , must be a va l i d po in t e r ∗/
struct usb dev i c e ∗hub ;

/∗ port to get the status , must be a va l i d port ∗/
uint8 t port ;

/∗ re turn value f o r the port s t a tu s ∗/
struct usb hub por t s ta tu s ps ;

/∗ execute the r eques t ∗/
e r r = usb hub ge t po r t s t a tu s (hub , port , &ps) ;

Listing 6.1: Getting the Port Status of a Hub

49

6.4.3 Device Allocation and Initialization

As soon as there is a new device attached condition detected, we know all the
needed information (especially which port and which hub it is attached) to
allocate new device. During the allocation process, the device gets its initial
configuration.

Reset To ensure that the device is in a known state it has to be reset first.
Resetting an USB device is different than resetting a traditional hardware de-
vice. The device reset is not done on the device itself but rather on the hub
port it is connected to the USB.

In order to do the actual reset, a SET FEATURE request with the PORT RESET

feature selector is executed. The request is sent to the port of the hub where the
device is located. It has to be mentioned that the device must be given enough
time to complete the reset sequence (there is no register that can be polled).

USB Topology Updates Each device has its position in the USB topology
which has to be kept up to date. This implies that each hub must know the
child devices connected to its ports and every device must know its controller
and parent hub. The USB device data structure stores the most important
topology information such as

• The associated host controller

• The parent hub device (NULL for the root hub)

• The port number of the attachment port in the parent hub

• The depth of the device in the USB topology tree

• For FS / LS devices: the parent HS hub with the transaction translator.

These values are set when the device is allocated an can be obtained directly or
by traversing the USB topology.

Addressing Every USB device needs a unique address on the USB. This
involves keeping track of already used addresses and free addresses. Each host
controller has to maintain a list of connected devices. The USB specification
[19] defines the maximum number of devices to be 127 which is stored as a one
byte number. The address 0 is treated special since new devices have address
0 by default. With that constant maximum device number, an array for the
devices can be pre-allocated.

Therefore we can set up a one-to-one mapping between array index and
device address and hence find an unused device address simply by going through
the array and pick the first NULL entry (see Listing 6.2). After the addressing
step, the device has its own unique address and the array entry is filled with
the pointer to the new device.

50

/∗ po in t e r to the cur rent host c o n t r o l l e r ∗/
struct u s b h o s t c o n t r o l l e r ∗hc ;

/∗ s t a r t at the root hub address ∗/
uint8 t dev i c e i ndex = USB root hub ADDRESS ;

/∗ loop over the dev i c e s ∗/
while (dev i c e i ndex < hc−>devices max) {

i f (hc−>dev i c e s [d ev i c e i ndex] == NULL) {
break ;

}
dev i c e i ndex++;

}

/∗ a l l o c a t e memory f o r the new dev i ce ∗/
struct usb dev i c e ∗ dev i ce = mal loc (s izeof (struct usb dev i c e)) ;

/∗ s e t the dev i c e address ∗/
e r r = u sb r e q s e t add r e s s (device , d ev i c e i ndex) ;

/∗ s e t the dev i c e entry ∗/
hc−>dev i c e s [d ev i c e i ndex] = dev i ce ;

Listing 6.2: Finding a free device address

Configuration After setting the address, the device is in the addressed state.
To make a device usable, it has to be configured. Each device has at least one
configuration and exactly one that is active. The actual number of available con-
figurations is stored in the bNumConfigurations field of the device descriptor.
The device descriptor contains many other device specific information and is
shown in Table 6.4. To obtain it, a GET DESCRIPTOR request has to be executed
on the device.

The USB Manager will set the first configuration value by default11. As a
result of the SET CONFIGURATION request the device transitions to the config-
ured state. Each change of configuration is tied with a change in the available
interfaces and endpoints.

When the configuration value is set, the current configuration descriptor
is read. The configuration descriptor is of variable size and contains all the
interface and endpoint descriptors of this configuration. (See Figure 4.1 on page
15). While parsing the different descriptors of the configuration, the interface-
endpoint tree of the device is set up.

6.4.4 Driver Startup

Once the device is set up with its initial configuration the device is ready to
be used by the USB client driver. It is up to the client driver to change the

11In rare cases, this may cause problems and a quirk has to be applied. See Section 7.2.4

51

Offset Field Size Value
0 bLength 1 Length of the Descriptor
1 bDescriptorType 1 Type DEVICE
2 bcdUSB 2 Version of the USB
4 bDeviceClass 1 Device Class
5 bDeviceSubClass 1 Device Subclass
6 bDeviceProtocol 1 Device Protocol
7 bMaxPacketSize0 1 Maximum Packet Size
8 idVendor 2 Vendor ID
10 idProduct 2 Product ID
12 bcdDevice 2 Version of the device
14 iManufacturer 1 Manufacturer string index
15 iProduct 1 Product string index
16 iSerialNumber 1 Serial number string index
17 bNumConfigurations 1 Number of configurations

Note: The string index determines which string descriptor stores the value.

Table 6.4: USB Device Descriptor

configuration to another value. The next step is to find a suitable client driver
which can make use of the functionality provided by the device.

Like PCI devices, USB devices can be distinguished by their class codes,
subclass codes and so on. These codes are stored either in the device descriptor
(Table 6.4) or the interface descriptor depending on the actual device class.
Table 6.5 shows the different class codes defined by the USB-IF [29] and where
the needed class code information is stored (device or interface descriptor).

Example for an USB keyboard From Table 6.5 we see that we have to
look up the information from the interface descriptor:

• device class: 0x03 (HID Class)

• device subclass: 0x01 (Boot Device)

• device protocol: 0x01 (Keyboard)

• vendor id: .. product dependent

• product id: .. product dependent

The USB Manager uses the information of the device descriptor to lookup
a suitable device driver binary. In general, the class, subclass and protocol
information is enough to find a suitable driver and a single driver can be used
for devices from different vendors e.g. a Cherry or a Logitech keyboard. The
vendor and product information can be used to load a specific driver to support
additional features of the device such as special keys. If a suitable device driver
is found, then the corresponding driver-to-device binding can be set up upon
binding.

52

Base Class Descriptor Usage Description
00h Device Use class information in the Interface
01h Interface Audio
02h Both Communications and CDC Control
03h Interface HID (Human Interface Device)
05h Interface Physical
06h Interface Image
07h Interface Printer
08h Interface Mass Storage
09h Device Hub
0Ah Interface CDC-Data
0Bh Interface Smart Card
0Dh Interface Content Security
0Eh Interface Video
0Fh Interface Personal Healthcare
10h Interface Audio/Video Devices
DCh Both Diagnostic Device
E0h Interface Wireless Controller
EFh Both Miscellaneous
FEh Interface Application Specific
FFh Both Vendor Specific

Table 6.5: USB Device Classes by USB-IF [29]

Device Configuration The client driver knows its device best and therefore
may not agree with the USB Manager with respect to the initial device configu-
ration. The library initialization takes a configuration value as argument. This
value is used to change the configuration of the device to the supplied value
upon client driver binding.

The configuration is only changed, if the client driver supplies a value other
than USB CONFIGURATION DEFAULT as the configuration value to set. The device
configuration can also be changed after the binding procedure is over by using
the SET CONFIGURATION request.

Hubs Hubs are a special type of USB devices and are treated separately. In
contrast to normal function devices, hub drivers are not separate domains but
are rather managed inside the USB manager. This simplifies the handling of
attach and detach events. As soon as a hub device is detected the hub related
data structures are initialized and the spawning of the driver domain aborted.
It is a point of discussion whether or not to take out hub driver out of the USB
Manager is beneficial. Clearly having the driver out of the USB Manager would
introduce more inter domain communication traffic.

6.4.5 The USB Device Tree

Each attached USB device has its place in the USB device tree as shown in
Figure 4.1 on page 15. With exception of the root hub, every other device has
a parent hub i.e. a device where it is attached to the USB interconnect. Each

53

device is aware of its depth in the tree and knows its parent hub as well as the
port it is attached to. Further each hub knows the devices that are attached to
its ports.

It is important to keep the topology tree always consistent with the real
hardware situation on the USB interconnect. Especially the depth informa-
tion is important because there is a maximum depth constraint by the USB
specification.

Configuration Tree Not only the devices form a tree, but also the endpoints
and interfaces within a device configuration are organized like a tree. Each
devices has a tree with the configuration descriptor as the root, interfaces as
inner nodes and endpoints as leaves. This tree has to be updated whenever the
configuration is changed.

Non High-Speed Devices Full-/Low-speed devices can be attached to the
USB in two different ways. If they are attached directly to the root hub, the port
is handed over to the companion controller which then takes the responsibility
of managing the device as well as the transfers12.

If the FS/LS device is attached to a high speed hub with transaction trans-
lator the HS hub does the translation from HS micro-frames to FS/LS frames.
Transactions targeting a FS/LS device, are marked as full speed and requires
two additional fields to be set. This fields are the address of the parent HS hub
and the port number which the FS/LS device (sub-tree) is connected to. This
is because the parent HS hub needs to be aware that the translation has to be
applied.

This implies that not only the parent hubs but also the parent high-speed hub
with the port has to be known for each FS/LS device. Upon device allocation,
the topology tree needs to be walked up until a HS hub is found.

6.4.6 Driver-to-Device / Device-to-Driver Association

When a USB client driver starts, it initializes the USB library as shown in
Figure 6.4. As explained in Section 6.2.4 during the initialization process, the
USB client driver connects to the USB Manager. For future requests, the USB
Manager needs a way to figure out on which USB device the request has to
be executed. To ensure this, a Flounder binding - device association (and vice
versa) is established. This is done using the following sequence of steps after
the device class is known:

1. Look up device driver binary and store the path with the device

2. if there is a binary found, put the device on a pending list13

3. Dequeue the next device from the pending list

4. Update the currently processed device pointer

5. Spawn the client driver domain

12Remember: the EHCI controller does not support FS/LS devices.
13It may be possible, that more devices are identified before the driver connects to the

manager

54

6. Wait until the client driver connects

7. Associate the binding with the currently processed device

Limitations It has to be clarified, that only one USB device driver is being
spawned at any point of time and the next is spawned only when the connect
procedure is over.

USB Capabilities As an alternative way of identifying the USB device would
be to supply the USB client driver with a special USB capability representing
the USB device. The capability is then presented to the USB Manager with
each request. This may be part of a future extension of the system.

6.5 Device Detachment Process

A detach event is recognized by the USB Manager the same way an attach event
is recognized either by the port change detected bit of the USBSTS register or
the completed interrupt transfer of the USB hub device. The only difference
the port connect status bit will be zero now.

6.5.1 Client Driver Shutdown

In order to prevent the USB client driver to issue further transfers, the detach
notification has to be sent to the client driver at first place. When the client
driver domain receives the detach notification, the client driver domain initi-
ates the cleanup steps such as shutting down the own services and reverse their
export. Obviously potential other domains that may make use of the driver’s
service, should be informed. After the cleanup the domain will exit. The de-
tachment process waits till the notification has been sent successfully.

6.5.2 Freeing up Resources

When the detach notification has been sent successfully, the USB Manager starts
with freeing up the allocated resources of this device. This includes the existing
USB transfers which are un-setup now and the data structures. In the end the
device entry of the host controller is set to NULL to free up the address and the
device data structure is freed.

6.5.3 Hub detachment

The detachment process of hub devices involves a bit more work. Hub devices
provide attachment points for multiple USB devices and therefore the removal
of a hub device may trigger a whole sub-tree in the USB topology to be dis-
connected from the root. Therefore for every detached hub device, the whole
detachment process must be done recursively on every device at the hub’s ports.
It has to be said, that this is currently not implemented.

55

interface usb manager ”USB Manager I n t e r f a c e ” {
/∗ connect ing to the manager ∗/
rpc connect (in i r e f d r i v e r i r e f , in uint16 i n i t c o n f i g ,

out uint32 r e t e r r o r , out uint8 r e t d e s c [l ength]) ;

/∗ r eque s t handl ing ∗/
rpc r eque s t r e ad (in uint8 r eque s t [r e q l eng th] ,

out uint8 data [da ta l ength] , out uint32 r e t s t a t u s) ;
rpc r e qu e s t w r i t e (in uint8 r eque s t [r e q l eng th] ,

in uint8 data [da ta l ength] , out uint32 r e t s t a t u s) ;
rpc r eque s t (in uint8 r eque s t [r e q l eng th] ,

out uint32 r e t s t a t u s) ;

/∗ t r a n s f e r management ∗/
rpc t r a n s f e r s e t up (in uint8 type , in setup param params ,

out uint32 r e t e r r o r , out uint32 r e t t i d) ;
rpc t r an s f e r un s e tup (in uint32 t id , out uint32 r e t e r r o r) ;
rpc t r a n s f e r s t a r t (in uint32 t id , out uint32 r e t e r r o r) ;
rpc t r a n s f e r s t o p (in uint32 t id , out uint32 r e t e r r o r) ;

} ;

Listing 6.3: USB Manager Interface Definition

6.6 USB Manager Interface

The USB Manager interface provides the functionality required by the USB
driver interface (USBDI). This section will outline the semantics of the most
important functions of this interface. Listing 6.3 gives an overview of the basic
functions which are needed to make the USB subsystem work followed by a
description of the semantics. There are non-essential functions which are not
describe here. For a complete interface description refer to the Flounder inter-
face definition usb manager.if. It has also to be mentioned, that most of the
functions are abstracted by their library counterpart to simplify the use.

6.6.1 Connect

This function is invoked just once during the library initialization process. The
USB client driver supplies two arguments during the call. There is the initial
configuration that is used to update the device configuration. The second argu-
ment is the iref of the USB driver service. This service is not associated with a
name thus the USB client driver has to tell the iref to the USB Manager at the
connection time.

The USB Manager returns with two arguments. First the error value, that
informs the client driver about the outcome of operation. Second an extended
descriptor is returned consisting of the device descriptor as well as the whole
configuration descriptor. That way the client driver has access to the most
important data structures and device information right at the beginning.

56

6.6.2 Request Handling

Every device requests is executed on the default control pipe and has to be
formatted with a special format called a device request. Even there are several
different standard device requests they all fall into just three different categories
which differ in the direction and the length of the data flow.

The basic request, i.e. without a data stage, is used to execute simple com-
mands on the device such as setting the address or clearing a feature. The other
two requests are used to read or write data from or to the device respectively.
For this, also the data for the data stage have to be transferred between the
USB Manager and the client driver or vice versa.

The device requests are treated as remote procedure calls and hence only
return if the request on the device is completed. This is because, usually the
client drivers need the outcome of the request right afterwards.

6.6.3 Transfer Management

To initiate a new USB transfer on a device two things have to be done. First,
the transfer has to be set up i.e. all the needed resources have to be allocated in
advance. The USB Manager will return a unique transfer ID for reference in the
future. Secondly, when this is done the USB client driver can start the transfer
simply by sending the transfer start message with the transfer id to start.

Even though the calls are also in RPC style, the semantics are different.
The RPC returns with the outcome of the operation e.g. if a transfer could be
started or set up. The transfer done notification is sent asynchronously.

Interrupt transfers have the options of automatic restart when the transfer
completes successfully. This lets the client driver just receive asynchronous
messages with the data and does not have to mess around with restarting the
transfer.

6.6.4 Referencing Devices and Transfers

In the USB topology, each device has its address and each endpoint has its num-
ber and there are many more things to reference. The USB Manager interface
tries to hide those from the USB client driver as much as possible. The client
driver does not have to deal with its own device address as well as with the
transfer queues and so on. The devices are identified using the USB Manager
binding and the USB transfers are identified using a transfer id. For example,
the client driver can issue a start command for transfer with id 12 and the USB
Manager is able to figure out the device and which particular transfer to start.

6.7 USB Library

The USB library is used by the USB Manager and every USB client driver and
provides functionality of for four different kinds:

1. USB Manager binding

2. USB Manager interface abstractions

3. Class specific functionality

57

Domain Boundary

Interface / Library

Message

USB Manager USB Client Driver

USB Library

usb_lib_init():

usb_driver_export();

nameservice_lookup(USB_MANAGER)

usb_manager_bind();

/* wait till bound & exported */

usb_manager.connect();

svc_bind_cb()

usb_device_init();

usb_manager_export();

svc_bind_cb();

nameservice_register();

rx_connect_call();

usb_driver_connected();

/* setup reply */

tx_connect_response();

usb_driver_bind()

/* set driver binding */

/* RPC returns */

/* wait until bound */

Figure 6.4: USB Library Initialization Sequence

4. General data structure definitions

This section will give a brief example for each of the four types. For a com-
plete list of functions provided by the USB library, refer to the implementation.

6.7.1 USB Manager Binding

The first step that a USB client driver has to do is initializing the USB library.
This can be done with a call to usb lib init(). The library will then establish
the two-way binding between the USB Manager an the USB client driver. Figure
6.4 shows the connect sequence between the two domains.

Preparation Phase In each of the two domains there is a preparation phase
where the two services are getting exported. This has to be done before any
communication between the two domains happen. Obviously, the USB Manager
has started his service before the USB client driver is spawned. It has to be
emphasized that only the USB Manager registers its service with the name
service. As soon as both services are exported, the binding process can be
initiated.

Client Driver to USB Manager Binding The USB client driver looks up
the iref of the USB Manager service and binds to it. As soon as the binding
process is completed, the client driver executes the connect() RPC call and
supplies the iref of its service as one of the parameters. The USB Manager will
then setup the binding-device association and replies with the extended device
descriptor.

58

USB Manager to Client Driver Binding At the point where the reply to
the connect() call is sent successfully, the USB Manager binds to the iref it got
as an argument to the connect call. This establishes the second communication
channel used for sending notifications to the client driver. As the last step the
USB Manager associates the USB device with that binding.

6.7.2 USB Manager Interface Abstraction

Section 6.6 already gave an overview of some of the USB Manager interface
functions. In general, rather than dealing with that interface directly, the USB
client drivers use the interface through the USB library. In general, the USB
client drivers do not have access to the USB Manager Flounder binding which
is hidden in the library.

This section shows at an example, why it is useful to access the USB Manager
interface through the library instead of direct invocation. Listing 6.4 shows
the library code of the usb get configuration() function which returns the
current configuration value.

There are several reasons why a client driver should not deal with the USB
Manager interface directly but use the USB library instead. As one can see with
setup of the usb device request structure14, it is crucial that every field has
its correct value otherwise the request would be invalid and lead to undefined
behavior of the device.

Further, the USB library function provides some basic checks to avoid get-
ting corrupted data or invalid values for the fields in the usb device request

structure. This function for instance checks the returned length of the request
which has to be one byte, since the configuration value is expressed by a one
byte number.

One may have noticed that this function itself does not use the USB Manager
interface directly but rather uses a wrapper function for one of the tree request
types. The USB Manager interface supports calls to one of the three basic types
and those are abstracted inside the library as well by factored out code.

6.7.3 Class Specific Functionality

Each device belongs to a certain class and each class has some class specific
requests or data structures which may need to be manipulated. The HID class
for instance has the notion of reports and a request for setting the idle rate just
to mention two of them. The USB library should contain factored out code
which is common to all devices of a certain USB class.

To prevent naming clashes, each class specific function should follow the
naming convention usb <class> <function-name>. Listing 6.5 shows two ex-
amples of class specific functions for the HID class and the hub class.

6.7.4 General Definitions

The USB library contains also general data structure definitions such as the
different descriptor types as well as defined constants such as the USB speeds or
the error codes. The most important and most frequently used files are included
when the <usb/usb.h> header file is included.

14The format of this structure is defined by the USB specification

59

/∗∗
∗ \ b r i e f t h i s r eque s t r e tu rn s the cur rent dev i ce
∗ c on f i gu r a t i on value
∗
∗ \param ∗ r e t c o n f i g the cur rent c on f i g u r a t i on value i f
∗ zero then
∗ the dev i c e i s not con f i gu r ed yet
∗
∗ \ re turn USB ERR OK on suc c e s s
∗/

usb error t u sb g e t c on f i g u r a t i o n (uint8 t ∗ r e t c o n f i g)
{

struct u sb dev i c e r e que s t req ;

/∗ setup the reque s t data s t r u c tu r e ∗/
req . bType . d i r e c t i o n = USB REQUEST READ;
req . bType . type = USB REQUEST TYPE STANDARD;
req . bType . r e c i p i e n t = USB REQUEST RECIPIENT DEVICE;
req . bRequest = USB REQUEST GET CONFIG;
req . wValue = 0 ;
req . wIndex = 0 ;
req . wLength = 1 ;

/∗ re turn va lue s o f the r eques t ∗/
uint16 t r e t l e n g t h ;
void ∗ r e t da t a ;

/∗ execute the r eques t ∗/
usb error t e r r = usb do r eque s t r ead (&req , &r e t l eng th ,

&r e t da ta) ;

i f (e r r != USB ERR OK) {
return (e r r) ;

}

i f (r e t l e n g t h != 1) {
return (USB ERR IOERROR) ;

}

i f (r e t c o n f i g) {
∗ r e t c o n f i g = ∗ ((uint8 t ∗) r e t da t a) ;
f r e e (r e t da t a) ;

}

return (USB ERR OK) ;
}

Listing 6.4: USB Library: USB Manager Interface Abstraction

60

usb error t u s b h i d s e t i d l e (uint8 t i f a c e , uint8 t durat ion ,
uint8 t id) ;

usb error t usb hub ge t po r t s t a tu s (uint16 t port ,
struct usb hub por t s t a tu s ∗ r e t s t a t u s) ;

Listing 6.5: USB Library: Class Specific Functions

/∗ send a n o t i f i c a t i o n that a dev i c e i s gone ∗/
message dev i c e d e t a ch no t i f y () ;

/∗ send a t r a n s f e r done n o t i f i c a t i o n with the data ∗/
message t r a n s f e r d o n e n o t i f y (uint32 t id , uint32 e r ror ,

uint8 data [l ength]) ;

Listing 6.6: USB Client Driver Interface

6.8 USB Client Driver Interface

Each USB client driver implements the interface shown in Listing 6.6. The
connect process of the USB library hides the initialization of the client driver
interface from the client driver programmer. The data and message flow of this
interface is always from the USB Manager to the USB client driver.

6.8.1 Detach Notification

During the detachment process the USB Manager sends a detach notification to
the USB client driver whose corresponding device was removed from the USB.
The library handles the receive event and initiates the shutdown processing.
When this message is received, the client driver domain will be exited.

6.8.2 Transfer-Done Notification

When a USB transfer completes, the USB Manager sends a transfer complete
notification to the client driver. The first two arguments contain the most
important information such as the ID of the transfer that has finished (tid) and
the outcome of the transfer (error). The error is important, since the transfer
may be stopped by other reasons than successful termination. The parameter
data contains the payload of the USB transfer if it is completed successfully.

When a new transfer is setup the user may specify a callback function which
is called when the transfer completes. The library handles the receive event
and invokes the callback function if there is one set or simply discards the data
otherwise.

61

6.9 USB Keyboard Driver

This section describes a USB client driver at the example of a USB keyboard.
The client driver consists a USB driver service part and a keyboard service part.
The client driver is initialized in four steps:

1. Initialize the USB library

2. Initialize the USB keyboard, setup the related data structures

3. Start the keyboard service

4. Start the USB transfers

The following subsections will explain how the USB keyboard is initialized
and hence give an example on how the USB transfers are set up. This section
will not give details on how to convert the USB code to keyboard scancodes
refer to the implementation for this.

6.9.1 Setting up Transfers

Each HID device has at least one control transfer and one interrupt transfer as
specified by the HID specification [6]. The control transfers usually are executed
on the default control pipe and hence do not need to be set up explicitly by the
client driver. Listing 6.7 shows an example how to set up interrupt transfers
(other types are set up analogously)

First a data structure containing the setup information has to be initialized.
One can see, that the transfer is of type interrupt. In this case and we don’t
care which of the endpoints is used as long as the direction of data flow is
from the device to the host (IN)15. There are several flags that can be set, the
auto restart flag will initiate an automatic restart of the interrupt transfer
when it completes successfully.

The actual setup is initiated by sending the transfer setup information to
the USB Manager. For every transfer that is set up that way a transfer ID is
returned back. The callback function is associated with the transfer ID and is
called when the transfer done notification is received with this ID.

6.9.2 Transferred Data

For HID devices, the data transferred by the interrupt transfer have a certain
format which is referred to as a so-called report. The report has to be parsed
in order to get the desired information. Concerning the USB keyboard, there
are two types of events that are reported via the interrupt transfer. Every key
press and key release action will generate a new report containing the USB
codes of the pressed key or zero when it is released again. The keyboard driver
has to figure out which keys are pressed, released or hold. Refer to the HID
specification [6] for a complete specification of the report format.

15the USB Manager will look up the number by the type and direction

62

/∗ t r a n s f e r setup in fo rmat ion ∗/
stat ic u s b t r a n s f e r s e t u p t
keyboard tconf [USB KEYBOARDNUMTRANSFERS] = {

[USBKEYBOARDDATA] = {
. type = USB TYPE INTR,
. i f a c e = 0 ,
. endpoint = USB ENDPOINT ADDRESS ANY,
. d i r e c t i o n = USB ENDPOINT DIRECTION IN,
. max bytes = 0 ,
. i n t e r v a l = 5 ,
. f l a g s = {

. s h o r t x f e r o k = 1 ,

. p i p e on f a l u r e = 1 ,

. a u t o r e s t a r t = 1 ,
} ,

} ,
} ;

/∗ c a l l to setup the i n t e r r up t t r a n s f e r ∗/
usb error t e r r = u s b t r a n s f e r s e t u p i n t r (

&keyboard tconf [USBKEYBOARDDATA] ,
u sb keyboard t rans f e r cb ,
&keyboard . x f e r i d s [USBKEYBOARDDATA]) ;

Listing 6.7: USB Transfer Setup

63

Setting the LEDs

In order to change the LED state on the keyboard, data has to be written to the
keyboard. Again the data has to be formatted as a report and passed via data
stage of a SET REPORT request. The USB keyboard does not automatically set
the LED-indicators when one of the lock keys is pressed and the client driver
has to keep track of the state.

6.9.3 Learning the Modifier Keys

A standard keyboard contains several keys to modify the actual typed keys. The
positions of SHIFT, CTRL and friends may not necessarily always be at the very
same place on every keyboard. To learn the locations of these modifier keys,
the HID descriptor needs to be parsed and the location information extracted.

6.9.4 The Idle Rate

HID class device deliver new reports either on a GET REPORT request, by the
interrupt when an input event was recognized or at a specified rate every x
ms. This rate is called the idle rate. If an idle rate is set the USB HID device
will generate a new report via the interrupt transfer even if no key was pressed
or released. This may be useful, when packets are lost since the idle rate will
simply transfer the last packet again.

6.10 Example Usage

Figure 6.5 shows an example usage of the whole system and the messages in-
volved.

1. A key is pressed on the keyboard

2. The interrupt transfer completes and an interrupt is generated

3. The USB Manager gets the interrupt and processes the transfer

4. Transfer done notification is sent to the keyboard driver

5. Keyboard driver converts the USB code from the report to scancode

6. The scancodes are transmitted to the subscribers (Fish)

7. Fish shows the pressed key on the screen.

64

USB Keyboard

Hardware

Software

USB Manager

Interface

Host Controller with
roothub

USB Client Driver
(Keyboard)

Domain
Boundary

USB Manager IF

USB Driver IF

Keyboard IF
Fish

(Terminal)

EHCI

USB Interconnect

3) USB Manager gets interrupt

4) transfer_done_notify() sent to client driver

6) Key scancode
Sent to terminal

1) Key pressed

2) Interrupt transfer completes

5) UBS code to
Key scancode
coversion

Figure 6.5: USB Usage Example

65

Chapter 7

Discussion

This chapter gives an overview of the USB subsystem implementation state on
Barrelfish and its limitations. This chapter is divided into three parts. The
first section explains how the current implementation can be used in Barrelfish,
followed by a section outlining the limitations and the last section will give
anchor points for future work related to the USB subsystem as well as Barrelfish.

7.1 Setting up Fish

Obviously just having a device driver idling around in an OS does not really
bring benefits. A consumer for the features provided by the driver has to exist
in the system. The most basic way to use the keyboard input is a shell: So,
let’s get the Fish1 started. However, Fish had to be slightly modified to make
it run since the OMAP44xx does not know how to handle power off and reset
commands. They are simply removed in the ARM version.

Fish looks for the keyboard service and connects to it. The terminal library
had to be modified in such a way the initialization procedure does not complete
until the binding with the keyboard service completed. Therefore, Fish will be
blocked until the keyboard service is started. Together with an attached USB
keyboard fish can be used as a shell. Figure 6.5 in the previous chapter shows
the data flow when a key is pressed.

It has to be mentioned, that the terminal implementation is to be replaced
by a new one. Raphael Fuchs [9] created a new session capable terminal system.
The code of this is not yet merged with the main tree but is expected to be
merged soon. The USB keyboard driver implements already the keyboard.if

interface.

7.2 Limitations

The current implementation has several limitations which originate either from
a missing implementation or a hard coded sequence of instructions. This section
will give a brief overview of the limitations.

1The shell is called Fish on Barrelfish

66

Transfer Type State
Control Transfers Implemented and working.
Interrupt Transfers Implemented and working.
Bulk Transfers Support is there, but not tested so far.
Isochronus Transfers Special cases not implemented and not supported

Table 7.1: Overview of Implemented Transfer Types

7.2.1 USB Transfer Types

In order to get a USB keyboard work, only two of the four different transfer
types need to be supported

• Control Transfers for configuring the device

• Interrupt Transfers for getting the key events

Therefore, the implementation focus was on those two types. Table 7.1 summa-
rizes the support for each transfer type.

Bulk Transfers Due to the generality of the design and the fact that bulk
transfer do not need a special treatment, the support for bulk type transfers
is expected to work without much additional effort. However, currently only
devices of the HID class are supported and hence no devices which may use
of bulk type transfers can be used because there is no such client driver. This
implies that the functionality of bulk transfer types is not tested.

Isochronus Transfers At several stages of the transfer management, the
isochronus transfer types need a special case. In each of the special cases, an
assertion will be risen where the code is missing. Further, there is no single
isochronus type: the EHCI specification distinguishes HS isochronus transfers
and FS isochronus split transfers. Therefore there are two missing cases in the
EHCI specific handling of isochronus transfers.

7.2.2 USB Manager and USB Driver Interface

Currently not every USB Manager interface function does something useful i.e.
only stubs exists. In particular the functions for getting the current state of
a transfer are not implemented. They are basically not essential but may be
a nice-to-have when longer running transfers such as bulk type transfers are
added to the system.

7.2.3 Host Controllers

Table 7.2 summarizes the state of the different host controller implementations.
The OMAP44xx SoC has two integrated host controllers: an EHCI and an OHCI
controller. Only the EHCI controller is used in the current implementation and
hence only this code is expected to work.

67

Host Controller State
UHCI not implemented, some stubs exist
OHCI partially implemented and tested
EHCI implemented and running
XHCI not implemented, some stubs exist

Table 7.2: Overview of Supported Host Controllers

OHCI Host Controller The current implementation supports some func-
tionality related to the OHCI host controller such as initializing the host con-
troller hardware. The implementation of most of the functions already exists.
However, the behavior of the code towards functionality beyond initialization is
not tested and expected to contain bugs.

UHCI and XHCI Host Controllers The support for UHCI and XHCI
host controllers is not implemented, but there exists stub signatures for the
initialization process in order to make the code compile.

Companion Controller The EHCI controller is not capable of serving FS/LS
devices. Thus the port should be handed over to the companion controller as
soon as the device is recognized as FS/LS. The disown functionality of a root
hub port is not present and thus FS/LS devices are only supported through a
HS hub with transaction translator.

7.2.4 USB Quirks

Some USB devices do not strictly follow the USB specifications, need a special
way of initialization to work properly2 or simply have bugs such as wrong device
descriptor. The current implementation treats every device as a fully USB
compliant device with no bugs and no special handling needed. Thus if a device
is attached which has a known issue in one of the tree points the device may
not work properly. However, since the issue is known, a quirk could be applied
to make it work again. Thus the implementation is limited to bug-free USB
devices.

7.2.5 Error Handling

There are some cases where an operation may fail inside the USB Manager
especially during the attach or detach process of new devices. Error recovery
such as re-enumeration or handling of stalled endpoints is very limited and the
execution is skipped.

7.2.6 Power Requirement Check

The USB specification also contains guidelines on the power management of the
USB. Several restrictions protect the USB from an over-current situation such as
connecting too many devices at a bus-powered hub. The current implementation

2Referring to freeBSD [8]

68

skips the check if there is sufficient power available to support all connected
devices on a hub.

7.2.7 Device Driver Lookup

If a new device is attached to the USB and the device information is read out,
a suitable device driver binary has to be found. The current implementation
has a hard-coded lookup procedure. Thus adding new client driver binaries
always involves to change the hard-coded lookup table in the USB Manager.
This complicates the adding of new USB client drivers or the possible use of
alternate drivers. However, the lookup procedure is designed in such a way, that
it can easily be modified to involve Kaluga/SKB.

7.2.8 Hot-Plug

The hot plugging of devices basically works. However, the de-registration of
the client driver is currently not implemented. Therefore when a keyboard is
attached the second time, it tries to register the keyboard interface a second
time which will fail.

7.2.9 Single Threaded USB Manager

The current implementation of the USB manager is single threaded. This may
become a bottle neck when there are several client drivers want to execute
device requests simultaneously. The device requests are implemented as RPCs
and hence only one RPC invocation can be handled at a time. This means
the USB Manager is blocked until the request completes. The duration of a
request depends on the responsiveness of the USB device. However most of the
requests are used for configuration purposes. Starting and setting up normal
USB transfers only involve the USB Manager and hence do not have to wait for
the USB device.

7.2.10 Different SoC Support

The way the USB Manager is started in Kaluga is hard-coded. Thus if the
system is running on another SoC than the OMAP44xx, it is not expected that
the host controllers are located at the same physical address. This implies that
only the OMAP44xx SoC is currently supported.

7.2.11 64-bit Support

If the EHCI controller is running on machine with a 64-bit addressing, the
addresses have to be extended to 64 bits. The EHCI controller supports only
32 bit register sizes. The problem is solved in such a way that the queue heads,
elements and so on are allocated within the same 4GB region of memory. The
address of this memory region is then stored in a separate register and added
upon access. Further the data structures have 64 bit extensions which are
currently not implemented. Therefore it is expected that the implementation is
limited to 32 bit only.

69

7.2.12 PCI

On the x86 architecture, the devices reside on the PCI bus in general. Thus the
host controller will also be somewhere located on the PCI bus. The OMAPP44xx
does not have a PCI bus and therefore it was not checked if it works on a PCI
bus as well.

7.2.13 Keyboard

Basically the keyboard can be used, however the behavior is not always that
smooth. The reason for this seems to be the missing interrupts. The first key
stroke and release is recognized as expected but the following ones only one of
the two are captured. As a work around, the idle rate ensures that the missing
event is transferred again and the USB keyboard driver get the event data.

Further with the current implementation of the terminal, the support of
the LEDs is not implemented. However, a driver option exists to enable the
integrated parsing of the codes and disabling the scancode generation. With
this option chars are directly generated with working modifiers and the LED
states are updated accordingly.

7.3 Future Work

This section outlines some anchor points that may be used for future projects
on the USB subsystem or Barrelfish in general.

7.3.1 USB Class Support

The current implementation supports just the human interface device class be-
sides the special hub class. Adding support for other device classes such as mass
storage devices (MSD) or networking devices is a good starting point to extend
the device support of the current implementation. For every new device class,
the corresponding USB library functions have to be added as well.

Mass Storage Device Class As the name describes, this class contains de-
vices such as hard drives or flash drives. In the context of the PandaBoard,
additional memory can only be provided using the MMC slot or an attached
USB mass storage device. Bringing file system support to the PandaBoard
would become possible if mass storage devices are supported. That way, appli-
cations could store their data or the executable can be placed on the USB mass
storage device and dynamically loaded.

Communication Device Class Networking is considered to be one of the
most important parts of an operating system. The PandaBoard has an Ethernet
port, which is attached to the USB. Thus in order to get network support on
the PandaBoard, the support for Communication Class Devices is required.

7.3.2 Flounder Interfaces: Using THC

There are quite a lot functions in the usb manager.if interface. To simplify
the handling of the messages, it may be beneficial to switch to the THC library.

70

7.3.3 Adding USB 3.0 Support

With USB Revision 3.0 a powerful new standard has been established recently.
The new XHCI controller not only brings a new register interface but also
requires some additional management effort from the host controller driver side.
Implementing the XHCI host controller driver would avoid the problem of the
companion controllers, since the XHCI controller is able to support devices of
all speeds.

7.3.4 Resource Allocation

In the current implementation all the needed resources are allocated by the
USB Manager. It may be beneficial that the USB client driver or even the
application domain that uses the driver allocates the needed memory and passes
the capability to the USB Manager. It has to be evaluated whether or not
host controller specific data structures should be allocated with USB Manager
resources or with memory of the driver supplied during transfer setup.

Bulk Transfers There may be a problem when bulk transfer support is fully
added to the system because by using bulk transfers big files may be loaded into
main memory. Then the USB manager has to allocate big chunks of memory
on behalf of other processes.

Desired Resource Allocation It makes sense that the source / sink of a
data transfer - especially if the data size is big - allocates the resources before
the transfer is started. As an example consider an application that wants to load
a file from a mass storage device. The application then allocates the memory
and passes the capability to the MSD driver, which then passes the capability to
the USB Manager. The device then does a direct DMA transfer to this memory
region. That way, neither the USB Manager nor the client driver does have to
deal with the resource allocation for the frame buffers.

NUMA-aware Resource Allocation If the system runs on a machine with
non-uniform memory access, it may make sense to consider the issue of where
to allocate the resources. For some applications it may be better to allocate it
close to the host controller or close to the requesting application. This may be
taken into consideration when the resource allocation is redesigned.

OS Bulktransfer Integration An operating system usually has support for
bulk transfer of data between domains. Extending the interfaces of the USB
subsystem with the OS bulk system may be beneficial for MSD usage as well as
networking.

7.3.5 Muxing and Power/Clock Management

The muxing process of the wires on a SoC such as the OMAP44xx is tedious and
error prone. If the muxing code is hard coded, changing the muxing involves
a lot of work and does not necessarily work on other SoC. Therefore, setting
the pad configuration to the correct mux values should be handled in a general
way within a special SoC initialization driver which runs before any other driver

71

domain is started. This may be handled analogue to the PCI configuration but
with fixed address ranges.

7.3.6 Capabilities

Currently the client driver - device association is done on the basis of the IDC
binding and relies that the connection invocation is done by the correct client
driver domain. This is partially enforced to be the case, but there may be other
domains which accidentally invoke the connect function and hence may screw
up the whole association. Therefore, it may make sense to introduce a special
USB capability which is supplied to the USB client driver when it gets spawned.
The client driver presents the capability with each invocation.

7.3.7 Hot Plugging and Multiple Devices

In contrast to traditional devices, the USB devices have a slightly different usage
pattern. The biggest difference is that the can be hot plugged into the running
system and removed again. Also there may be multiple devices which are of the
same type i.e. two flash drives connected to the same host. This may result
in the case that the driver service is exported multiple times. Thus having de-
registration support or a way to export a service and register it with the name
service more than once is a problem to be solved.

7.3.8 Starting USB Client Drivers and SKB

The USB client drivers should be started by the device manager Kaluga. That
way Kaluga is aware of the running drivers in the system. In cooperation with
the SKB Kaluga can find the most suitable driver by executing a query on it.
There has to be a record format specified similar to the one of the PCI devices,
which is used as a basis for device driver lookups.

72

Bibliography

[1] ETH Zurich Andrew Baumann, Systems Group. Inter-Dispatcher Commu-
nication in Barrelfish, Barrelfish Technical Note 001, May 2011.

[2] Andrew Baumann; Simon Peter; Adrian Schüpbach; Akhilesh Singhania;
Timothy Roscoe; Paul Barham; and Rebecca Isaacs. Your computer is
already a distributed system. why isn’t your os? In Proceedings of the 12th
Workshop on Hot Topics in Operating Systems, Monte Verità, Switzerland,
May 2009.

[3] National Semiconductor Compaq, Microsoft. Open Host Controller Inter-
face Specification for USB, Release 1.0a. Compaq, Microsoft, National
Semiconductor, September 1999.

[4] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual,
June 2013. Chapter 10.

[5] Microsoft Corp. Usb driver stack architecture. http://msdn.microsoft.

com/en-us/library/windows/hardware/hh406256(v=vs.85).aspx,
June 2013. [Online; accessed 2013-07-16].

[6] USB Implementers Forum. Device Class Definition for Human Interface
Devices (HID), Version 1.11. USB, June 2001.

[7] USB Implementors Forum. Superspeed usb (usb 3.0) performance to dou-
ble with new capabilities. http://www.usb.org/press/USB-IF_Press_

Releases/SuperSpeed_10Gbps_USBIF_Final.pdf, January 2013. [Online;
accessed 2013-06-30].

[8] FreeBSD. Freebsd documentation. http://www.freebsd.org/doc/en/

books/arch-handbook/usb.html, June 2013. [Online; accessed 2013-06-
30].

[9] Raphael Fuchs. A session control interface for a multikernel. Bachelor’s
thesis, ETH Zurich, August 2012.

[10] Takahiro Hirofuchi; Eiji Kawai; Kazutoshi Fujikawa; and Hideki Sunahara.
Usb/ip—a peripheral bus extension for device sharing over ip network. In
Proceedings of the annual conference on USENIX Annual Technical Con-
ference, page 47–60, 2005.

[11] Gerd Griessbach. Usb for drops. Master’s thesis, TU-Dresden, Chair of
Operating Systems, March 2003.

73

http://msdn.microsoft.com/en-us/library/windows/hardware/hh406256(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh406256(v=vs.85).aspx
http://www.usb.org/press/USB-IF_Press_Releases/SuperSpeed_10Gbps_USBIF_Final.pdf
http://www.usb.org/press/USB-IF_Press_Releases/SuperSpeed_10Gbps_USBIF_Final.pdf
http://www.freebsd.org/doc/en/books/arch-handbook/usb.html
http://www.freebsd.org/doc/en/books/arch-handbook/usb.html

[12] Intel. Universal Host Controller Interface Design Guide, Revision 1.1. Intel
Corporation, March 1996.

[13] Intel. Enhanced Host Controller Interface Specification for Universal Serial
Bus, Revision 1.0. Intel Corporation, March 2002.

[14] Intel. eXtensible Host Controller Interface for USB, Revision 1.0. Intel
Corporation, May 2010.

[15] Inc Linux Kernel Organization. The linux kernel archives. https://www.

kernel.org/, July 2013. [Online; accessed 2013-07-18].

[16] OMAPpedia.org. Pandaboard usbboot. http://omapedia.org/wiki/

PandaBoard_USBBOOT, April 2012. [Online; accessed 2013-07-07].

[17] TU Dresden Operating Systems Group. The l4 u-kernel family. http://

os.inf.tu-dresden.de/L4/bib.html, Sept 2005. [Online; accessed 2013-
07-18].

[18] Pandaboard.org. OMAP4460 Pandaboard ES System Reference Manual,
Revision 0.1. Pandaboard.org, doc-21054 edition, September 2011.

[19] Compac; Hewlett-Packard; Intel; Lucent; Microsoft; Nec; Philips. Universal
Serial Bus Specification, Revision 2.0, April 2000.

[20] Andrew Baumann; Paul Barham; Pierre-Evariste Dagand; Tim Harris;
Rebecca Isaacs; Simon Peter; Timothy Roscoe; Adrian Schüpbach; and
Akhilesh Singhania. The multikernel: A new os architecture for scalable
multicore systems. In Proceedings of the 22nd ACM Symposium on OS
Principles, Big Sky, MT, USA, October 2009.

[21] Akhilesh Singhania and ETH Zurich Ihor Kuz, Systems Group. Capability
Management in Barrelfish, Barrelfish Technical Note 013, March 2011.

[22] SMSC. Highly Integrated Full Featured Hi-Speed USB 2.0 ULPI Transceiver
(USB3320), July 2009.

[23] HP; Intel; LSI; Microsoft; Nec; Samsung; ST-Ericsson. Wireless Universal
Bus Specification 1.1. usb.org, September 2010.

[24] ETH Zurich Systems Group. Mackerel User Guide, Barrelfish Technical
Note 002, March 2013.

[25] Systems Group ETH Zurich Team Barrelfish. Barrelfish OS Services, Bar-
relfish Technical Note 012, August 2010.

[26] TI. OMAP4460 Multimedia Device Silocon Errata, Revision A. Texas
Instruments, public version edition, September 2011.

[27] TI. OMAP4460 Multimedia Device Silocon Revision 1.x, Version Y. Texas
Instruments, technical reference manual edition, March 2013.

[28] Animesh Trivedi. Hotplug in a multikernel operating system. Master’s
thesis, ETH Zurich, 2009.

74

https://www.kernel.org/
https://www.kernel.org/
http://omapedia.org/wiki/PandaBoard_USBBOOT
http://omapedia.org/wiki/PandaBoard_USBBOOT
http://os.inf.tu-dresden.de/L4/bib.html
http://os.inf.tu-dresden.de/L4/bib.html

[29] usb.org. Usb class codes. http://www.usb.org/developers/defined_

class, December 2011. [Online; accessed 2013-07-16].

[30] Dirk Vogt. Usb for the l4 environment. Master’s thesis, TU Dresden,
September 2008.

[31] Gerd Zellweger. Unifying synchronization and events in a multicore oper-
ating system. Master’s thesis, ETH Zurich, 2012.

75

http://www.usb.org/developers/defined_class
http://www.usb.org/developers/defined_class

	Introduction and Motivation
	Introduction
	Thesis Outline

	Related Work
	USB for DROPS
	The USB/IP Project
	USB for the L4 Environment

	Barrelfish
	USB on Barrelfish
	Capabilities
	Device Manager
	Device Drivers in Barrelfish
	Flounder
	Naming and Interface References

	USB Architecture
	USB Topology
	Host
	USB Devices
	Interfaces
	Endpoints
	Attachment and Detachment of Devices

	USB Stack
	USB Device Drivers
	The USB Driver Interface (USBDI)
	The Host Controller Driver Interface (HCDI)
	The Host Controller Interface (HCI)

	Human Interface Device (HID) Class
	Accessing the Device
	Class Specific Details

	Transfer and Endpoint Types
	USB Transfer Types

	Pandaboard
	The PandaBoard
	The USB Subsystem
	USB Host Subsystem in the OMAP44xx SoC
	High-Speed Multiport USB Host Subsystem
	USB system on the board
	Verifying the Setup using the ULPI interface

	Barrelfish on PandaBoard
	HS USB Host Subsystem Initialization
	Getting the Device Capability
	Driver Startup
	Interrupt handling

	System Design
	USB Subsystem Architecture
	USB Manager
	USB Client Driver
	USB Library

	USB Subsystem startup
	Preparations to Spawn in Kaluga
	Spawn
	USB Manager
	Device Attachment
	USB Client Driver

	USB Host Controller
	Initializing the Generic Part
	Initializing the EHCI Controller

	Device Attachment Process
	New Device Attached Event
	Exploring Hub Ports
	Device Allocation and Initialization
	Driver Startup
	The USB Device Tree
	Driver-to-Device / Device-to-Driver Association

	Device Detachment Process
	Client Driver Shutdown
	Freeing up Resources
	Hub detachment

	USB Manager Interface
	Connect
	Request Handling
	Transfer Management
	Referencing Devices and Transfers

	USB Library
	USB Manager Binding
	USB Manager Interface Abstraction
	Class Specific Functionality
	General Definitions

	USB Client Driver Interface
	Detach Notification
	Transfer-Done Notification

	USB Keyboard Driver
	Setting up Transfers
	Transferred Data
	Learning the Modifier Keys
	The Idle Rate

	Example Usage

	Discussion
	Setting up Fish
	Limitations
	USB Transfer Types
	USB Manager and USB Driver Interface
	Host Controllers
	USB Quirks
	Error Handling
	Power Requirement Check
	Device Driver Lookup
	Hot-Plug
	Single Threaded USB Manager
	Different SoC Support
	64-bit Support
	PCI
	Keyboard

	Future Work
	USB Class Support
	Flounder Interfaces: Using THC
	Adding USB 3.0 Support
	Resource Allocation
	Muxing and Power/Clock Management
	Capabilities
	Hot Plugging and Multiple Devices
	Starting USB Client Drivers and SKB

