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Abstract

The decade of symmetric multiprocessors is about to end. Due to physical
limitations, individual cores cannot be made any faster and adding cores won’t
work anymore (dark silicon). Operating systems face the next big paradigm
shift: systems are getting faster by exploiting specialized hardware leading to
the era of asymmetric processors and heterogeneous systems. An ever growing
count and the diversity of cores yields new challenges regarding scheduling and
resource management. Multiple physical address spaces within single machines
let them appear as a cluster-like system.

Today’s commodity operating systems are not well designed to deal with het-
erogeneity and asymmetric processors. Many attempts have been made to
tackle the challenges of heterogeneous hardware, most of which treat avail-
able co-processors like devices or independent execution environments rather
than equivalent processors. Thus, true support of a multi-architecture system
is rarely seen, despite the fact that such hardware already exists. Examples are,
systems like the OMAP44xx SoC or Intel’s Xeon Phi co-processor.

In this thesis we will elaborate the arising challenges introduced by heteroge-
neous system architectures. We ported the Barrelfish research operating system
to the Xeon Phi execution environment and explored the impact on perfor-
mance and system design imposed by the emerging hardware characteristics
such as different instruction set architectures, multiple physical address spaces
and asymmetric cores. Based on our proposed software framework, we demon-
strate a parallel, heterogeneous execution of an OpenMP program using our
implementation of a message passing based OpenMP library and show why
more threads do not necessary imply a better performance.
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Chapter 1

Introduction and
Motivation

Today’s computer systems are getting increasingly complex. Gordon Moore
in [54] formulated the prediction that the number of components per dense
integrated circuit doubles approximately every two years. The ever increasing
number of transistors on a chip together with an ever increasing clock frequency
led to very complex and power hungry designs which certainly hit the so-called
power wall [66].

Reaching the physical limits of heat dissipation, clock frequency could no longer
be doubled every 18 month. As Moore’s law still applies, the number of tran-
sistors per CPU keeps increasing whereas clock frequency stagnated or even
decreased. To overcome the facing plateau of CPU performance chip designer
embedded multiple cores onto a single die starting the multi-core era. This
ended the free lunch [77], in other words, software was no longer getting faster
automatically with every new generation: engineers needed to adapt for the new
multi processing principles. Today’s modern server processor have 10 cores or
more.

The offered parallelism is even more increased by putting multiple CPUs in a
single system resulting in a NUMAchine [33]. Besides the challenges of using
parallelism provided by the cores, software engineers also needed to be aware of
where to place the buffers to avoid over-saturation of the memory controllers and
the inter-connect. Accessing memory is no longer uniform turning the machine
into a distributed system [10].

Specialized hardware accelerators such as video cards were used from the early
days on, executing certain task more efficient than general purpose CPUs. Ac-
celerators evolved into sophisticated computation devices supporting a more
general purpose compute model. With massive amounts of available cores, co-
processors such as Intel’s Xeon Phi or nVidia’s Tesla provide specialized hard-
ware features for highly parallel workloads in high performance computing.

9
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Still, most of the computation is executed on general purpose processors. With
an ever increasing number of transistors per chip and consequently a growing
number of cores, the execution performance of scalar code is expected to stag-
nate. Single threaded programs do no longer run significantly faster with a new
CPU generation and the effects are even amplified by the fact that not all code
can be parallelized. Technologies such as Intel’s TurboBoost [24] try to provide
extra compute power for a single core when the other cores are idle. Based on
the observation that all cores in today’s CPUs are identical, we can infer that it
is likely to hit another power wall. Hence, we are facing the end of the multipro-
cessor decade transitioning to the era of specialized hardware [29]. Offloading
certain parts of a computation or even whole processes to co-processors can lead
to an overall more efficient computation in terms of response time, throughput
or energy consumption.

Today, the demand for energy efficient processors for mobile computing applica-
tions or data centers, buzzword Green Computing [35], drives the development
of specialized hardware. The potential reduction of the overall energy consump-
tion using specialized hardware enables prolonging battery life and reducing the
operation costs of data centers.

To sum up, hardware is ever changing, offering new challenges to systems de-
velopers to make use of the specialized hardware devices. Further, with co-
processors offering massive parallelism, a single machine tends to appear like a
high performance cluster. Operating systems have to deal with the additional
complexity in terms of number and features of cores, accelerators, co-processors
and an overall heterogeneous system architecture. If various architectures are
used concurrently, the OS has to be aware of which code can run in which exe-
cution environment and where it is expected to run most efficiently. Moreover,
traditional abstractions are no longer appropriate for heterogeneous systems:
multiple address space layouts, architectures and compute capabilities require
new ideas in memory management and scheduling. Additionally, programmers
must be aware of a changing memory hierarchy and its implications on execution
performance.

This massive amount of parallelism and heterogeneity reveals new questions such
as how to manage the resources, how to deal with the different architectures
present and how to enable communication of processes running on different
architectures?

This thesis will investigate the performance characteristics of the Intel Xeon
Phi co-processor and list potential implications towards the design of a system.
The proposed software system to manage the heterogeneity forms the basis
to show various aspects of such a system and its challenges that need to be
solved. Besides, we will present a way to parallelize a program and run across
the heterogeneous architectures of a system with Intel Xeon Phi co-processors
based on OpenMP.
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Thesis Outline

We structure the thesis in eight chapters, starting off with a survey of related
work (Chapter 2) followed by a brief description of Barrelfish the operating sys-
tem used in this thesis (Chapter 3). The next two chapters describe the hard-
ware features of the Xeon Phi (Chapter 4) and a basic performance evaluation
of them (Chapter 5). Based on the insights of the performance characteristics,
we present a software system for the Xeon Phi (Chapter 6) and potential appli-
cations and use cases (Chapter 7). We list discovered issues and possible anchor
points for future work in Chapter 8.

Terminology

To clarify the technical terms used throughout this thesis, the following list
defines how we use the terms to avoid misunderstandings.

• Accelerator Hardware device designed to execute a specific task, decod-
ing audio streams for instance.

• Co-Processor Hardware device designed to execute a wide variety of
tasks, a general purpose execution environment. For instance the Xeon
Phi or general purpose GPUs. Not to be confused with co-processors like
CP15 that controls MMU.

• Host Execution environment which manages the possible co-processors.
In our case x86 64 architecture.

• (Compute) Node Either the Xeon Phi or the host. A system has a
single host and may have multiple co-processor nodes.

• Local Memory Main memory of the node. On the Xeon Phi the GDDR,
on the host the RAM.

• Remote Memory From the Xeon Phi point of view referring to the
system memory or the GDDR of another Xeon Phi. Viewed from the
host, the Xeon Phi aperture space.

• Thread/Worker In the OpenMP context, thread and worker (domains)
can be used interchangeably.

• Client Driver Instance of a driver running on the co-processor connected
to its counterpart on the host.



Chapter 2

Related Work

Heterogeneous system in a broader sense exists since the early days, ranging
from specialized micro-controllers for digital signal processing to graphic accel-
erators (video cards). However, despite their heterogeneity, operating systems
only deal with the symmetric host processors and uniform architectures leaving
the management of co-processors to their device drivers.

In this chapter we present a survey of available heterogeneous hardware and
software systems. We partition the discussion into Intel’s software environment
for the Xeon Phi (Section 2.1), an attempt to classify heterogeneous systems
available (Section 2.2) and finally a Barrelfish related section (Section 2.3).

2.1 Intel Manycore Platform Software Stack

With the release of the Xeon Phi co-processors, Intel provided a software envi-
ronment to support code offloading to the Xeon Phi in various modes such as
Intel’s MPI [18] architecture, native or offloaded execution [20]. Intel’s Many-
core Platform Software Stack (MPSS, [17]) supports Microsoft Windows [27]
and Linux [63] hosts and includes a Linux-based co-processor operating system.
We will go into more detail in Chapter 4 and Section 6.2.

The compute-model of Intel’s MPSS treats each Xeon Phi in the machine as its
own independent execution environment. From an operating system’s perspec-
tive, the resulting design resembles a small cluster of independent networked
machines rather than a single system. Communication between the nodes is
made possible by a socket-like abstraction called Symmetric Communications
InterFace (SCIF, [21]).

Even though the machine contains processors of different architectures, the op-
erating systems do not have to deal with the heterogeneity. Similar to a net-
worked cluster consisting of x86 64 and ARM machines for instance, there is no
management of multiple architectures by a single operating system. The Xeon
Phi co-processor is treated as an ordinary PCI Express device.

12
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2.2 Heterogeneous Systems

All of today’s computers can be seen as heterogeneous. The degree of hetero-
geneity and how it appears highly depends on the system architecture and its
intended use. The various designs can be classified into three models which can
be combined.

2.2.1 Heterogeneous Networked Environments

Today’s machines look like distributed systems [10]. However, a system is
not limited to a single machine but can also be a cluster of networked nodes.
Whereas a single machine is based on one architecture, the network has to deal
with nodes of different types running a variety of operating systems and soft-
ware. The resulting cluster is inherently heterogeneous. Several approaches to
unify and manage networked resources have been investigated. The DAC Net-
worked OS [31] provides resource sharing for a distributed co-operation between
applications. 2K [47] deals with resource management in non-uniform, dynamic
networks. However, networked environments do not deal with heterogeneity
within a single machine.

2.2.2 The CPU plus Accelerator Model

This model is based on one or more main CPUs complemented with additional,
specialized accelerators. One of the use cases for this model is to offload spe-
cific tasks to a hardware accelerator instead of doing the same computation
with the general purpose CPU. This includes audio and video decoding using
a DSP, cryptography applications or 3D imaging applications such as video
games. Software frameworks like OpenGL [3] for instance provide the necessary
abstractions. Accelerators are highly specialized hence not suitable for general
purpose computing, especially as their output goes to one of the connectors.
They are programmed by their respective device drivers.

Generalizing the accelerator model leads to a system consisting of a main CPU
with programmable accelerators such FPGAs or core fusion [44] techniques.
The resulting system is able to adapt to changing workloads. As the hardware
features offered by the accelerator change depending on the programming, the
hardware abstraction layer needs to be adapted as well. Nollet et al. [58]
developed an operating system for reconfigurable SoC (OS4RS) based on a Linux
real-time kernel. They are using a two level scheduling system where the top
level manages task to processor assignment and per core lower level schedulers
run the actual assigned task. Switching tasks between different core types can
only be done at specific points during its execution.

2.2.3 The System-on-a-Chip Model

In today’s mobile appliances, such as smartphones or tablets, the used CPUs are
part of the so-called system-on-a-chip (SoC) architecture. One of the limiting
factors for mobile applications is battery life and hence maximizing performance
while minimizing the energy consumption are one of the driving factors. Similar
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to the previous model, SoCs like the OMAP44xx [41] include specialized chips to
do certain low-level tasks (energy) efficiently. As an illustrative example, one
may consider playing an audio file with a dedicated audio DSP enabling the
main CPU to go into a power save state.

Another aspect in the SoC scenario is to provide multiple cores with different
performance characteristics while being based on the same architecture. Tech-
nologies such as ARM’s big-little [50] are used to reduce the energy consumption
of a chip. This setup can be viewed as pseudo heterogeneity where the architec-
ture does not differ, but the compute-power and energy efficiency of the cores
does. From an operating system’s view switching between the different core
types is like an extended change of the current C-state of the processor. The
OS itself does not need to be heterogeneous. Replacing some bigger cores in a
package with smaller ones can even be beneficial for certain workloads as shown
by Kumar et al. [49] for Alpha processors and Li et al. [51] for Intel proces-
sors. The resulting chip is no longer symmetric. In both studies, they rely on a
common instruction set architecture shared by all cores. This is comparable to
some extent with the Xeon Phi as we will see in Chapter 4.

2.2.4 The Heterogeneous Model

The previous model can be seen as not fully heterogeneous: the secondary
processors are either of the same architecture (big-little) or are too specific for
general purpose computation (audio decoders).

Besides, the SoC model is also truly heterogeneous: the OMAP44xx [41], for
instance, is based on two ARM Cortex A9 application processors which are
accompanied by two ARM Cortex M3 multimedia processors. Both, the A9 and
the M3 are general purpose CPUs but with different instruction set architectures
(ISA) – in fact the ISA of the M3, Thumb 2, is also embedded in the ISA of
the A9. Hence, an operating system utilizing both types needs to tackle the
differences (see Section 2.3).

In the past, graphic processing units (GPUs) evolved into more general pur-
pose compute platforms (GPGPUs). Streaming processors such as the nVidia
Tesla (Section 4.2.3) are used for highly parallel workloads managed by soft-
ware frameworks such as CUDA [60] or OpenCL [34]. Its general purpose de-
sign enables the use of GPGPUs in standard tasks such as sorting [32] or even
networking [46].

In contrast to CPUs, the compute-model of GPGPUs is different and more chal-
lenging. Finding appropriate OS abstractions for GPGPUs is hard: Rossbach
et al. [71] discovered the lack of proper OS abstractions for GPGPU resources
such as fairness and isolation. They present PTasks, a parallel task API that
simplifies the use of GPGPUs by abstractions to hide the orchestration as in
CUDA [60]. With PTasks, the execution needs to be representable as a directed
acyclic graph to match the streaming design of GPGPUs. Therefore, repre-
senting loops and conditionals is challenging and inefficient due to the warp
scheduling of GPUs.

The question “What is Heterogeneous System Architecture (HSA)?” has also



CHAPTER 2. RELATED WORK 15

been asked by AMD [4]. They discovered that main CPUs and accelerators/G-
PUs have driven apart. Their aim is to come up with a re-design of the system
architecture to feature a more integrated platform. They classified different
processors into latency compute units (CPUs) and throughput compute units
(GPGPUs) [2, 55]. In the current design of a system, data has to be made
available for the co-processor which involves copying. They claim that tighter
integration of CPU and GPGPU reduces communication latency and lowers the
programming barrier. This trend can be observed today: Intel integrated its
graphics processors into the CPU. The proposed HSA framework unifies the
address space of CPU and GPU and enables data access from anywhere. How-
ever, as we show in Chapter 5 just being able to access data from anywhere
does not necessarily result in a fast system: smart buffer placement strategies
which reflect localities are of great importance.

Similar to PTasks and AMD’s HSA the latest OpenMP Standard [62] enables
executing certain code blocks on a specific target device. In heterogeneous
systems the code segment can be executed on a device which supports certain
hardware features such as extra wide vector units. However, the support for
these pragmas is not fully available: “omp target constructs will always run on
the host”, as stated by GCC [39].

Wang et al. developed EXOCHI [79] which supports work distribution among
CPU and integrated graphic accelerators by extending the OpenMP pragmas
to support heterogeneous multi-threading. The modified OpenMP library pro-
duces architecture specific code for the host CPU as well as the GPU in one
binary. Wang et al. used the integrated graphics accelerator of the Intel CPUs
for offloading the computation.

Nightingale et al. developed Helios [57] which supports heterogeneous systems
by providing an independent interface to applications. The programming model
of Helios uses an intermediate compilation step: similar to Java byte code,
Helios programs are first translated into an intermediate language and then
compiled to the target architectures present on the system upon installation.
This eliminates the burden of providing different versions of the same executable
from the programmer. Further, Helios distinguishes between coordinator and
satellite kernels. As the underlying architectures of satellite kernels may differ,
Helios does not support a process to span multiple satellite kernels.

With Popcorn, Barbalace et al. [5] tried to bring support for heterogeneous
architectures to the Linux operating system. They added another abstraction
layer on top of multiple Linux kernels which provide a unified view of the system
(Single System Image, SSI). They use messages between the Linux kernels to
maintain the global system state in the SSI. In contrast to virtual machines,
their kernels form a peer-to-peer rather than a client/server relationship.

2.3 Barrelfish

With its multikernel architecture (see Chapter 3), Barrelfish naturally supports
a heterogeneous system architecture – as long as the processor is capable of
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booting an OS node. Barrelfish tackles different types of dissimilarities such as
non-uniformity, core diversity and system diversity [74] based on system knowl-
edge [73]. So far, two approaches have been done in the context of heterogeneous
systems.

As we will see in Chapter 4, Intel’s Single Chip Cloud Computer (SCC) is one
of the precursors of the Xeon Phi. In [53] a Barrelfish port was made support-
ing a heterogeneous architecture consisting on a host (x86 64) and the SCC
(x86 32) running at the same time. The sophisticated design of the SCC re-
quired the handling of corner cases which are no-longer needed with the Xeon
Phi. Further, the architecture used on the Xeon Phi matches the host architec-
ture close enough that some problems such as different data type sizes do not
exist. Barrelfish has dropped the support of the SCC [48].

Recall the two different types of cores on the OMAP44xx SoC [41]. An approach
to get Barrelfish run on both cores has been undertaken in [30]. However, the
implementation is not fully finished and the Barrelfish kernels running the M3
cores are not aware of the A9 cores in the system. This results in essentially
two systems running concurrently on the same SoC.

To have Barrelfish make use of GPGPUs as an OS node would require to have a
kernel running on the GPGPU. With the different compute model and streaming
processor design this is not achievable as also discovered in [71].

Baumann et al. [9] have ported Barrelifsh to the prototype of the Xeon Phi
called Knights Ferry1. They came up with a software system, COSH, which
provided bulk transport facilities in a heterogeneous system. As in the recent
Barrelfish bulk-transport project [1, 11], Baumann et al. aimed to provide clear
semantics of transfers and enforce access rights to buffers.

2.4 Concluding Remarks

In summary, in general heterogeneous systems are nothing new and, depending
on the definition, have existed for a long time as the example of video accelerator
showed. However, most of the available systems today are not truly heteroge-
neous: their operating system deals only with one architecture at a time or
having device drivers control co-processors as is the case with Intel’s MPSS or
nVidia CUDA.

There is a clear trend towards more diverse and less coupled systems. At some
point commodity operating systems will have to deal with this heterogeneous
architectures as the main processors of computers evolve from symmetric multi-
processors into asymmetric designs which might not even share a common in-
struction set architecture.

1Due to the non-disclosure agreement the code is not available.



Chapter 3

Barrelfish in a Nutshell

In this chapter we will have a brief look at Barrelfish [68]: a research operating
system developed at ETH Zurich with assistance from Microsoft Research [28].
The purpose of this Chapter is to set the foundation of the upcoming chap-
ters by describing the most important building blocks and tools of Barrelfish.
Readers that are already familiar with Barrelfish may skip this chapter. Start-
ing with a general architectural overview (Section 3.1) and highlighting selected
application domains (Section 3.3) we will have a look at resource management
using capabilities (Section 3.2) and inter-domain communication using Floun-
der messages (Section 3.4). The remainder of this Chapter will talk about the
domain specific languages for hardware access (Mackerel, Section 3.5) and for
the build system (Hake, Section 3.6).

3.1 Architectural Overview

In contrast to the most common operating systems available, such as Linux [63]
or Microsoft Windows [27] which are based on a monolithic or hybrid kernel,
Barrelfish is based on a new kernel type called the multikernel [8]. An architec-
ture scheme adapted to the Xeon Phi scenario can be seen in Figure 3.1.

Barrelfish tries to avoid sharing of state among cores, in other words, there are
no global data structures. Each OS node has a local state replica which is kept
up-to-date using message passing among the nodes. This enables lock-free, local
access to system state. Barrelfish treats the machine as a distributed system [10]:
Well-known agreement algorithms used in distributed systems ensure integrity
of the state. As stated in [8], the fundamental model of a multikernel can be
defined as:

1. All inter-core communication explicit.

2. Make OS structure hardware-neutral.

3. View state as replicated instead of shared.

17
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Figure 3.1: Barrelfish Architecture

3.1.1 CPU Driver

In Barrelfish the kernel is referred to as the CPU driver. It abstracts architecture
specific hardware details and executes in privilege mode. The tasks of the CPU
driver involve context switching, memory isolation, fast local message passing
and capability management, to name a few.

The CPU driver exports an architecture independent set of services and medi-
ates access to the local hardware features such as the memory management unit
or the local APIC. Interrupts are forwarded to the user-space driver domains in
form of a message.

3.2 Capabilities

Resource management is a key concern of every operating system. In Barrelfish
resources are managed using capabilities. Each capability has a certain type and
may refer to a region of memory, a communication endpoint or an operation
(capability invocation). Each domain has its own capability tree (CSPACE)
which stores all the capabilities the domain obtained throughout its runtime.
As capabilities are critical, only the kernel can access the CSPACE and create or
modify capabilities. The domains refer to a specific capability with a reference
to it – the address of the capability in the CSPACE.

If a domain wants to execute a privileged operation, it needs to pass the capa-
bility reference. The reference is looked up in the CSPACE and its containing
capability validated. For instance, mapping memory requires presenting a frame
capability during invocation. Domains can grant access to their resources by
passing one of their capabilities to another domain. This can be viewed as a
copy operation of an entry in the capability tree to another CSPACE.
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In addition to copy there are several other operations that can be invoked on a
capability depending on the type. A frame capability for instance can be split
into smaller frames or reduced to a read-only mappable frame, to name a few.
A complete description of a capability system in a multikernel environment was
discussed in [56]. The current implementation state of the capability system
can be obtained in the technical note [76].

3.3 Major Domains

In Barrelfish applications and processes are called domains. As already ex-
plained in the previous sections, the kernel of Barrelfish provides only the nec-
essary set of services which need to be run with privileges. This design choice
pushes many of the traditional kernel services to user-space domains. In this
section we will have a look at a selection of Barrelfish’s core domains.

3.3.1 Kernel Monitor

The design of Barrelfish tries to move as much as possible into user-space do-
mains: only when necessary the CPU driver executes certain supervisor tasks.
However, some operations are considered to be privileged with respect to the
system state but do not need to be executed in supervisor mode. An example
of this would be handling the capability transfer between domains. This tasks
are handled by the Monitor which is trusted by the CPU driver. Some ker-
nel services can only be invoked by presenting the kernel capability which only
Monitor has. Another task of the Monitor is to exchange messages with the
other Monitors in the system to update the OS state.

3.3.2 System Knowledge Base (SKB)

The idea behind the System Knowledge Base (SKB) is to store facts about the
system such as which services are running, the number of on-line cores or the
discovered hardware devices. Facts can be specified using a declarative language
approach [73]: either statically or upon events during boot such as hardware
discovery for instance. Providing a service interface, domains can query the SKB
to obtain information about the system. A constraint solver is used to answer
complex questions such as “What is the optimal PCI configuration given the
available devices?”

Another part of the SKB is Octopus [80] which tracks events happening in the
system. Domains can publish events or subscribe to them. Octopus can also be
used as a key-value store for exported services (name-service functionality) or
barriers for thread/process synchronization using message passing.

3.3.3 Memory Service

As explained above, every physical resource is represented as a capability and
so are frames of memory. The design of Barrelfish moves the management of
physical memory into the user-space domain memserv. During boot up, memserv
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is spawned by the init domain and initialized with the capabilities of all the
unused frames. If a domain needs memory, it sends a request to the service and
obtains a RAM capability which best suits the size and address constraints of
the request. It retypes it into a frame or page table capability depending on the
use.

3.3.4 Device Drivers

In contrast to other operating systems such as Linux where device drivers are
part of the kernel, Barrelfish has its device drivers running in user-space. Each
device driver is given access to its registers using a capability representing the
MMIO range of the device. The capability is then mapped directly into the
driver’s virtual address space. This enables the driver to access the device
without kernel involvement. Device drivers export a specified service interface
to handle requests from other domains over message passing. Interrupts are
transformed into messages by the kernel and handled by the user level driver.

3.4 Message Passing

Barrelfish’s architecture demands efficient user-level message passing for com-
munication between the domains especially replicating OS state. In Barrelfish
this is abstracted using a tool called Flounder. The messaging interfaces are de-
scribed in a domain specific language (DSL). The DSL compiler generates mes-
sage passing stubs which are used by the domains to send and receive messages.
Flounder supports multiple messaging backends. The following two subsections
briefly describe the export and bind processes. For a more detailed description
of the DSL and the operations refer to the technical note about inter-dispatcher
communication [7].

3.4.1 Exporting a Service

A flounder channel is based on two endpoints: a service (exporting) side and a
client (binding) side. Domains acting as servers initialize the service side of the
interface by exporting it. Each exported Flounder interface can be identified
by an IREF which is assigned by the Monitor during the export process. The
kernel Monitor will store the IREF-to-endpoint mapping. To make the IREF
known to other domains it can be registered with the name-service.

3.4.2 Binding to a Service

To use a service, a domain needs to bind to the exported IREF. The IREF can
be looked up using the name service or passed by other means directly with
program arguments for instance. Monitors keep a IREF to endpoint association
which is used to bootstrap the communication channel. With the help of the
Monitor a shared frame is initialized between the domains (In case of the user-
level message passing backend).
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3.5 Hardware Register Access

Device drivers need to be able to access the hardware registers of the device.
Recall in Barrelfish resources are represented using capabilities and since mem-
ory mapped hardware registers are resources, a capability is needed to access
them. Once the registers are made accessible to the driver domain, writing and
reading specific bits is tedious and error prone. Barrelfish uses another domain
specific language called Mackerel [67] to simplify reading and writing hardware
registers or describing the layout of in-memory descriptors. The DSL specifica-
tion is compiled into a C header file which provides the necessary functions to
access the registers.

3.6 Hake: Barrelfish’s Build System

With a broad diversity of supported architectures, it is necessary to have a
suitable build system which can handle the different architectures, dependencies
and domain configurations well. Barrelfish uses a tool called Hake [70] to work
out which domains to build and how they are compiled.

To build Barrelfish, Hake is initialized in the build directory and configured with
a one or more specified architectures. During the initialization, Hake will walk
through the source tree and find all the Hakefiles and evaluates them.

3.6.1 Hakefiles

For the CPU driver and each domain, library or tool there is a Hakefile specifying
how to build the target. Based on the Hakefiles the dependencies are generated
and in the end a Makefile is generated.

The following code snipped shows an example Hakefile with the added depen-
dencies of libraries, Flounder interfaces as well as Mackerel device specifications.

1 build application {
target = " device_driver ",

3 architectures = [ " x86_64 " ],
cFiles = [ " driver .c" ],

5 addLibraries = libDeps [ "skb" ],
flounderBindings = [ " device_driver_interface " ],

7 mackerelDevices = [ " device " ]
}

Listing 3.1: Sample Hakefile



Chapter 4

The Intel Xeon Phi
Co-Processor

As with any new hardware, one generally wants to know its features, differences
and similarities to other well-known products or architectures, especially x86 64
in our case. In this chapter we will have a look at the first generation Intel
Xeon Phi co-processor [23] (code-name Knights Corner, KNC). After providing
historic information, we start this chapter with an overview of a possible system
configuration (Section 4.1) and a section about the hardware features of the
Xeon Phi (Section 4.2). Following, a section about the new k1om architecture
with a brief comparison to x86 64 (Section 4.4). The last part will investigate
the boot process (Section 4.5) and its implications for the Barrelfish operating
system.

Code Name Year Notes
TRP 2006 Tera-Scale Research processor
Larrabee 2007 Prototype (GPGPU)
SCC 2009 Prototype to promote Many Core Research
Knights Ferry 2010 Prototype of the Xeon Phi (MIC Prototype)
Knights Corner 2013 Xeon Phi Generation 1
Knights Landing 2015 Xeon Phi Generation 2

Table 4.1: Xeon Phi Historic Overview

History To set the historic context of the Xeon Phi, we crawl back in time
and present the Intel Labs projects that lead to the current Xeon Phi product
line. Table 4.1 summarizes the evolution of the Intel Many Integrated Core
Architecture (MIC, [26]) micro architecture. In 2006 Intel demonstrated an 80
core Tera-Scale Research Processor (TRP) [38] which had limited features but
served as a learning tool for the upcoming 48 core Single Chip Cloud Computer
(SCC) [14]. While the TRP had only simple cores, the SCC came with a network
of 48 fully functional Pentium based cores. With the Larrabee project [75],
a general purpose graphics processor (GPGPU), Intel wanted to bring a new

22



CHAPTER 4. THE INTEL XEON PHI CO-PROCESSOR 23

graphics chip design based on many in-order x86 cores. However, the Larrabee
project was discontinued in 2010.

In 2010 Intel presented the Knights Ferry, the first prototype of the MIC archi-
tecture; in other words the prototype of the Xeon Phi co-processors, targeting
high performance computing applications. The Knights Ferry can be viewed as
a derivative of the previous many core projects Larrabee, TRP and SCC [15].
Evolving from the Knights Ferry, the Knights Corner features more cores, more
memory and a peak performance of one teraFLOPS. The Knights Corner was
released as the first generation of the new Xeon Phi brand and was made avail-
able to customers [23] in 2013. In 2014, Intel announced the second generation
of the Xeon Phi, code-name Knights Landing, to be released in 2015 [22].

4.1 System Overview

Before we start with investigating the features of the Xeon Phi co-processor, we
present a summary of the system we use throughout our evaluation. Table 4.2
below summarizes the most important numbers concerning the later evaluation
of the proposed system. For a detailed description of the hardware refer to the
respective hardware manufacturer information pages such as Intel ARK [25]. To
illustrate the NUMA setup of the machine a schematic layout of the system can
be seen on Figure 4.1 on page 24. Note that the I/O Acceleration Technology
(I/OAT) DMA controllers are part of the CPU and described in the processor
data sheet [43, Chapter 8.4] rather than residing on the chip-set, despite the
fact that they show up as a PCI Express device.

Feature Value
CPU 2x Intel(R) Xeon(R) CPU E5-2670 v2

10 cores, Hyper-threading, 2.50 GHz
Architecture Ivy Bridge
Memory 256 GB DDR3-1600
NUMA 2 NUMA Nodes
Xeon Phi 2x Xeon Phi 3210A
Network Intel I350 Gigabit Ethernet
DMA I/OAT Crystal Beach Version 3.0

Table 4.2: System Description

4.2 Xeon Phi Co-Processor

This section describes the hardware features of the Xeon Phi and compares them
to other well-known architectures such as Intel Ivy Bridge or nVidia Tesla. The
reader must be aware of the different models of the Xeon Phi which are currently
available each of which vary in certain figures of their specification while others
are consistent among the models. We restrict ourselves to the presentation of
the Xeon Phi model 3210A which will be used in the later evaluation. For a
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Figure 4.1: System Overview with Xeon Phi

complete of the available models comparison the reader may refer to the Xeon
Phi data sheet [19] or Intel Ark [25].

4.2.1 Hardware Specification

The Xeon Phi is not an ordinary processor plugged into the mainboard socket
but a co-processor which is connected over the PCI Express Bus [65]. Hence,
it appears as a PCI device to the host operating system. Table 4.3 on page 25
shows a comparison of the Xeon Phi with the Xeon E5 v2 series and the cur-
rent nVidia Tesla architecture. The values were extracted from their respective
data sheets [42, 19, 59]. The following two subsections highlight a selection of
differences between the Xeon Phi compared with the Xeon E5 v2 and nVidia
Tesla respectively.

4.2.2 In Comparison with the Xeon E5 v2

Despite the fact that both architectures are based on variations of x86, there
are several striking differences between the Xeon E5 v2 and the Xeon Phi: The
Xeon E5 v2 is a multi-core CPU with 10 out-of-order cores and 2 hardware
threads each whereas the Xeon Phi is a many-core CPU with 57 in-order cores
and 4 hardware threads each. On the one hand, the Xeon E5 v2 uses a 3-level
caching structure with a large L3 cache, on the other hand the Xeon Phi has a
two level caching structure. Additional information about the Xeon Phi caches
can be found in Section A.1. The next difference we want to emphasize is the
type of supported main memory: the Xeon E5 v2 uses the DDR3 standard with
various speeds ranging from DDR3-800 up to DDR3-1866, whereas the Xeon
Phi has GDDR5 type memory built onto the co-processor card. Both types
of memory are designed for special purposes and have different performance
characteristics. As a rule of thumb, GDDR is designed to target high throughput
streaming applications while DDR is adapted towards random access patterns
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Xeon E5 Xeon Phi nVidia Tesla
Feature 2670 v2 3210A Kepler K40
Cores 10 57 15
Type Out-of-Order In-Order Streaming
Threads 20 228 2880
Clock Speed 2.5 GHz 1.1 Ghz 0.88 GHz
L1 Cache 32kB + 32kB 32kB + 32kB 16-48kB
L2 Cache 256kb (2.5MB) 512kB (28.5MB) 1.5MB
L3 Cache 25MB - -
Coherence Protocol MOESI MESI + GLOS n/a
Extensions Intel AVX IMCI CUDA
Memory (Max) 768GB DDR3 6GB GDDR5 12GB GDDR5
Memory Channels 4 12 n/a
Memory Bandwidth 59.7 GB/s 240 GB/s 288GB/s
Physical Address 46 Bit 40 Bit n/a
PCI Express Rev 3.0 2.0 3.0
DMA Channels 8x (IOAT) 8x 2x
Peak Performance 0.46 Tflops 1.00 Tflops 1.43 Tflops

Table 4.3: Xeon Phi Hardware Specification

and low latency. The effects on memory access latency and throughput will be
investigated in Chapter 5.

Last, one may notice the PCI Express revision on the comparison. As the Xeon
E5 acts as the root complex of the PCI Bus, the Xeon Phi will be a PCI client
in the system. It is possible to have up to 8 Xeon Phi co-processor in a single
host system.

4.2.3 Comparison to General Purpose GPUs

General purpose GPUs (GPGPUs) are comparable to the Xeon Phi as both are
co-processors with a huge number of cores and thus providing massive paral-
lelism for high performance computing. Despite the closeness in terms of target
applications, their differences are fundamental: The Xeon Phi offers x86 based
cores whereas GPGPUs such as nVidia Tesla are so-called streaming proces-
sors. This is reflected in their programming model. In order to program nVidia
Tesla co-processors the CUDA ecosystem [60, 61] has to be used which pro-
vides a framework to offload computations onto the co-processor. In contrast
to the mainly host driven CUDA, the Xeon Phi is capable of running an oper-
ating system such as Linux or Barrelfish providing autonomous services. Even
though there would be many more things to discuss, a more in depth compar-
ison between the Tesla and the Xeon Phi co-processors is out of scope for this
thesis.
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4.3 Physical Address Space Layout

In commodity systems, the physical address space layout is based on the assump-
tion that there is an injective mapping between physical address and a byte in
main memory. Looking at a system with one or more Xeon Phi co-processors,
– note that this is not generalizable for all co-processors – one recognizes that
this uniqueness assumption no longer holds. A scheme of the resulting address
space layout can be seen on Figure 4.2 below. The following subsections explain
the layout and its implications towards the understanding of physical memory.

Host Xeon Phi

0x00..00

0xFF..FF
(46-bit)

System Memory

Xeon Phi 0 
MMIO Bar

Xeon Phi 0 
Aperture BAR

GDDR Memory

Xeon Phi MMIO

System Memory

32x 16GB Pages

0x00..00

0xFF..FF
(40-bit)

Xeon Phi  1
MMIO Bar

Xeon Phi 1  
Aperture BAR

5

6

3

4

1

2

7

8

Figure 4.2: Address Space Layout of a System with Xeon Phi Co-Processors

4.3.1 Host Side View

At a first glance, there is not much different in the physical address range as seen
from the host side: the Xeon Phi will appear as a normal PCI Express device
with two memory regions which are of interest for us (numbers in parentheses
refer to Figure 4.2):

• MMIO Space The memory mapped IO range (1) is 64 kB in size and con-
sists of the device registers (2) to control the co-processor such as initiate
the boot sequence or programming the DMA channels. It is important to
note, that the access to the MMIO registers from the host side is limited.

• Aperture Space This memory region maps the Xeon Phi’s GDDR mem-
ory (4) into the host physical address space (3). The size of this region
varies between the models from 8GB to 16GB1.

Two additional regions, the IO range and EXPROM aperture, need to be acti-
vated separately and are not of interest for our use case.

1The PCI aperture is rounded to the next power of two, the driver programmer has to be
aware of the effective size depending on the model as the aperture may suggest a bigger size.
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4.3.2 Xeon Phi Side View

On the Xeon Phi there are several memory regions available some of which are
also accessible from the host.

• GDDR Memory This memory region (4) is the main memory of the
Xeon Phi co-processor. An operating system running on the card will
treat this memory region as normal RAM. The GDDR Memory region is
also mapped as aperture (3) on the host.

• MMIO The memory mapped IO registers (2) are located in the so-called
SBOX (PCI Express client logic) of the Xeon Phi. While access to the
MMIO space is limited from the host, an operating system running on the
co-processor can access all 666 registers.

• System Memory The top half of the physical address range on the Xeon
Phi is called system memory range (6). The size of this region is 512GB.
The system memory range is further divided into 32 pages of 16 GB each.

The physical address range of the Xeon Phi is only 40 bits in contrast to the 46
bits of the host (Sandy Bridge micro architecture)

System Memory Page Table

Each of the 32 system memory pages can be configured by writing the address
into one of the consecutive system memory page table (SMPT) registers in the
MMIO space. Each page can be programmed to map any 16 GB of host physical
memory into the address space of the Xeon Phi. The memory block has to be
16GB aligned and must be exactly 16GB in size. Considering the Xeon Phi
as a guest, one can draw analogies between configuring the SMPT and setting
up of shadow page tables or extended page tables in a virtualized environment.
Following we discuss the implications of the system memory range towards the
understanding of physical address spaces.

4.3.3 Multiple Physical Address Spaces

In a system without co-processors there is a single physical address space to
be managed by the operating system. Recall the assumptions made by the
operating system about the uniqueness of references to an addressable byte in
the physical address space. In the following we present the fundamental changes
and their implications when dealing with a heterogeneous, Xeon Phi enhanced
system.

Ambivalence of Physical Addresses

The uniqueness assumption that each byte in memory has exactly one physical
address does not hold anymore. Consider the following example:

Let’s assume we have a byte at address A in the main memory of the host.
Viewed from the host side this address A is unique. Switching side, viewed
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from the co-processor this byte in memory is now at address B resulting in two
different addresses for the very same byte. To stress out the issue even more,
the SMPT can be programmed in such a way that byte A now also appears at
addresses C and D or it may not be existing at all.

In addition, let’s assume there is an address G in every address space present
in the system. Obviously, this address is valid in all address spaces but refers to
another byte in memory or even a something different like a hardware register.
Therefore, we have the same name pointing to different things.

With up to 8 Xeon Phi co-processors supported in a single system, there is the
possibility that an address A in the host physical address space is mirrored in
any of the co-processors address ranges. One may go even further and map the
aperture spaces of the Xeon Phi in the SMPT. That way it is possible to have to
distinct co-processor local addresses point to the same local address in GDDR
memory.

Non-consistent Physical Addresses

Like the extended page tables in virtualized environments, the SMPT may be
configured at any point of time. Hence, the physical addresses in the system
memory range of the Xeon Phi behave more like virtual addresses rather than
real physical addresses. The result of this is a broken assumption that a physical
address space always refers to the same byte in memory – we assume that the
PCI devices BARs are not altered once programmed.

Implications

Based on the above stated observations we claim that a single machine no longer
has a single physical address space. We rather have a multiple address space
scenario which are interleaved: system memory and co-processors GDDR can
be accessible from both sides. A multiple address space scenario raises new
questions and has several implications:

• What is a physical address space? This question is even more impor-
tant when we consider methods to access remote memory directly such as
RDMA, PCI aperture or system memory ranges.

• How are bytes in memory referenced? The design of Barrelfish
allows that the system to span a heterogeneous setup such as ours with a
host and Xeon Phi co-processors. Hence, it is possible to pass capabilities
around which implies that we must make sure that address A (a byte in
memory on the host) is translated into an address B on the Xeon Phi
referring to the same byte in memory.

• How are physical address spaces identified? Having multiple phys-
ical address spaces accessible in a system means that there might be a
physical address A which is valid in all address spaces, but refers to dif-
ferent regions in memory. Consequently, we need a way to uniquely refer
to a specific address space. This is even more important with technologies
such as RDMA where it is possible to access memory of a remote system.
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• Trust Issues: The fact that the co-processor OS can access system mem-
ory may lead to unintended or malicious access of main memory2. Even
with appropriate programming of the SMPT, the coarse granularity of the
pages is not suitable for access control. In that case, the use of an IOMMU
is highly encouraged.

• Malicious co-processor OS: Even though the host OS loads the co-
processor OS onto the card, once it is running it is out of host’s control.
The host must trust the co-processor OS not to mess with host mem-
ory and vice versa. This can be reduced to a similar problem in virtual
environments: the hypervisor needs to be trusted.

These implications are a research topic on their own and would be out of scope
for this thesis. Some of the points stated above had to be solved during the
development of the system and are described in Chapter 6.

4.3.4 Accessing Resources of another Processor

So far we have explained how the host can access the GDDR of the co-processor.
However, it may be the case that multiple Xeon Phi co-processors are present
in the system and they want to communicate with each other without host
involvement. Therefore, it must be possible to access the GDDR of another
Xeon Phi co-processor directly. This can be done by programming one entry
of the SMTP with the host physical address of the aperture space of the other
Xeon Phi.

This clearly adds the 16GB alignment constraints for the PCI aperture space
when programming the PCI device BARs. The problem boils down to the Xeon
Phi host side driver knowing where the other Xeon Phi’s apertures are mapped
and which slot to program. A possible solution to this will be presented in
Chapter 6.

4.4 The K1OM Architecture

Intel introduced a new architecture called k1om which is an adaption of the well-
known x86 64 architecture. There are several differences between standard x86
and the new k1om architecture which we will elaborate in this Section. So far,
every new generation of processors was backwards compatible. This is not the
case with the Xeon Phi. Most of the changes are considered to be a limitation
of features on which out-of-the-box operating systems may rely. Hence, system
software needs to be adapted to the new environment and the new instruction
set architecture. The following paragraphs describe the major differences and
its implications to the operating system intended to run on the Xeon Phi. For
a complete list of limitations refer to the Xeon Phi Systems Software Developer
Manual [20] or the Xeon Phi Instruction Set Architecture [16].

2It is generally assumed that the host trusts the co-processor not to mess with the host
system. This assumption is justified by the fact that everything that is loaded on the co-
processor somehow has to go through the host.
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Compatibility Mode In general, processors supporting long mode have a
compatibility sub mode which can handle 32-bit applications without recompi-
lation. Even though the Xeon Phi is 64-bit, the compatibility sub mode is not
available.

SIMD and Vector Instructions Intel equipped the Xeon Phi with extra
512-bit wide vector registers while truncating the support of the smaller MMX
and SSE instructions (xmm and ymm registers). Only 512-bit registers (zmm) are
supported, instructions using the smaller vector units trigger a unsupported
instruction fault.

Local APIC With the increased number of cores and hardware threads, the
APIC ID fields of standard x86 64 are too small to reference all threads. There-
fore, the APIC on the Xeon Phi does have extended APIC ID representations.
Operating system must take the changed bit representation into consideration
when booting new cores or issuing interrupts. Note that interrupts can not only
target a local core but also a core on the host or another Xeon Phi card in the
system.

Timer Hardware The commonly found timer hardware such as the pro-
grammable interrupt timer or the advanced configuration and power interface
(ACPI) are not present on the Xeon Phi. This implies that the operating system
must use the local APIC for timer interrupts and scheduling.

Global Page Tables The Xeon Phi does not support the global bit in the
page directory entries or the page table entries. Attempts to enable it by writing
the enable bit into CR4, will trigger a global protection fault.

Memory Prefetching To optimize certain memory operations in the stan-
dard C library, memory prefetch instructions are used. Normal prefetch opera-
tions are not available, but the Xeon Phi Instruction Set Architecture manual
describes the new instructions that can be used.

Memory Ordering As the memory model of the Xeon Phi is stricter than
the x86 64 model, reads and writes to the memory appear in program order.
This stricter model eliminated the need for memory ordering instructions such
as MFENCE or SFENCE.

I/O Devices Similar to system on a chip designs (SoC) the Xeon Phi does
not have a PCH south-bridge. Therefore, lots of devices that normally reside
on the PCI bus are not present on the Xeon Phi. Without I/O devices present,
the in and out instructions are not supported.

Serial Port Even though the Xeon Phi has a serial port, it is not directly
usable. The port is located at the far end of the I2C bus and it is tedious to
access. In addition one needs to connect additional hardware to the card in
order to get the output. Thus, serial output needs to be handled otherwise.
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4.5 Booting the Xeon Phi

The boot procedure of the Xeon Phi consists of several stages and boot modes.
This section will briefly discuss the different boot modes (Section 4.5.3), sup-
ported operating systems (Section 4.5.1) and the booting process itself (Sec-
tion 4.5.2). For a complete and more detailed boot process description one may
refer to the Xeon Phi System Software Developers Guide [20].

4.5.1 Operating Systems

The limitations and differences to the x86 64 architecture (as explained in Sec-
tion 4.4) implies that operating systems will most likely not work out of the
box. In the Intel provided software stack, a modified Linux is already included.
In any case, after the required modifications are incorporated into the code, the
Xeon Phi is capable of booting any operating system referred to as third party
OS.

4.5.2 Bootstrap

In contrast to a normal x86 system where s a BIOS handles the early boot
stages, there is no BIOS on the Xeon Phi. The early boot tasks are handled
by the so-called bootstrap which is executed on power-on and reset events. It
consists of two different stages: fboot0 and fboot1.

Stage 0: fboot0

After a reset or on power-on the fboot0 code is executed. This block of code
resides in the ROM of the Xeon Phi and cannot be changed once the co-processor
is deployed. Hence, it acts as the root of trust for the further boot stages. Its
task is to authenticate the integrity of fboot1: if the signature verification of
fboot1 succeeds the root of trust is transferred to fboot1 code, otherwise the
co-processor shuts down.

Stage 1: fboot1

In contrast to fboot0, the code of fboot1 resides in flashable ROM and can
be upgraded in the field. This stage executes early configuration routines and
applies possible silicon workarounds. It waits for the download ready signal
of the host and authenticates the image to be loaded. The root of trust is
not passed any further if the image is a third party operating system, in other
words, when the authentication process fails. Once fboot1 has finished with
initializing the co-processor hardware, it transitions the cores into 32-bit mode
with paging disabled.

Stage 2: Linux Loader

The bootstrap calls the 32-bit entry point of the Linux kernel as documented in
[64]. The image to be loaded must be in a binary format and certain bytes of its
header must have a very specific value otherwise the boot will fail. These bytes
are shown in Table 4.4 on page 32. They have been evaluated empirically by
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Byte Offset Value
0x202-0x205 Signature of the image, reads “HdrS”
0x1f1 size of the header in 512 byte sectors
0x1f4-0x1f7 size of the boot loader in bytes

Table 4.4: Special Header Bytes

zeroing the other bytes. In order to boot another third party operating system
such as Barrelfish, a loader is used which resembles the early stages of the Linux
boot process.

4.5.3 Boot Modes

The Xeon Phi can be booted in several modes. The chosen boot method affects
the hardware state of the Xeon Phi after the boot procedure is completed.

Normal Mode In normal mode the Xeon Phi is capable of booting a 64-bit
binary image such as the Linux bzImage [52] or directly a 64-bit ELF. When
supplying a binary image, the boot process follows the Linux boot specification
[64] and requires two images: one with the kernel and one of initrd. In this
mode access to the hardware registers is restricted.

Maintenance Mode During the boot process the boot-loader will check the
signature of the boot image. If the image is signed by Intel the card enters the
maintenance mode. The card trusts the signed image and enables access to all
the hardware registers.



Chapter 5

Memory Access over PCI
Express

The most interesting aspects of every new system architecture are its base per-
formance characteristics. This is especially true for heterogeneous systems such
as ours (cf. Table 4.2). In the previous chapter we had a look at the hardware
specifications of the host system and the Xeon Phi (Section 4.2). In this chapter
we will first set the context of the new memory regions available on host and the
Xeon Phi with respect to the memory hierarchy (Section 5.1). Based on this we
will conduct initial benchmarks to assess its nominal performance characteris-
tics: memory access latency (Section 5.3) and throughput (Section 5.4). Based
on these observations we will investigate the optimal message buffer placement
in Section 5.5. A detailed description of the used benchmark can be found in
Appendix A.

5.1 Memory Hierarchy

Adding a co-processor with memory to a machine changes the memory hierarchy
of the system. The purpose of this section is to relate the new layer in the
hierarchy to its implications for a system or application programmer and the
conducted benchmarks following later in this chapter. Recall the memory layout
of the Xeon Phi (Section 4.3). Based on this memory layout we have created a
graphical representation of the resulting memory hierarchy of the system which
can be seen in Figure 5.1 on page 34.

Co-Processor View The different layers of the memory hierarchy basically
resemble a traditional caching structure: the main memory (GDDR) of the co-
processor can be seen as a cache for the system memory. One must be aware
that there are no IO devices present on the Xeon Phi and hence the hard drive
or network storage is limited.

33
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• CPU registers, same cycle
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core local caches, instruction and data cache 

L1 Cache
L2 Cache
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• ~MillisecondsHard Drive / NFS

Figure 5.1: The New Memory Hierarchy

Host View Adding the highlighted layer has a different meaning on the host
compared to the Xeon Phi. It is doubtable if the aperture space of the co-
processor can be considered as a cache for the bottom layers: even though the
performance characteristics may match caching purposes the intended use of
this memory is different.

Accessing Remote Memory In contrast to other types of memory such as
disk or network storage, remote memory appears as local RAM and provides
the same ease of access. On has to be aware that access to the remote memory
range will trigger a PCI Express transaction. For a domain in Barrelfish it is
hard to tell whether the frame capability is referring to local or remote memory1

and hence the programmer needs to be aware of potential performance penalties
when accessing remote memory.

5.1.1 Memory Access with Co-Processors

The reasons for using co-processors in a system are versatile as we will see in
Section 7.1. However, the compute-model of the available co-processors differ
in various aspects. In any, case co-processors need to have access to the data
they have to process. This can be achieved by two different models:

• Push Based: The host actively copies data onto the co-processor’s mem-
ory.

• Pull Based: The copy process is initiated and executed by the co-
processor on host request.

1It could be done by looking up the physical address of the capability and relate that to
the system memory layout which would be to be stored in the SKB.
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It depends on the co-processor which model is supported: while the Xeon Phi is
capable of applying any of the two models other co-processors such as graphic
cards may support only the push based model. In general, pull semantics are
preferable as this frees up the host of the burden of copying and lets the co-
processor decide which parts of the data to copy. Possible differences in copy
performance will be evaluated in Section 5.4.

5.2 Evaluating Memory Access Performance

The performance of memory bound programs is limited by the accesses to data
residing in memory. The key figures of reading or writing to any type of memory
are its access latency and the offered throughput. Assigning appropriate weights
to the two proprieties highly depends on the type of workload. This is also
reflected in the type of the memory modules: DDR favors latency while GDDR
provides better throughput.

Latency In a system which uses message passing over shared memory as
communication between domains, memory latency is of high importance. The
lower the latency, the faster a message sent is seen by the receiver. For every
poll on a message slot, a memory read is issued.

Throughput On the other hand, programs may need to copy data from one
location to another or to process large amounts of data in parallel. The perfor-
mance of such an operation is affected by the memory throughput. Although,
latency plays a role here as well, it can be hidden by pipelining multiple loads
and stores.

Normalized Cycles

In all benchmark we used the local time stamp counter (TSC) to measure the
time. In order to get a comparable value we divide the cycle count by the
number of TSC-ticks per micro second. The obtained value represents absolute
time and is referred to as normalized cycles.

5.3 Memory Access Latency

As explained above, memory latency affects the performance of message passing
over shared memory which is widely used in Barrelfish. Therefore, knowing the
raw access latencies to the different types of memory is of particular interest.

5.3.1 Benchmark Description

In the benchmark we used two different types of access patters in order to
measure the latencies of the different types of memory:

1. Randomized: Traversing a randomly shuffled list of cache-line-sized el-
ements with a working set size bigger than the available last level cache.
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The purpose of this pattern is to maximize the cache miss likelihood while
traversing the list to measure latency to main memory.

2. Sequential: Traversing an ordered linked list of pointer-sized elements
with a working set size that fits easily into the L1 cache in order to measure
cache hit latencies.

A full description of the benchmark and its settings can be found in Appendix
Section A.2.

5.3.2 Benchmark Results

The results of the memory latency benchmark can be seen in Table 5.1 below
and are visualized on Figure 5.2 on page 37. The times shown are the latencies
in cycles to access a single element of the list. One must be aware of the non-
comparability of the cycles as they are measured on two different CPUs with
disparate clock rates. We differentiate the discussion of the results based on the
type of the memory: local and remote memory.

Memory Type Cycles
L1 Cache 4 (0.001)
Main Memory 295 (0.118)
Other NUMA 295 (0.118)
PCI Aperture 1545 (0.619)
PCI Aperture (C) 1401 (0.562)

(a) Host

Memory Type Cycles
L1 Cache 3 (0.002)
GDDR Memory 547 (0.522)
System Memory 835 (0.798)
System Memory (C) 443 (0.423)
Other Xeon Phi 1355 (1.295)
Other Xeon Phi (C) 1109 (1.060)

(b) Xeon Phi

The values in brackets represent normalized cycles (cycles / ticks-per-microsecond). The
standard deviation for all values was � 1 cycle. The addition (C) means cache friendly
sequential access.

Table 5.1: Memory Access Latencies

Local Memory

In terms of local cycles the measured latencies for the L1 cache are in the same
range for the host (Xeon E5 v2) as well as for the Xeon Phi with 4 and 3
cycles per element2 respectively. Hence, accessing data residing in L1 cache has
comparable latencies on host and the Xeon Phi co-processor even though in
normalized cycles the latency on the Xeon Phi is about twice as high.

As expected when accessing main memory we experience an increased latency
by two orders of magnitude. Whereas the L1 caches on the cores used the same
SRAM technology resulting in similar access latencies, the used main memory
technology differs between the host and the Xeon Phi: one clearly recognizes the
contrasting characteristics of the used DDR3 and GDDR5 standards. Accessing
main memory on the host is almost twice as fast as accessing main memory on

2Intel claims to have a memory access latency of the Xeon Phi L1 cache to be 1 cycle
[20, 13] under the condition that the loaded value is used in integer operations.
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Figure 5.2: Memory Access Latencies on Host (top) and Xeon Phi (bottom)
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the Xeon Phi3 (in terms of raw cycles). The difference gets even more significant
when comparing the normalized cycles: the cache miss penalty on the Xeon Phi
is almost a factor of 4.5 higher than on the host.

Remote Memory

In our case accessing remote memory always involves crossing the PCI Express
bus at some point of time. Thus, the access latency is dominated by the PCI
Express latency which adds approximately 1000 cycles to local accesses on the
host or 300 cycles on the Xeon Phi for the randomized access pattern. Accessing
the PCI aperture from the host is an order of magnitude slower than main
memory which is expected. The interesting case is the Xeon Phi where the
overhead is less than a factor of two for accessing system memory. The resulting
access latency is comparable on both nodes with 0.6 vs 0.8 normalized cycles.

When changing the access pattern to a cache friendly list traversal we see a slight
decrease in latency on the host while almost cutting down the latency on the
Xeon Phi by a factor of two. It is even more surprising that accessing (remote)
system memory in a sequential pattern is faster than randomized access to local
GDDR memory.

As explained, it is possible to access GDDR memory of another Xeon Phi. In
our machine a read or write request to another Xeon Phi’s memory needs to go
from one PCI Express bus to another. By adding up the numbers for system
memory access plus local GDDR access we get about the same value as for
accessing to remote GDDR memory. In any case, compared to local GDDR
access, the penalty for accessing remote memory is roughly a factor of two.

There is an interesting relationship between the inter-Xeon Phi memory laten-
cies. The normalized time for accessing 2x PCI aperture space from the host
is almost exactly the same as accessing GDDR memory of the other Xeon Phi:
2× 0.619 = 1.238 ≈ 1.295 normalized cycles.

5.3.3 Implications

In general organizing its own hot set of data in such a way that it fits in the L1
cache is a good practice. On systems with GDDR-based main memory it is even
more important as there is a huge penalty for every cache miss. In addition,
the use of prefetch instructions is encouraged if the access pattern can be pre-
determined. In contrast to the Xeon Phi, the host needs to pay attention of
data locality as accessing PCI aperture space involves a high penalty in terms
of latency.

Relation to Hardware Features

With a high access latency to GDDR memory and relatively small caches, the
CPU of the Xeon Phi has to wait for data for several hundred cycles. This waste
of cycles is even more increased by the in-order execution. However, having four

3Intel specifies [13] the GDDR latency to be 500-1000 cycles which supports our measured
value of 547 cycles.
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hardware threads per core, the Xeon Phi CPUs are able to execute instructions
coming from another instruction stream while waiting for data to be ready.

5.4 Memory Throughput

In this section we explore the data transfer capabilities of the Xeon Phi using
different directions of data flows and compare the various options of data transfer
techniques. Memory throughput is important because we want to get the hot
working set of data closer to the accessing node to achieve a low latency as
shown in the previous benchmark.

5.4.1 Benchmark Description

For each of the different transfer types the task was essentially to copy a buffer
from one location to another. The copy is done in a single threaded fashion
using either a memcpy() or a single DMA transfer. The rationale behind this
simplification is that buffers are usually copied using a single memcpy() opera-
tion. Therefore, the presented values can be considered to form a lower bound
of the copy operation as parallel copies and transfers can be used. For each
direction we investigate the behavior for different buffer sizes. A full description
of the Benchmark can be found in Appendix A.

DMA Measurements DMA measurements are taken directly at the driver.
The use of a DMA service will introduce an additional overhead which is briefly
discussed in Appendix A.

NUMA The shown results are only within the same NUMA region. Per-
formance differences when transferring between NUMA nodes can be found in
Appendix A.

Values The shown values are always the median with the standard error based
on an experiment repetition of 500 rounds.

5.4.2 Benchmark Baseline: Local Transfers

We take local memory to memory transfer as the baseline for the later bench-
marks over PCI Express. The rationale is that local transfers are faster than
going over the PCI bus. On the host we use the IOAT DMA engine and on the
Xeon Phi the co-processor local DMA engine to do memory to memory copy.

Benchmark Results

The measured throughput can be seen on Figure 5.3 on page 40. The x-axis
shows the relevant sizes with respect to the cache hierarchy. On both nodes
DMA outruns memcpy() significantly after the setup latency is dominated by
the transfer time. It is beneficial to start a DMA transfer for buffers larger
than 16 kB. The benchmark results reveal interesting behaviors which will be
addressed in the following paragraphs.
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Figure 5.3: Memory Throughput on Local Memory

Memcpy Copying a buffer using libc’s memcpy() on the host showed quite
some odd behavior for small buffer sizes up to 1kB with a relatively high stan-
dard error4. This may be caused by caching anomalies as the buffer lines fall
into the same set. With increasing buffer sizes the available cache is used more
evenly resulting in a more stable performance. There are few drops to see, each
at the boundary of the three cache levels (32kB, 256kB and 25MB).

On the Xeon Phi there are no such anomalies as on the host. However, when
4The results were consistent throughout repetition of the entire experiment runs.
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the size of the L1 cache is reached a vast drop in the throughput can be seen.
This can partially be attributed to the lack of prefetch instructions in the used
C standard library for the Xeon Phi. There is another drop when the size of
the L2 cache is reached. A similar behavior to the host only with a higher
impact. These reductions in throughput are also caused by the high latency of
the GDDR memory.

A Word on Prefetching Both experiments were using the memcpy() func-
tion of newlibc [36] which is hand-optimized assembly. The used prefetch
instructions are not valid on k1om and hence are deactivated on the Xeon Phi.

DMA Transfers On both nodes DMA transfer suffer from a longer latency
for issuing transfers than memcpy() which is compensated by a higher through-
put. The peak throughput is reached when there is at least one full descriptor
used – 512kB on the Xeon Phi and 1MB on the host. Comparing the peak trans-
fer speeds the Xeon Phi does about a factor of 2 better than the host. This can
be accounted to the GDDR memory the Xeon Phi uses. If there are more than
two descriptors used on the host, there is a drop in the DMA throughput which
may be partially attributed to an increased setup time.

5.4.3 Host to Xeon Phi Transfers

Transferring data from the host to the Xeon Phi is crucial for offloading tasks.
We repeated the exact same experiment as before but replace the target address
with a region of memory residing on the PCI aperture space of the Xeon Phi.
The experiment is conducted on the host as well as on the Xeon Phi to catch
potential differences. The results can be seen in Figure 5.4 on page 42. In
order to show the differences of memcpy() with a higher resolution a scaled up
graph can be found in Appendix A. When going over PCI Express there is a
huge difference between memcpy() and DMA transfer: issuing a DMA request
is faster after a few hundred bytes.

I/OAT DMA Engine versus Xeon Phi DMA Engine

If we compare the performance of the I/OAT DMA engine (green) with the base-
line we see that we reach about the same peak throughput. However, compared
to the Xeon Phi DMA engine (red) there is a significant performance difference.
This can be explained by the maximum transfer size of a PCI Express trans-
action. In contrast to the 128 bytes of the I/OAT DMA engine, the Xeon Phi
DMA engine supports up to 256 bytes per PCI Express message. In addition,
the IOAT DMA issues a memory write to the co-processor GDDR while the
Xeon Phi DMA basically does a read – we will see performance differences of
reads and writes later.

Comparing DMA transfers controlled by the host to the ones managed by the
Xeon Phi, we see that there are no statistically significant differences (both
red lines follow each other closely). The DMA transfers issued by the host
seem to have a marginally higher throughput at bigger transfer sizes. This is
also backed by the Systems Developer Manual [20] which states that the DMA
engine delivers a slightly better performance when operated from host side.
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Figure 5.4: Memory Transfer from Host to Xeon Phi
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Figure 5.5: Memory Transfer from Xeon Phi to Host



CHAPTER 5. MEMORY ACCESS OVER PCI EXPRESS 43

5.4.4 Xeon Phi to Host Transfers

The results from the offloaded computation may be transferred back to the
host. Accordingly, we repeat the previous experiment with opposite data flow
direction. The results can be seen on Figure 5.5 on page 42. The reader may
have noticed the lack of the I/OAT DMA engine. This is because DMA transfers
with a MMIO region as source are not supported by the I/OAT DMA engine.
We obtain a similar picture as before showing the extreme benefits of doing
a DMA transfer instead of memcpy(). Comparing to the opposite data flow
direction there is almost no difference: the peak throughput is in the same
6.5GB/s range. Furthermore, DMA transfers issued by the host are a bit faster
than the ones controlled by the Xeon Phi.

5.4.5 Between Xeon Phi

Some work flow may need to distribute data among the Xeon Phi. The questions
that arises is if doing a direct co-processor to co-processor transfer is better
compared to going through host memory. Transfers between two Xeon Phis can
be classified into a read (copy data from the remote GDDR into the local GDDR)
and a write (copy data from local GDDR to the remote GDDR). Certainly, we
expect similar performance patterns like the ones we obtained when transferring
data between host and Xeon Phi. However, the observed throughputs are much
slower compared to host—Xeon Phi transfers by up to an order of magnitude.
Moreover, the transfers are skewed, in other words, reading is faster than writing
by a factor of 3x.

The question stated above has to be answered with it depends. On the one
hand, going directly from Xeon Phi to Xeon Phi is expected to be slower than
going through main memory of the host. On the other hand, it does not use
resources from the host.

5.4.6 Implications

The results obtained from the memory throughput benchmarks have direct im-
plications for potential bulk transfer solutions. Any reasonable bulk transfer
implementation which supports transfers between host and Xeon Phi must in-
corporate DMA services. This not only frees up CPU resources and reduces
pipeline stalls but also executes the transfer considerably faster despite the ad-
ditional message passing overhead (Section A.5).

On local transfers doing a memcpy makes sense up to a buffer size which matches
the size of the L1 cache. In any case, copying data locally should be avoided as
possible and may be better done using lazy techniques such as copy-on-write.

Furthermore, to transfer data from and to the Xeon Phi GDDR, one should use
the DMA engine of the Xeon Phi rather than the I/OAT Crystal Beach DMA
engine. Despite the difference in throughput, DMA transfers can be initiated
by both sides. Judging from the inter-Xeon Phi transfer performance, the use
of such transfers is discouraged.
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Figure 5.6: Memory Throughput Xeon Phi to Xeon Phi

5.5 Message Passing over Shared Memory

With a multikernel design many traditional system services such as memory
management or device drivers are pushed to user-space. Therefore, an efficient
method of communicating between domains is of the high importance. Recall,
Barrelfish supports multiple backends for establishing channels between domains
which are abstracted by Flounder [7] . For our application in mind, user-level
message passing (UMP) is the backend of interest. The goal of this benchmark
is to investigate the raw UMP latency when sending a message over PCI Express
compared to node-local communication. In particular the effects of receive and
transmit buffer placements.

5.5.1 Benchmark Description

In the following benchmarks we measure the round-trip time (RTT) of a zero
byte payload UMP message. We use the bare UMP backend in order to get a
lower bound on the performance. The setup is based on the already existing
ump latency benchmark: of two domains which bootstrap a UMP channel over
a shared frame. A master domain starts sending messages to an echo server
which basically just replies with a message.

5.5.2 Benchmark Baseline: Local Benchmark

Similar to the memory throughput benchmark we use a local setup as a baseline
for message passing over PCI Express. For this purpose we run the ump latency
benchmark on the host and the Xeon Phi. The measured round trip times can
be seen on Table 5.2 below and they are visualized in Figure 5.7 (page 45).
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Figure 5.7: Message Passing Latency

The results show that a round trip between two domains on the Xeon Phi is
about the same as between the two NUMA nodes on the host (in terms or
local cycles). Considering normalized cycles the Xeon Phi has a RTT which
is roughly an order of magnitude slower than on the host. The following two
paragraphs relate the measured round trip times to the raw memory latencies
of Section 5.3.

Location Min Median 99-Percentile
Host (within NUMA) 323 (129) 388 (155) 608 (244)
Host (inter NUMA) 895 (359) 1284 (515) 1906 (764)
Xeon Phi 842 (805) 1133 (1083) 1406 (1344)

Values in local cycles. In brackets, normalized cycles.

Table 5.2: Local Message Passing Latencies (RTT)

Host: On the host the worst case scenario happens when both endpoints
observe a cache miss resulting in 2 · 295 cycles ≈ 600 cycles which is about the
99-percentile value (608 cycles) observed in the experiment. In the best case,
the cache line is present on both cores and the cache-coherency protocol handles
the transfer: the cache line is loaded directly from the other core’s cache instead
of main memory. This is almost twice as fast as going to main memory.

Xeon Phi: Recall MESI+GLOS, the special cache coherency protocol of the
Xeon Phi. With no owner state, when the message is sent, the cache line on
the other cores must be invalidated first and re-fetched from main memory
later on – in contrast the MOESI protocol supporting an owner state enables
broadcast of modifications to the other cores without the need of explicit cache-
line invalidation.
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Therefore, a higher latency is expected which may even be more amplified
by the ring interconnect of the Xeon Phi cores. Intel claims in [20] that the
MESI+GLOS protocol can be used to emulate the missing owned state to
achieve the benefits of a full MOESI protocol. Compared to the host where
the median is significantly below the double memory latency on the Xeon Phi
we get about twice the memory latency: 2 · 547 cycles ≈ 1100 cycles. With the
GLOS addition, in the best case we achieve a latency which is only 1.6 x GDDR
memory latency (compared to the MOESI protocol of the host, where we got a
factor of 1.1 for the round trip). To sum up, there is an improvement over the
standard MESI protocol but in most of the cases the latency is more than two
cache misses.

RTT per Core Distribution The ump latency benchmark runs once be-
tween each core. The distribution of RTT per core on the host and the Xeon
Phi can be found in Appendix A.
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Figure 5.8: Message Passing Latency over PCI Express (Host)

5.5.3 Message Passing over PCI Express

The next step is to elaborate on the performance characteristics when we ex-
change messages between domains running on different nodes and hence need
to cross PCI Express. Obviously, based on the data gathered for raw memory
latency the results cannot be faster than our baseline. The goal is more under-
stand the effects of different buffer placement strategies and likewise estimating
the resulting overhead when going over PCI Express. Each UMP channel has a
receive and a transmit buffer which can reside either in local or remote memory.
The results compared to the baseline can be seen in Figure 5.8 and Figure 5.9
on page 47.
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Host to Xeon Phi

Compared to the host’s local round trip times, sending messages over PCI Ex-
press bus is about an order of magnitude slower than within the same NUMA
node (or a factor of 3x compared to inter NUMA messages). Analyzing the four
possible buffer configurations we see that polling a remote receive-buffer and
writing messages to a local transmit-buffer offers the best latencies. There is
not enough statistical confidence to make a statement about the ranking of the
other three configurations.
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Xeon Phi to Host

We repeat the experiment but initiate the messages from the Xeon Phi side.
The results shown the top graph of Figure 5.9 reveal completely different, yet
surprising patterns as on the host: even though Xeon Phi local latencies are
significantly faster than going to the host and back, the overhead for crossing
the PCI Express bus is rather low. This can be accounted to the high latency of
the GDDR memory and the lack of a proper MOESI cache-coherence protocol.
We cannot select one buffer configuration as the best with statistical confidence.
However, if we chose to poll a remote receive buffer we are on the faster side
while the location of the transmit-buffer does not matter. This is because the
remote buffer may reside in the host CPU cache which can be snooped by PCI
Express.

Xeon Phi to Xeon Phi

The last experiment evaluates the latency between two Xeon Phis. Compared to
the Xeon Phi local baseline we observe a round trip time which is twice as high.
Compared to the previous benchmarks, the distinct buffer placement strategies
provide slightly different outcome. Again, polling a remote receive buffer and
sending data to the local transmit buffer is the fastest option.

5.5.4 Implications

Based on the observations of the experiments, we conclude with statistical con-
fidence that polling a remote receive buffer and writing messages to a local
transmit buffer produces the best results in terms of round trip times – no
matter where we initiate the request. Perhaps the most counter intuitive re-
sult observed was the messaging latencies from the Xeon Phi to the host which
are in the same order of magnitude as the Xeon Phi local measurements. Even
though there is a certain overhead it is small enough that invocations of services
running on the host may become an option even a necessity as we will see in
the following chapters.

5.6 A Word on CPU Performance

Host Xeon Phi
Integer Operation 3309 (3.684) 1044 (1.047)
Vector Instruction (32-bit elements) 12375 (23.12) 4196 (0.457)
Vector Instruction (64-bit elements) 2781 (2.009) 2088 (0.228)

Table 5.3: Integer Performance in Millions of Operations per Second

Obviously memory access latency is not the only parameter that affects the over-
all performance of a system: depending on the workload, CPU computing power
is the most important factor. Comparing the theoretical peak performance of
the host CPU with the Xeon Phi there is a clear winner: with a nominal Trillion
double precision floating point operations per second the Xeon Phi can do more
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than twice as much as the host. However, recall the power wall in microproces-
sor history [66] and the paradigm shift towards software concurrency (“the free
lunch is over”, [77]): the nominal peak performance figures have to be taken
with care as they are only valid for highly parallel workload which use the extra
wide SIMD vector units.

Table 5.3 above shows the number of integer instructions per second for a single
core. We used addl/addq and vpaddd/vpaddq instructions and divided the
number of processed 32 or 64-bit elements by the measured execution time.
The results show, that on the Xeon Phi the use of AVX-512 instructions are
highly recommended whenever possible.



Chapter 6

Barrelfish on the Xeon Phi

In the previous chapters we described the features and specifications of our new
hardware (Chapter 4) and investigated its performance characteristics with mi-
cro benchmarks (Chapter 5). In this chapter we describe our proposed software
system which runs in the heterogeneous environment consisting of x86 64 and
k1om micro-architectures. We base our system on Barrelfish’s multikernel ar-
chitecture which natively supports the desired functionality such as user-level
message passing as communication between domains.

This chapter is structured in the following way: We start with presenting the
global system architecture (Section 6.1) and its differences to Intel’s MPSS (Sec-
tion 6.2). Followed by two sections describing the boot process (Section 6.5) and
the anatomy of the Xeon Phi boot image with its assembly process (Section 6.4).
We will revisit capabilities (Section 6.6) in the context of multiple address spaces
and talk about bootstrapping message passing channels over PCI Express (Sec-
tion 6.7). In the remainder of the chapter we present an overview of the different
new services available in the system (Section 6.8).

6.1 System Overview

Our proposed system adds two new domains to Barrelfish which provide the
indispensable services to communicate with domains on the Xeon Phi and so
forth. A graphical representation of the system can be seen in Figure 6.1 on
page 51. The following subsections describe the roles of the domains and its
provided services. At a top level, each of the domains shown in the scheme can
be classified into domains that

1. collaborate in the boot process of the Xeon Phi, and co-processor

2. form the software runtime system for applications.

50



CHAPTER 6. BARRELFISH ON THE XEON PHI 51

PCI Express

H
o

st
X

eo
n

 P
h

i

X
eo

n
 P

h
i

Xeon Phi Manager

Monitor

Kaluga

SKB

PCI

Xeon Phi Card Driver

Sysmem Caps 
Manager

DMA 
Service

Driver 
Service

Xeon Phi Host Driver

Aperture Caps 
Manager

DMA 
Service

Driver 
Service

Virtual Serial 
Driver Xeon Phi Host Driver

Xeon Phi Card Driver

Flounder Channel
spawns
events / messages

Figure 6.1: Software System Overview

6.1.1 Xeon Phi Driver

The Xeon Phi driver domains have multiple roles that differ depending on the
node where the driver domain is running. The host-side driver is more complex
and has to fulfill more tasks while the co-processor driver provides only a subset
of the host-side functionality. We give a high-level overview of the tasks in the
following sections and defer its details to Section 6.5, 6.9 and 6.8. On the host
a new Xeon Phi driver instance is spawned with every Xeon Phi co-processor
discovered whereas on the Xeon Phi only a single instance is running.

Host and Co-Processor Driver’s Common Functionality

Both, host-side and co-processor-side Xeon Phi driver share a set of common
functionality and provided services including:

1. Driver Service which provides an interface for client domains to spawn
new domains or to transfer capabilities.

2. DMA Service delivering high throughput memory copy functionality
between host and co-processor or GDDR–GDDR transfers.

3. Inter-Driver Communication All Xeon Phi driver domains are inter-
connected with each other in a mesh like topology. This non-public inter-
face enables forwarding of requests to specific driver nodes.

It may be a point of argument whether the DMA service should be run as a
separate domain or stay integrated into the Xeon Phi driver. We have chosen
to keep the DMA service as a component of the Xeon Phi driver because the
memory mapped registers of the DMA engine cannot be fully separated from the
other registers. This would be a potential security risk because the DMA driver



CHAPTER 6. BARRELFISH ON THE XEON PHI 52

would be able to access unrelated registers. Further, the Xeon Phi DMA engine
operates with co-processor local addresses. This requires an address translation
which is problematic as the SMPT entries may change. Last, the layout of DMA
registers do not allow separating channels which are divided among host and
co-processor. Therefore, we integrate the DMA service into the trusted Xeon
Phi driver to overcome this issues.

Host Side Driver

In addition to the common features and services stated above, the host-side
driver executes boot and capability management tasks. The Xeon Phi co-
processor shows up as an ordinary PCI Express device during machine boot.
After the PCI domain is done with basic device initialization, it informs Kaluga
about the device. Kaluga spawns the driver instance and transfers control to the
Xeon Phi driver for device-specific configuration. The host-side driver starts the
reset and configuration sequence and boots the co-processor operating system.
(Boot related steps are explained in Section 6.5).

As we already explained in Chapter 4, the GDDRmemory of the Xeon Phi shows
up as the PCI aperture space on the host. This memory region is represented as
a capability which has to be managed. The host-side driver initializes a driver-
local memory manager for the aperture space capability which is used to look
up capabilities in transfer requests.

Among the additional runtime services provided by the host-side driver, there
is a virtual serial device. This is necessary because the Xeon Phi lacks of a PCH
south bridge with its related devices (Section 4.2). The virtual serial device
supports a basic protocol to enable console output from the Xeon Phi. The
host-side driver forwards the received data to its console port.

Co-Processor Side Driver

On the co-processor the driver is spawned as a special domain by monitor sup-
plying the system memory capability. Similar to the host side driver, the local
memory manager is initialized with the capability for the SMTP region. The
Xeon Phi driver running on the co-processor acts as a gate keeper to the host’s
main memory and therefore has to be trusted.

Currently, there are no additional services provided by the co-processor-side
driver. Possible future services include power management and reliability func-
tionality.

6.1.2 Xeon Phi Manager

The Xeon Phi Manager assumes the role of administering the Xeon Phi driver
domains. Analogously to the MPSS, we assign each Xeon Phi co-processor a
system-wide unique identifier. The Xeon Phi IDs range from 0 to 7 and are
assigned by the Xeon Phi Manager during driver initialization resulting in a
support of eight Xeon Phi co-processors in a single system.

Intel specifies that in maximum eight Xeon Phi co-processors can be used si-
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multaneously in a single machine. However, it is uncertain if this limit is due to
hardware constraints or if it is purely software-based limitation of the MPSS1.
In any case, we also adapt the same limitations and support up to eight co-
processors in a single system.

The Xeon Phi Manager is aware of the driver instances running on the system.
Besides assigning IDs, the manager is involved in bootstrapping the inter-driver
communication channels on the host by distributing the registered IREFs. There
is only one Xeon Phi Manager running in the entire system.

6.1.3 Service and Domain Identification

In a single address space Barrelfish, we can refer to services and domains using
IREFs and domain IDs respectively. Monitors are involved by assigning the
values. The IREF values are not random but encode the ID of the core the
domains are running on:

iref = MAX_IREF_PERCORE * my_core_id + i + 1

Currently core IDs and domain IDs are managed node-locally. This implies we
cannot tell whether the IREF or domain ID refers to a local or remote instance.
Establishing an inter-node communication channel is handled without IREFs
anyway (Section 6.7). However, bootstrapping the channel requires sending a
capability to the target domain which is identified by its extended domain id.
We extended the 32-bit Barrelfish domain ID to a 64-bit value and prepended
additional information about the domain. The bit representation can be seen
on Table 6.1 below.

Bits 63 62 48 47 40 39 32 31 0
Value Host Bit Reserved Xeon Phi ID Core ID Domain ID

Table 6.1: Xeon Phi Domain ID Bit Representation

The most-significant bit of the ID represents the location, host or co-processor,
the domain is running on. Depending on the bit value the Xeon Phi ID field
has a different meaning. Domains running on the Xeon Phi encode their Xeon
Phi ID and core ID whereas domains running on the host encode their NUMA
node and core ID. The least-significant four bytes are occupied by the node-
local domain ID. The values are assigned based on the location where domain
is spawned. Potential domain migration is not reflected.

1Clearly the data structures of the Xeon Phi driver module are designed to deal with eight
Xeon Phi in maximum. The memory layout in [20, Section 2.1.12] reserves the bottom 64GB
for local resources followed by 7 × 64GB blocks labeled as “Local resources of other KNC”.
This introduces a hardware constrained limit of 8 co-processors. However, this memory region
is declared reserved in the released Xeon Phi products.
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6.2 Differences and Similarities to the MPSS

Intel provides its own software environment called Intel Manycore Platform
Software Stack MPSS [17] for use with Xeon Phi on Linux and Windows based
hosts (Section 2.1). The MPSS includes host side drivers, a co-processor oper-
ating system based on Linux and a runtime providing necessary services. The
symmetric communications interface SCIF [21] enables the creation of socket-
like channels between processes running on host and the co-processor for data
transfer. Similar to Barrelfish’s user-level message passing, the SCIF framework
uses a shared memory approach for data exchange.

In contrast to our extension to Flounder (Section 6.7) which enables the use of
Barrelfish’s native channel abstractions, MPSS based applications have to use
the the specific SCIF interface (Intel’s MPI [18] framework is based on SCIF).
The benefits for a unified communication interface are clearly its portability
and flexibility for a host-only execution support. Furthermore, our system is
designed to have as less kernel involvement as possible by having the host and
co-processor side driver modules run in user-space. We make DMA transfers
explicit and enable the user to decide when a DMA requests is sent or data is
copied using memcpy() instead.

Our implementation does not include any power management or reliability,
availability and serviceability functionality as described in [20, Chapter 3].

6.3 Modifications to Barrelfish

In general, the Xeon Phi is capable of booting any third-party operating system
(Section 4.5.1) as long as the limitations stated in [20] are handled properly. In
order to make Barrelfish boot on the Xeon Phi, a new Hake target architecture
was introduced ( Section 6.4.1). Furthermore, the kernel and certain user-space
domains were adapted to reflect the specialties of the new architecture. In the
following we briefly mention the patches applied to existing Barrelfish domains.

6.3.1 Boot-Loader

On x86 64, Barrelfish uses a tool called Elver as a boot-loader which transitions
the CPU into 64-bit mode. On the Xeon Phi we had to develop a new boot-
loader which satisfies the requirements of the Linux boot-loader as described in
Section 4.5.2. Besides enabling 64-bit mode and virtual memory initialization,
the boot-loader has to ensure the virtual serial device is operational by creating
a mapping for the MMIO register range. More details about the boot-loader
will be discussed in Section 6.5.4.

6.3.2 CPU Driver and Monitor

Representing every resources as a capability implies that there must be a way
device drivers can obtain the capability of their device. In x86 64 Barrelfish,
the PCI domain manages the capabilities for each device on the PCI Express
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bus. Device drivers receive their capabilities by request from the PCI domain.
Obviously this cannot be done on the Xeon Phi co-processor as there is no PCI.

On the Xeon Phi, the architecture specific CPU driver creates two special ca-
pabilities referring to the MMIO registers and the system memory range of the
Xeon Phi. These two capabilities are passed to the Monitor on boot-up. We
treat the Xeon Phi driver instance on the co-processor as a special domain. Sim-
ilar to the SKB, Monitor spawns the Xeon Phi driver directly and copies the
two capabilities into well-known slots in the driver’s CSPACE. This ensures that
only the Xeon Phi driver can obtain the sensitive system memory capability.2.

Besides the creation of the stated capabilities, the CPU driver also handles the
special cases of the k1om architecture such as the extended APIC ID field or the
virtual serial device for console output. Furthermore, the CPU driver parses the
Xeon Phi ID from the passed parameters. The ID is cached in every dispatcher.

6.3.3 Kaluga and SKB

We decided have a separate device driver instance for each Xeon Phi co-processor
in a machine. The corresponding entries were added to the device database to
let Kaluga handle the spawning of the Xeon Phi driver. To make Kaluga work
with the design of our system we had to adapt Kaluga to allow multiple driver
instances being spawned. For this purpose we extended the device database in
the SKB with additional fields:

• multi instance: when set to true tells Kaluga that multiple instances
of the driver are allowed

• core offset: if non-zero the stride of the core where the next instance(s)
will be started.

Kaluga keeps track of the running instances and spawns a new driver domain on
the core defined by the base core id (core hint) plus a multiple the core offset
depending on the number of already running instances. Upon spawning, Kaluga
appends additional parameters to the command line. The existing arguments
were extended to encode the PCI address of the device:

vendor_id:device_id:bus:device:function

All the numbers are in hexadecimal format. The first two tokens are the PCI
vendor ID and the device ID and the last three token represent the address of
the device on the PCI bus.

The extension was necessary because if we have multiple devices with the same
vendor and device ID, we need to guarantee that there is no ambiguity when

2Another approach would be to have the capabilities requested similar to the IO-capability
on the PandaBoard. We decided against this because requesting it should only be possible by
the Xeon Phi driver which is not enforced that way.
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registering with the PCI domain. Obviously, this leads to problems when only
vendor and device ID are supplied. A more transparent solution would be similar
to Barrelfish’s PandaBoard implementation where Kaluga manages the device
capabilities and passes the required ones to the driver as arguments. This not
only reduces the need for requesting the capabilities, but also ensures obtaining
the correct ones.

6.4 Creating the Xeon Phi Bootimage

On a x86 64 machine, the modules specified in the menu.lst file are loaded using
the TFTP protocol. During the loading process, the corresponding multiboot
[40] information structure is generated containing the addresses, names and
sizes of the modules. A pointer to the data structure is passed to the Elver and
further to the CPU driver.

This is not possible on the Xeon Phi co-processor: the host-side driver has
to provide access to the modules by downloading them into the co-processors
GDDR (Section 6.5.3). Obviously, this does not generate the needed multiboot
information structure. We would have to handle this on our own. We decided
to follow the Linux way of booting [64] and use a boot-loader and boot-image
approach which is created off-line. This section explains the major steps in gen-
erating the boot-image and its corresponding multiboot information structure.

6.4.1 Additional Hake Targets

As explained in Section 4.4, the Xeon Phi co-processor has a different instruction
set architecture as x86 64 processors. This is reflected in Hake by an separate
target architecture (k1om). In order to build the modules needed for booting a
Xeon Phi co-processor Hake has to be configured with two architectures:

> $BF_SOURCE/hake/hake.sh -a k1om -a x86_64 -s $BF_SOURCE
> make install

During the installation, the Xeon Phi boot image will be uploaded to a NFS
share. The address of the NFS can be defined using the respective variable
in symbolic targets.mk. The build system will handle the dependencies in
generating the boot-image and the multiboot information structure.

Compiler Dependency The current setup of Hake’s the k1om target uses
Intel’s modified GCC 4.7 (k1om-mpss-linux-gcc) which can be obtained as
part of the MPSS SDK[17]. Other tools used in the Barrelfish tool-chain, such
as Binutils, can be used without modifications in their most recent version.

6.4.2 Boot-Image Anatomy

Booting the Xeon Phi co-processor requires two files: the boot-loader Weever
and the boot-image. The generation of these files is done in several stages using
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external tools and scripts. The reader may have noticed the similarities towards
Linux’s vmlinuz and initrd which served as an inspiration for the setup.

Xeon Phi Multiboot Image

The contents of the Xeon Phi boot image are specified based on the entries in
the k1om.menu.lst file. After the modules have been built, a script parses the
k1om.menu.lst and concatenates the listed modules into single file. Adding zero
paddings between subsequently modules ensure alignment on page boundaries.
During the assembly process (Section 6.4.3) the offsets and sizes of each module
within the boot image are stored for the multiboot information.

Weever: The Xeon Phi Boot-Loader

Weever is the first code being run on the Xeon Phi after the bootstrap (fboot0
and fboot1, Section 4.5.2) has finished its execution. Weever contains the multi-
boot information structure based on the modules in the boot image. Therefore,
Weever can only be built after the boot image has been created. Moreover,
Weever contains the header with the magic values (Section 4.5.2), pointer to
the command line and the assigned Xeon Phi ID which is set after download to
the co-processor.

6.4.3 Building Process

In the previous section we have seen the anatomy of the boot-image and of the
boot-loader. The generation process of the image involves multiple stages and
external tools which can be found in /tools/weever directory of the Barrelfish
source tree [69]. The reader can assume that the respective modules for the
k1om architecture have already been built. Following, we briefly explain the
major steps in generating Weever and the boot-image:

1. Parse k1om.menu.lst and generate a list of the modules’ meta-data while
concatenating them into xeon phi multiboot

2. Generate the multiboot information file, mbi.c, based on the extracted
and adjusted module locations within the boot image (including a hard
coded memory map of the Xeon Phi co-processor).

3. Compile Weever with the generated mbi.c

4. Convert the Weever ELF into binary format using objcopy.

5. Patch the missing entries in Weever’s header using tool weever creator.

After the steps have been completed successfully, the files needed to boot the
Xeon Phi co-processor are ready. Optionally, the boot-image could be com-
pressed to speed up the loading time.
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6.5 The Boot Process Explained

This section illustrates the boot process of a host machine with Xeon Phi co-
processors. Compared to a machine without Xeon Phi, there are several ad-
ditional requirements (Section 6.5.1) that have to be satisfied in order to suc-
cessfully boot the Xeon Phi co-processors. After the discovery of the Xeon Phi,
the host-side initialization sequence starts (Section 6.5.2) followed by a specific
chain of boot related events (Section 6.5.3).

6.5.1 Boot Dependencies

The created Xeon Phi boot image (Section 6.4) cannot be loaded by adding it
to the host’s menu.lst file. By doing so, the total size of the modules exceeds a
critical size which triggers a boot loop (Section 8.4) Therefore, we need to use
an NFS share to load the Xeon Phi boot-image before we can download it to
the co-processor. This adds the following dependencies to the environment the
Xeon Phi is running in:

• NFS Share The host machine needs to be able to reach a NFS server
which hosts the Xeon Phi boot image and the boot loader binary. The
server URI can be passed to the driver by command line arguments (Sec-
tion 6.5.2)

• Network Stack NFS requires a working network stack. The host machine
needs a supported network interface card. For further information about
networking refer to readme networking in [69].

• Device Database Entries Different models of the Xeon Phi may have
varying PCI device IDs. The corresponding entries in the device database
must be added.

6.5.2 Host Side Driver Startup

We do not go into the Barrelfish boot-up process here. The reader can assume
that the boot dependencies are satisfied and Kaluga has spawned the Xeon Phi
driver which is about to parse the command line arguments.

Driver Command Line Arguments

The driver takes two arguments while both may be omitted. The first one
specifies the address of the NFS share containing the Xeon Phi boot image. If
this parameter is not supplied, the driver will try look up the boot image among
the modules specified in menu.lst and loaded over TFTP.

The second (last) argument is expected to be the PCI Express address informa-
tion as specified in Section 6.3.3. If the argument is not passed, it will ignore the
PCI address and use the vendor and device ID to register with the PCI domain.
It is highly recommended to supply this argument manually when Kaluga is not
used to spawn the Xeon Phi driver.
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A possible menu.lst entry would look like the following. Note we also have to
start the Xeon Phi manager and the pciaddress is supplied by Kaluga.

# Xeon Phi Manager and Driver
module /x86_64/sbin/xeon_phi_mgr
module /x86_64/sbin/xeon_phi auto -nfs=server/share <pciaddress>

Pre-Initialization Sequence

The Xeon Phi driver contacts the PCI domain to request the capabilities for the
MMIO register and aperture spaces based on the supplied PCI address. Next,
the driver binds to the Xeon Phi Manager service and registers its previously
exported inter-driver interface. The registration response contains the assigned
Xeon Phi ID and an array of IREFs of already running Xeon Phi driver instances
in the system. The Xeon Phi driver issues a mount request for the supplied NFS
location to ramfsd. After having successfully completed the pre-initialization
steps, the actual boot process follows.

6.5.3 Chain of Boot Events

The following list contains the occurring events and initialization steps during
the boot procedure of a Xeon Phi co-processor in Barrelfish. In the following
enumeration “H” represents action executed on the host, while “X” stands for
events happening on the Xeon Phi co-processor.

1. H: Initialization of the own Xeon Phi node and the host side inter-driver
interface

2. H: Register own node IREF with the Xeon Phi Manager and obtain IREFs
to the other Xeon Phi nodes

3. H: Reset and initialize the Xeon Phi hardware, setup system memory
page tables with a 1-to-1 mapping

4. H: Register with the other host-side drivers running on in the system

5. H: Initialize aperture capability manager

6. H: map initial 1GB of aperture space for downloading the boot-image

7. H: Enter boot procedure:

7.1. H: Read scratch-register to determine load address
7.2. H: Download Weever into co-processor GDDR memory
7.3. H: Setup command line for the CPU driver
7.4. H: Download the Xeon Phi boot-image into co-processor GDDR
7.5. H: Prepare interphi messaging channel between host and client

drivers
7.6. H: Fill in missing information into the bootinfo structure of the

bootloader header
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7.7. H: Send the bootstrap notify interrupt to the BSP core of the co-
processor

7.8. H: Wait until Xeon Phi firmware signals with ready bit
7.9. X: Execute bootloader code (Section 6.5.4)

7.10. X: Set ready bit to signal host-side driver bootloader has started
execution

8. H: Wait for Co-processor to have completed booting, in other words, for
the connected event on the interphi channel

9. X: General system boot sequence as specified in k1om.menu.lst: cores,
domains, services etc.

10. X: Initializing card side driver

10.1. X: Xeon Phi driver service initialization and export
10.2. X: Initialization of system memory capability manager
10.3. X: Wait for all spawnd up event.
10.4. X: Connect to the host driver channel to signal readiness
10.5. X: Go into message handling loop

11. H: Initialize remaining services (DMA and Xeon Phi driver)

12. H: Prepare interphi channels to other Xeon Phi nodes

12.1. H: Send bootstrap message to client driver
12.2. X: Connect to other Xeon Phi nodes and inform host when done

13. H: Register xeon phi.X.ready event.

14. H: Start the services and go into message handle loop

The xeon phi.X.ready event can be used by domains which want to use services
on the Xeon Phi to check if the card is already on-line. The bootstrap message
contains the address of a frame on the host which serves as a communication
channel to other Xeon Phi co-processors in the system.

6.5.4 Weever: The Xeon Phi Boot-Loader

On x86 64 machines Barrelfish uses a tool called Elver to do low-level boot
time initialization steps before control is handed over to the actual Barrelfish
CPU driver. On the Xeon Phi, we follow a similar approach using Weever.
Before control is handed over to the CPU driver, Weever executes the following
steps:

1. Long Mode: The bootstrap leaves the BSP core in 32-bit protected mode
with paging disabled. Weever initiates the transition to long mode with
paging enabled. Entering long mode as early as possible is crucial because
the MMIO range is located above the 4GB boundary. Only after success-
fully transition to long mode basic communication using serial output is
possible.
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2. Initial Page Tables: Weever sets up the boot-time page tables with a
1-to-1 mapping covering the first 1GB of memory and the MMIO range
for virtual serial console support.

3. Multiboot Adjustment: The multiboot data structure generated dur-
ing build contains (offset, size) pairs of the modules from the beginning
of the image. Weever updates the information with the actual address in
memory.

4. Load Kernel: Weever loads the Kernel module from the multiboot im-
age, relocates it and jumps into the entry point.

After enabling long mode, Weever reports possible errors by writing error codes
to the virtual console.

6.6 Capabilities Revisited

In Section 4.3.3 we have stated the arising problem of a heterogeneous machine
with multiple physical address spaces. The whole problem needs deeper under-
standing to be solved in general. However, in our system we need a way to refer
to resources located in a remote address space. In this section, we present one
possible solution to the problem of capability transfer and translation between
distinct physical address spaces. We start off with a motivational example, why
we need such a mechanism in our system followed by a description of a simplified
model and how our implementation works.

6.6.1 The Problem of Multiple Address Spaces

To motivate our solution, one may assume that there is a domain running on
the Xeon Phi which wants to use one of the services on the host, a file server for
instance. There are two aspects in this scenario: first, there must be a commu-
nication channel for issuing requests and secondly, a bulk transfer mechanism
for data transfers.

In both channel types, the problem at hand essentially boils down to the ques-
tion: how to refer to a frame in memory? The domain on the co-processor
allocates a buffer to hold the file and sends its (local) address to the service
running on the host. The supplied target buffer needs to be translated into a
valid representation on the host, otherwise the host is likely to overwrite its own
memory. The same applies to bootstrapping the communication channel.

In Barrelfish, sending just a physical address is hardly not enough to do an
actual transfer. To copy data into the target buffer, its backing frame has to be
mapped into the virtual address space of the service domain which can only be
done by presenting the corresponding capability. Therefore, we need a capability
translation mechanism.
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6.6.2 Capabilities: Accessing Remote Resources

Based on the motivational example from the previous section, we narrow the
problem down to our system. The desired map function has the following prop-
erties:

I co-processor GDDR ↔ host PCI aperture space

II co-processor SMPT ↔ host main memory

III co-processor GDDR ↔ other co-processor GDDR

We limit our scope to a static setting, in other words, the entries of the SMPT
do not change once programmed with a one-to-one mapping. This enables us to
construct a single mapping function for the translations. Another simplification
is the representation of remote capabilities: we only consider local capabilities
which are transformed into their equivalent when they are transferred between
address spaces. For instance, the co-processors GDDR capability is transformed
into the aperture space capability when being sent to a host domain. This elim-
inates the burden for represent remote capabilities in the local address spaces
and provides a mechanism to translate them on transfer request. Obviously,
these simplifications must be eliminated in a complete model of multiple ad-
dress spaces with dynamic mappings. However, this is out of scope for this
thesis.

6.6.3 Capability Translation: An Implementation

We present the implementation of the model described in the previous section
which allows establishing a shared frame between domains running on any node.
We partition the implementation section into two main parts: hardware config-
uration and software implementation.

SMPT Configuration

In contrast to the PCI aperture space, the system memory range of the Xeon Phi
allows more flexibility in programming. Despite potential security concerns, we
initialize the SMPT with a one-to-one mapping between system memory pages
and host main memory 16GB chunks. This allows us to have the following
translation functions:

phys_addr_host = phys_addr_xphi + aperture_base
phys_addr_xphi = phys_addr_host + 0x8000000000

This enables the Xeon Phi drivers on host and co-processor to translate a re-
ceived remote physical address into a valid local representation by adding the
respective offset to the received physical address.

We cannot apply the same strategy to enable access the GDDR of another
Xeon Phi. Recall, with the SMPT we can map any host-physical address into
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Figure 6.2: Transferring of Capabilities between Address Spaces

the local physical address space of the Xeon Phi. We can use this to install the
desired mapping: the SMPT needs to be programmed with the host-physical
base address of the other Xeon Phi’s PCI aperture space. The reader must be
aware of the typo in the Xeon Phi Systems Developer’s Manual [20] providing
misleading information.

The assignment of unique IDs to the Xeon Phi co-processors and the defined
maximum of eight supported Xeon Phi per system allows us to specify a corre-
sponding translation function for Xeon Phi—Xeon Phi address translations. We
reserve the top 7 slots – we do not need a translation for our own GDDR – to
hold the mappings for the GDDR regions of the other Xeon Phi co-processors.
The address can be translated by the following function:

slot = SMPT_MAX_SLOTS - id
phys_addr_other = phys_addr + slot * SMPT_PAGE_SIZE

Note, the implementation itself is not that trivial. The SMPT pages must be
aligned at a 16GB boundary. This implies we need to account for a potential
offset if the aperture space is not 16GB aligned.

Capability Transfer Process

A scheme illustrating the send-process of a capability from the host to a domain
running on the co-processor can be seen in Figure 6.2. As one recognizes there
are several steps and domains involved during the operation. In the following,
labels in parentheses refer to the labels in the figure.

In contrast to Flounder, our implementation does not require an existing com-
munication channel between the two application domains. However, the actual
sending process starts at the receiver side. The application domain on the Xeon



CHAPTER 6. BARRELFISH ON THE XEON PHI 64

Phi has to register itself with the Xeon Phi driver running on the co-processor
(C1). The driver stores the domain id—channel association and forwards the
registration information to the host-side driver (H1) which publishes the ex-
tended domain ID (see Table 6.1) with the name-service (H2).

The sending application on the host requests a new frame from the memserver
(H3). In order to send the frame to the application running on the co-processor,
the sender needs to know the extended domain ID of the receiver which can be
obtained either by querying the name-server (H4) or as a return value of the
spawn request.

The actual transfer operation starts with invoking the Xeon Phi driver service
supplying the capability and the target id (H5). The host-side Xeon Phi driver
serializes the capability information (base, size) and forwards the request to
its client driver (H6, C2). Upon receiving the message, the Xeon Phi driver
translates the address into its local representation and obtains the capability
from the system memory manager (C3).

Last, the Xeon Phi driver obtains the Flounder channel to the domain based
on the registered domain ID and sends the capability to the target application
domain (C4). It is left to the user, if the received capability is accepted or
rejected.

Limitations

The described capability translation model and its implementation have several
limitations. First, the system relies on a static one-to-one mapping of the system
memory region. Secondly, reserving the top 7 slots of the SMPT reduces the
amount of usable memory to 400GB. This may turn into a problem, if the host
system has more than 400GB of main memory available. Similar strategies to
paging might be applicable in that case.

Furthermore, the Xeon Phi driver domains must be trusted: with a capability
to the system memory range a domain on the Xeon Phi can interfere with
domains or even the CPU driver running on the host. Even though we treat the
Xeon Phi drivers as a trusted domain, still requires remote capability revocation
functionality.

Last, a bad capability transfer sequence can lead to allocation failures in the
memory managers of the Xeon Phi drivers. To give a simple example: domain
A allocates a frame and splits it up into smaller chunks. It then sends its
smaller capabilities to domains B and C running on the Xeon Phi. Afterwards
it wants to send the original capability to the domain D. However, the memory
nodes have already been split up and the original capability cannot be found.
A synchronized allocation i.e. each time a new frame is allocated on the host
the changes are propagated to the system memory manager on the Xeon Phi
may evict some problems at the cost of additional messages.
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6.7 Flounder over PCI Express

As sketched in Section 3.4, Flounder plays a central role in Barrelfish. On a
shared address space, channel bootstrap using bind and export events involves
Monitor participation. The request is handled by the Monitor which uses its
IREF—endpoint association to inform the service domain of a new connection.
This is not applicable in a heterogeneous environment.

The following sections we give details about how we adapted Flounder to run
between different physical address spaces. We made use of the memory lay-
out design of the Xeon Phi, in particular the ability to access remote memory
through aperture space or SMPT respectively.

Using Flounder to send messages between physical address spaces in a different
setup has already been done. Hauenstein et al. [37] implemented a new backend
to support Flounder-based message passing over Ethernet. In contrast to this
implementation, we do not have to pack Flounder messages in Ethernet frames
and send them over the network. Other aspects such as node-to-IP mappings
can be transformed into a node-to-address mapping, in other words address
translation (Section 6.6.3).

6.7.1 Founder Bootstrap Steps

Flounder supports multiple backends of which the shared memory variant is
of interest for us. We decided not to implement a new Flounder backend but
rather extend the existing UMP backend. Bootstrapping the underlying UMP
channel can be separated into two parts:

1. Setting up a shared frame between two domains.

2. Initializing a channel over that shared frame.

This high-level simplification enables us to recognize the two essential prob-
lems at hand. First, with our implementation of transferring and translating
capabilities between physical address spaces (Section 6.6.3) we have the basic
mechanisms ready to set up a shared frame between two domains running in
different nodes. Point (1) is solved by our software framework.

So far, the generated Flounder message stubs do not provide an option to pass
information about a frame to be used for the channel. Rephrasing the problem
of point (2), we have to adapt the generated Flounder message stubs to bypass
Monitor and IREF based export and bind events. We added two new functions
and a new data structure to the interface.

6.7.2 Message Stub Interface Extensions

The added function declarations and the data structure definition can be seen
in Listing 6.1 on page 67. We use the prefix if to refer to a generic interface.
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The data structure if frameinfo contains the information about the shared
frame to be used for the channel. We use virtual addresses for the receive-buffer
and transmit-buffer-pointers to give the user more control. Using a capability
instead is impractical because a single one might be used for both, receive and
transmit buffers.

The two additional functions if accept and if connect are adapted from their
export and bind counterparts. They take an if frameinfo-pointer as argu-
ment instead of an IREF. Both support continuation functions which are called
upon channel-established events.

6.7.3 Usage

We aimed for a consistent programming model for the two new functions. De-
spite different function names and signatures, their use is the same as the original
export and bind functions.

On the service side, the user needs to call if accept which initializes a listening
endpoint on this side of the channel. The client calls if connect to start the
handshake protocol. Receiving the one of the added internal control messages,
the corresponding event triggers and the registered continuation functions are
called. At this point, the channel is established. Afterwards, there is almost no
difference to a Flounder channel bootstraped by export and bind.

The implementation can also be used within the same address space or even
between two threads of the same domain. Reasons for choosing the manual
setup of our extensions include more control of the used frame and the explicit
use of a shared frame instead of the local channel backend.
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/*
2 * The message buffer structure (for accept / connect )

*/
4 struct if_frameinfo {

/* Physical address of send buffer */
6 lpaddr_t sendbase ;

8 /* Pointer to incoming message buffer */
void * inbuf ;

10

/* Size of the incoming buffer in bytes */
12 size_t inbufsize ;

14 /* Pointer to outgoing message buffer */
void * outbuf ;

16

/* Size of the outgoing buffer in bytes */
18 size_t outbufsize ;

20 };

22 /*
* accept method to allow incomig connections

24 */
errval_t if_accept ( struct if_frameinfo * _frameinfo ,

26 void *st ,
if_bind_continuation_fn * _continuation ,

28 struct waitset *ws , idc_export_flags_t flags )

30

/*
32 * connect method to connect to the service accepting new

* connections
34 */

errval_t if_connect ( struct if_frameinfo * _frameinfo ,
36 if_bind_continuation_fn * _continuation ,

void *st , struct waitset *ws ,
38 idc_bind_flags_t flags )

Listing 6.1: Added Flounder Interfaces

6.7.4 Limitations

In contrast to the IREF based channel setup, there are some limitations in the
use and setup of the channel. First, the user must make sure that the if accept
function is always executed before the if connect function. If the client side
initializes the channel prior the service side, the receive-buffer containing the
control message is zeroed out resulting in a missing connect event.

Secondly, filling out the if frameinfo structure has to be done with care. Mix-
ing up the order of send and receive buffers results in an unusable channel.

Last, we do not support capability transfers with this channel even if both
domains reside in the same address space. This is because Monitor was not
involved in the channel setup and hence certain identifiers in the channel meta-
data structure are not set. In any, case sending a capability across address
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spaces is not straight forward as elaborated in Section 6.6. Clearly, this is a
functionality future implementations should support.

6.8 Xeon Phi Service Interfaces

The Xeon Phi driver provides three different services to the other domains
running in the system:

1. Xeon Phi Driver Service

2. Xeon Phi Name-Service

3. DMA Service

We will outline the interface specification of the driver service and name-service
in this section, and postpone the DMA service to Section 6.9 because its interface
applies to all DMA services in general.

We provide a Xeon Phi client library which abstracts the communication layer
to the Xeon Phi driver. The library is architecture specific as certain invocations
behave differently on the host than on the co-processor. For instance, registering
a new entry in the name-service goes to the Xeon Phi driver on the co-processor
whereas the request is sent directly to Octopus on the host.

6.8.1 Xeon Phi Driver Service

The functions and related declarations to use the Xeon Phi driver services are
declared in the following headers:

# include <xeon_phi / xeon_phi .h>
2 # include <xeon_phi / xeon_phi_client .h>

The library serves two purposes: first, providing an interface for clients to ac-
tively issues requests to the driver. Secondly, giving the driver the possibility
to notify the client about new events such as a received capability.

Before the library can be used, the client has to register itself with the Xeon
Phi driver. This can be done by calling xeon phi client init which executes
the handshake protocol with the Xeon Phi driver. The registration is handled
implicitly upon issuing the first request to the driver. In case the domain wants
to wait for an event first, the registration has to be done explicitly. An extract
of the provided functions and its signatures can be seen in Listing 6.2 on page
70. Following, we will briefly explain the spawning of domains and opening a
channel (sharing a frame).

Spawning Domains

In x86 64 Barrelfish, spawning a new domain allows the selection of a core on
which the domain should be spawned. In a heterogeneous system, in addition
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to the core we can also select the compute-node we want to spawn the domain
on. Therefore, we need to provide functionality to spawn domains in a foreign
address space.

The interface of our xeon phi client spawn function is adapted from the in-
terface of Barrelfish’s libspawndomain. In addition to the core, the user also
needs to specify the Xeon Phi ID (xid) of the target node. The local Xeon Phi
driver will receive the request and forwards it to the node specified by the xid
parameter.

Upon receiving the request from its peer Xeon Phi driver, the domain is spawned
using the node-local spawning service (spawnd). The returned domain id is
extended by the core and node information and returned to the calling domain.

Our interface also supports additional command line arguments and a capability
to be handed over to the new domain. The capability is copied into the ARGCN
slot of the domain’s CSPACE. This reduces the steps needed to bootstrap a
communication channel between the two domains: the supplied capability can
directly be used to bootstrap the channel. The connection event can be used
to signal readiness. Note, in contrast to libspawndomain’s spawn functions, we
currently only support handing over a single capability not an entire CNODE.
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/**
2 * \ brief initializes the Xeon Phi client

*
4 * \ param xid Xeon Phi ID of the card to initialize

*/
6 errval_t xeon_phi_client_init ( xphi_id_t xid);

8 /**
* \ brief spawns a new domain on the Xeon Phi or on the host

10 *
* \ param xid Xeon Phi ID to start the domain

12 * \ param core Core to start
* \ param path Program to spawn

14 * \ param argv Program arguments
* \ param cap Capability to pass

16 * \ param flags spawn flags
* \ param domid returns the domain id of the spawned domain

18 */
errval_t xeon_phi_client_spawn ( xphi_id_t xid , coreid_t core ,

20 char *path , char *argv [],
struct capref cap , uint8_t flags ,

22 xphi_dom_id_t * domid );

24 /**
* \ brief sends an channel open request to the domain

26 *
* \ param xid Xeon Phi ID

28 * \ param domid Domain ID
* \ param usrdata Supplied data for the other side

30 * \ param iface Interface name of the domain
* \ param msgframe Message frame

32 * \ param chantype Type of the channel
*/

34 errval_t xeon_phi_client_chan_open ( xphi_id_t xid ,
xphi_dom_id_t domid ,

36 uint64_t usrdata ,
struct capref msgframe ,

38 xphi_chan_type_t chantype );

40 /**
* \ brief sets the callbacks for incoming messages

42 *
* \ param cb Xeon Phi callbacks

44 */
void xeon_phi_client_set_callbacks ( struct xeon_phi_callbacks *cb);

46

/**
48 * \ brief Callback function typedef for channel open events

*/
50 typedef errval_t (* xphi_chan_open_t )( xphi_dom_id_t domain ,

uint64_t usrdata ,
52 struct capref msgframe ,

uint8_t type);

Listing 6.2: Xeon Phi Driver Interface

Sending Capabilities

The ability to establish a shared frame between two domains running on dif-
ferent address spaces is crucial for bootstrapping a message passing between



CHAPTER 6. BARRELFISH ON THE XEON PHI 71

them (Section 6.7). A capability transfer request can be issues by invoking the
function xeon phi client chan open().

As a prerequisite, the caller must know the extended domain ID of the target
domain. The ID can be obtained through a lookup using the name-service (6.8.2)
or as a return value of a spawn request. Additionally, the receiver must register a
callback handler for the notification using xeon phi client set callbacks().
If these requirements are not satisfied, the transfer fails.

The local Xeon Phi driver obtains the channel to the target domain by a lookup
based on the supplied extended domain ID. It then sends the capability over
the Xeon Phi driver channel to the target domain. The library handles the
receive and triggers the registered callback. The application can decide whether
to accept or reject the received capability. The library passed the ID of the
sending domain to the receiver by callback arguments.

Parameter usrdata: This argument of 64-bit size can be used to supply
further information to the receiving domain. The semantics of the values passed
for this parameter are completely user defined. Possible use cases include the
virtual address where to map the capability or a pointer to a data structure
containing additional information.

Parameter chantype: To give a hint to the receiving domain what the shared
frame should be used for or how it should be mapped the interface supports some
basic channel types. The type parameter can be used for predefined types such
as shared frame or Flounder channel or have user defined semantics.

6.8.2 Name Services

Barrelfish’s name-service is basically a key value store. It serves two purposes:
First domains can register the IREFs of their exported services with a name.
Other domains can query the name-service using the name to obtain the IREF
needed for binding to the exported service. Secondly, with the ability to wait
for a specific name – an event in this case – the service also serves as a basic
form of synchronization and barrier during system boot. The calling domain
blocks until the corresponding name is registered.

This name-service runs node-local and therefore cannot be used directly to syn-
chronize between domains running on different nodes. However, there is a need
for having exact this functionality of a global name-service: for instance, the
Xeon Phi ready events must be receivable from any node. Moreover, domains
must be able to query the name-service to obtain whether a certain domain
is running and its domain ID for transferring a capability in order to estab-
lish a communication channel. We implemented the support for a system-wide
accessible name-service.

Global Name Service

There are many possibilities how to design and implement such a globally ac-
cessible name-service. We will present our implemented solution first and do a
survey of alternative architectures later (Section 6.8.2).



CHAPTER 6. BARRELFISH ON THE XEON PHI 72

Interphi Channel

Host Xeon Phi

Name Service

Xeon Phi Driver
(Host Side)

Xeon Phi Driver
(Co-Processor Side)

PCI Express

Application Domain Application Domain

xeon_phi_domain_register()

xeon_phi_domain_register()

Name Service

Direct registration 
with name service

Registration through 
multihop over Xeon 
Phi driver

<name, id> <name, id>

<name, id>

Figure 6.3: Xeon Phi Name Service

Our design features a hierarchical name-service, distinguishing between global
and local entries. A scheme of the service architecture can be seen in Figure 6.3.
We justify our approach by the observation that certain events are purely node-
local and have no meaning in another node or they occur in every node such
as all spawnd up. These events do not have to be globally accessible. Other
events can make system-wide known explicitly.

Our multi-level name-service consists of un-modified local name-services dealing
with purely local events. This allows the system within a node to run without
any further modifications. We would like to emphasize the double-role of the
name-service running on the host. We use it to store our global accessible entries
in addition to its local records. From a host-side view, the global entries do not
differ from the local ones.

The name-service records can be registered and queried system-wide using our
new API (Listing 6.3). The request execution itself varies depending on the
originating node as shown on Figure 6.3:

• Host: The API calls on the host are directly transmitted to the (local)
name-service.

• Co-Processor: The request from a domain running on the co-processor is
received by the Xeon Phi driver at first hand. Secondly, it gets forwarded
over the inter-phi channel to the host-side driver. Last, the host-side Xeon
Phi driver forwards the request to the local name-service on behalf of the
application domain running on the co-processor.
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2 /**
* \ brief builds the iface name representation

4 *
* \ param name Name of the domain

6 * \ param xid Xeon Phi ID or XEON_PHI_DOMAIN_HOST the domain is
* runnig on

8 * \ param core The core the domain is running on
*

10 * \ returns string with the proper format
*/

12 char * xeon_phi_domain_build_iface ( const char *name ,
xphi_id_t xid ,

14 coreid_t core);

16 /**
* \ brief Blocking name service lookup

18 *
* \ param iface Name of the domain

20 * \ param retdomid returns the Xeon Phi Domain ID
*/

22 errval_t xeon_phi_domain_blocking_lookup ( const char *iface ,
xphi_dom_id_t * retdomid );

24

/**
26 * \ brief Register with name service

*
28 * \ param iface Name of the domain

* \ param retdomid returns the Xeon Phi Domain ID
30 */

errval_t xeon_phi_domain_register ( const char *iface ,
32 xphi_dom_id_t domid );

Listing 6.3: Xeon Phi Nameservice Interface

Interface Specification

Before starting with the interface description, we want to give a motivational
example to justify our design. The reader may assume we have a distributed
service running on multiple cores on the host and the Xeon Phi. Clients want
to ask the following queries:

• What is the domain ID of the service instance running on Xeon Phi 0,
core 3?

• Is there a service instance running on the host?

• Is there any instance of the service running in the system?

If we want to answer these questions, we need a way to exactly refer to a
specific service or refer to any service instance running in the system. Our
implementation of the global name-service supports these types of questions.

The interface specification and its semantics are adapted from the name-service
client of libbarrelfish. We support the same basic functionality such as
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registering of records, blocking and non-blocking lookups. The interface can
bee seen in Listing 6.3 (we omitted the non-blocking lookup function here).

In contrast to libbarrelfish’s name-service client, we store 64-bit sized values.
This is necessary to hold the extended domain id (Table 6.1). In addition, we
provide a more flexible way of querying the key-value store. The library provided
a function to construct the interface name which contains the node and core
information (xeon phi domain build iface). When a domain registers with
the Xeon Phi driver, a record is created containing the ID and the encoded
name of the domain using the build iface function.

The xeon phi domain build iface function can also be used to construct the
name of the record for querying. The node and core information can be omitted
by using the wild card value XEON PHI DOMAIN DONT CARE. This converts the
generated name into a regular expression matching possible multiple entries.

Alternative Approach

In our proposed architecture we distinguish between a local name-service and
a system-wide accessible name-service running on top of the local ones. We
present two alternative designs of a global name-service:

1. Global Nameservice This architecture features only a single name-
service running on the host. In this setup, there is no change on the
host, whereas on the co-processors every access to the name-service has to
go over PCI Express. The benefits for this setup is clearly a single location
where the information is stored which is also a negative point at the same
time (single point of failure). Other drawbacks for this approach include
channel setup form co-processor domains, multiple records with the same
name and need to assign prefixes to names.

2. Distributed Nameservice This alternative design is based on a fully
distributed architecture. Each node has its local name-service containing
a replica of the global state. Changes are broadcasted to all other nodes.
This eliminates the connection setup problem of the previous alternative
but introduces additional messages to keep the state up-to-date. The
maximum number of name-servers is 9 per system, one for the host and
one for each of the Xeon Phis. Updates will eventually been received
implies that requests can observe stale values. In addition, we still face
the name-clash problem.

After all, based on the drawbacks of the two alternative approaches, having a
multi-level name service with explicit global entries is expected to be the optimal
solution in this case. It allows fast local lookups while providing a transparent
interface for global accesses.
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6.9 DMA Service

With an 8 channel DMA controller, the Xeon Phi has sufficient capacity to
offload memory transfers to the DMA engine. Our benchmarks (Section 5.2)
have shown that the use of these DMA channels is highly recommended. After
we give a brief overview of the DMA capabilities of the Xeon Phi, we introduce
the generic DMA framework with its library (libdma), DMA Manager service
and the programming model.

Xeon Phi DMA Engine Each DMA channel can be owned either by the
host or the Xeon Phi. The location of the descriptor rings is determined by the
ownership. We distribute the channels evenly between host and co-processor.
The DMA engine supports the following transfers:

• GDDR—GDDR transfers (co-processor local)

• Host system memory—GDDR transfers

• GDDR—host system memory transfers

• Co-processor—co-processor transfers

6.9.1 DMA Library

The DMA library was introduced with the intention to provide a unified in-
terface for different DMA devices such as the Xeon Phi DMA engine or Intel’s
I/OAT Crystal Beach 3 DMA controller. We use the following abstractions:

• Device: A DMA device abstracts a physical DMA controller (driver side)
or a virtual DMA device (client side). A DMA device may have multiple
DMA channels.

• Channel: A DMA channel abstracts a hardware descriptor ring (driver
side) or a Flounder channel to the driver service (client side). DMA chan-
nels manage DMA requests issued to a specific channel.

• Request: A DMA request abstracts a DMA operation such as copying
memory. On the driver side, a request is a collection of one or more DMA
descriptors on the descriptor ring. On the client side, a DMA request is a
pending notification from the DMA driver.

There abstractions are relevant for both, driver developer and clients using the
DMA service.

Driver Side Initialization

There are two different parts of the library that have to be initialized by the de-
vice driver: first, configuration of the device hardware and secondly, the generic
DMA service. The library provides hardware specific backends for the different
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DMA devices. The driver needs to initialize the appropriate backend to config-
ure its device. During the initialization, DMA channels are discovered and their
descriptor rings allocated.

As soon as the hardware is ready, the driver starts with setting up the DMA
service. The library provides a generic service interface which supports request
issued by the DMA client device. Drivers register their service callbacks to get
informed of new requests. The callbacks can be used to verify the (address,
length)-paris (Section 6.9.3) .

Client Side Initialization

The differences in the initialization sequence on the client side compared with
the driver side are minimal. The client starts with configuring its DMA client
device, a virtual device abstracting the underlying flounder channel. Based on
the supplied arguments, the setup function connects to the corresponding DMA
service.

6.9.2 DMA Manager

DMA engines are normal devices residing on the PCI bus or on the chipset.
With an increased core count, it is likely that then number of available DMA
engines also increases, especially with DMA controllers directly integrated into
the CPU as it is the case with Intel’s I/OAT technology. We observed, that not
all DMA controllers available in a system provide the same transfer capabilities.
Therefore, we need a way to find the right DMA service for our transfer.

DMA drivers announce their transfer capabilities to the DMA Manager which
keeps track of running DMA drivers in the system. Client domains can query
the DMA Manager to obtain the IREF of the DMA service most suitable for
their intended transfers. The DMA Manager queries its local driver database
based on the source and destination address.

The DMA Manager offers clients to find the best driver for their needs. It is
also possible to bind to the service based on its exported interface name. (refer
to dma/dma.h)

6.9.3 DMA Subsystem Programming Model

One of the goals of Barrelfish’s DMA library is to provide a transparent in-
terface to its users. The programming model of the DMA library for issuing
DMA requests is described in the following list. The signatures of the relevant
functions are shown in Listing 6.4.

1. Initialization of the DMA client device (dma client device init).
Based on the argument value the setup tries to connect to a specific service
using its name or IREF. Alternatively, asking the DMA Manager for a
suitable service based on an supplied address range.

2. Memory registration (dma register memory). The DMA engine deals
with physical addresses only. To avoid sending capabilities on every re-
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quest while enforcing memory isolation at the same time, memory regions
have to be registered beforehand by presenting a frame capability to the
driver. It’s up to the driver to do the book keeping.

3. Issuing a DMA request (dma request memcpy). The actual request
to execute and the parameters are determined by the values of the setup
parameter.

DMA drivers are highly recommended implementing a memory verification
method or use the standard implementation of the DMA library. Invalid DMA
requests are rejected by the service.

/**
2 * \ brief initializes a DMA client device with the giving

* capability
4 *

* \ param info stores information how to find the device
6 * driver service

* \ param dev returns a pointer to the device structure
8 */

errval_t dma_client_device_init ( struct dma_client_info *info ,
10 struct dma_client_device ** dev);

12 /**
* \ brief registers a memory region for future use

14 *
* \ param frame the memory frame to register

16 */
errval_t dma_register_memory ( struct dma_device *dev ,

18 struct capref frame );

20 /**
* \ brief issues a new DMA memcpy request based on the setup

22 * information
*

24 * \ param dev DMA device
* \ param setup DMA request setup information

26 * \ param id returns the DMA request ID
*/

28 errval_t dma_request_memcpy ( struct dma_device *dev ,
struct dma_req_setup *setup ,

30 dma_req_id_t *id);

Listing 6.4: Extract of the DMA client library

6.10 Virtual Devices

This section briefly discusses possibilities of using virtualized devices on the
Xeon Phi with the Barrelfish OS and explains why VirtIO may not be your
first choice. The lack of (PCI-)devices, especially network interface cards and
disks, are one of the drawbacks for the OS and applications running on the Xeon
Phi. Device support can be provided by implementing techniques known from



CHAPTER 6. BARRELFISH ON THE XEON PHI 78

Inter-Driver Channel

Host Xeon Phi

Host Driver

Application

Xeon Phi

Client Driver

Client Driver

Application

ApplicationApplication

Device

Device 
Management

D
ri

ve
r 

In
te

rf
ac

e

Inter-Driver 
Service

Inter-Driver 
Client

D
ri

ve
r 

In
te

rf
ac

e

Inter-Driver 
Client

D
ri

ve
r 

In
te

rf
ac

e

DMA 
Service

DMA 
Service

DMA 
Service

Figure 6.4: Emulating Virtual Devices on Co-Processors

virtualized environments. A hypervisor, Xen [6] for instance, prepares virtual
devices which can be used by the guest operating system.

This model can be transformed to our system. The host OS takes over the
role of the hypervisor and the co-processors OSes are the guests. Based on this
model and our software framework, we present an exploration of possible ways
how we can emulate virtual devices in Barrelfish.

Basic Device/Driver Structure In our proposed system architecture, we
have made use of one possible model for emulating virtual devices. The Xeon Phi
driver is split into two parts acting as a gateway for issuing requests on another
node. Transforming this approach to virtual devices we can run a host-side
driver which accesses the device hardware or the actual driver service similar
to a proxy. A client driver on the co-processor connects to the host-side driver
using an inter-driver communication channel. Requests from the co-processor
are forwarded to the host-side driver in a multi-hop fashion. A scheme of a
possible architecture can be seen in Figure 6.4

Besides the control channel, certain applications, file servers or network interface
cards for instance, are likely to move large amounts of data around. This requires
an efficient bulk-transport mechanism. Obviously, the hardware should directly
DMA into the buffer residing on the co-processor if possible. In the following
sections we present two possible ways how bulk transport may be done.

6.10.1 VirtIO

Virtualization technology enables multiplexing of a single machine to multiple
operating systems at the same time. While certain resources such as the CPU
can be multiplexed similar to scheduling another domain, this may not be the
case with other hardware devices. In a virtual environment, devices such as
network interface cards or block devices either provide virtual functions or a
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virtual device has to be emulated by the host. Rusty Russel discovered the
problem with the various different visualization systems [72]. One of which is the
variety of standards which are not always well maintained. He proposed VirtIO
[78, 45] as the de-facto standard for virtual IO devices. VirtIO is integrated into
the Linux kernel with the goal to provide a set of well maintained drivers. In
his paper, Russel describes how VirtIO devices communicate with their device
drivers in the virtualized environment. In the following sections we will give an
overview of the assumptions made by VirtIO as well as giving reasons why it
may not be the first choice in a capability based multikernel operating system
such as Barrelfish.

Programming Model

In a virtual environment, the hypervisor emulates a VirtIO devices and exports
it to its guest operating system using one of the possible transport specifications.
The VirtIO device is discovered and a compatible VirtIO driver is loaded. Both,
VirtIO device and driver, need to make sure they obey the VirtIO specification
[78].

The basic operation scheme is shown in Figure 6.5. VirtIO uses the abstraction
of a virtqueue as a communication layer. A VirtIO device has one or more
virtqueues which form the data path between device and driver. The standard
specifies multiple options for the control plane including PCI, MMIO or Channel
IO [78, Chapter 3]. Each virtqueue consists of a descriptor table for buffer
descriptors and two rings called available and used ring.

The VirtIO driver writes the buffer addresses into the descriptor table and sets
the index of the available ring to point to the corresponding slot in the descriptor
table. The device consumes the available buffer and updates the used ring once
finished with the request.
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Assumptions Made

VirtIO was designed to be used in a virtual environment. Following we present
a list of assumptions made by VirtIO which obviously hold in a virtual environ-
ment.

• Buffer Locations: Like normal devices, VirtIO device drivers write phys-
ical addresses into the descriptors. However, in a virtualized environment
these addresses are guest physical addresses rather than machine physical
addresses. In any case, the buffer location will be in main memory of the
machine and hence accessible to all hardware devices.

• Device Registers: Writing to the device registers should work as with
normal devices such as defined in the PCI standard [65] (if the PCI trans-
port layer is used).

• Accessing Buffers and Queues: The VirtIO device must be able to
access the descriptor table, its rings and the supplied buffers. With the
VirtIO device being emulated in the hypervisor this is naturally satisfied
as the hypervisor is expected to be able to access the entire machine.

VirtIO in a Heterogeneous Multikernel OS: An Evaluation

The ideas behind VirtIO are reasonable well founded and is applicable to a
virtualized environment using the hypervisor/guest setup. The implementation
of a VirtIO library for Barrelfish revealed several issues in the usability of VirtIO.
We claim that using VirtIO in a heterogeneous multikernel OS such as Barrelfish
is not the first choice. Following a list of reasons against VirtIO:

I Buffer Locations VirtIO buffer locations reside on the guest side. In a
heterogeneous system such as the one described in Section 4.1 the buffers
would be allocated on the Xeon Phi. Accessing a remote buffer results in
high latency and low throughput as shown in Chapter 5. Therefore, if data
has to be processed by the VirtIO device residing on the host, its buffers
need to be copied into host memory. This requires the host to allocate
memory on its own behalf rather than supplied by the device driver.

II Accessing Buffers / Descriptor Rings The domain emulating the Vir-
tIO device must be able to access the supplied descriptor rings and its
buffers. While this applies to the hypervisor/guest scenario, it does not
necessarily in capability based systems: The VirtIO device domain would
need the capability for any of the descriptor rings and buffers. Further-
more, devices may not be able to DMA into the aperture space of the Xeon
Phi.

III Mapped Buffers The VirtIO device domain is required to access the buffer
locations because they contain information about the requests to execute.
Hence, every buffer must be mapped in the virtual address space of the
domain.
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IV Guest Physical Addresses The hypervisor is maintaining the second
level page tables in the virtual environment and therefore it is possible
to do an address verification and translation of the supplied buffers. In
a capability based system, the domain needs to present a capability for
the corresponding buffer to authenticate the address. Furthermore, the
VirtIO device domain must be able to translate the address into a local
representation.

V Multikernel OS Structure In Barrelfish device drivers are running in
their own domains. This requires that a VirtIO device must be able to
forward the buffer location to the actual driver domain. In other words,
this means we need to distribute the capabilities among multiple domains.

VI Emulating Device Registers Even though the emulation of VirtIO de-
vice registers over shared memory (MMIO) is possible, its operational char-
acteristics are rather tricky: the registers have to be polled by the VirtIO
device. In a message passing based system, transforming the registers to
either device specific messages or generic offset-length requests are prefer-
able.

To sum up, implementing VirtIO in a heterogeneous multikernel environment in-
troduces additional overhead to a hypervisor/guest setup. Next, we will present
an alternative to VirtIO based on the Barrelfish bulk transport framework.

6.10.2 Barrelfish Bulk Transport

Recent semester projects [1, 11] explored the possibilities on how to do bulk
transport in a multikernel OS efficiently and secure. The ideas behind the
architecture of the proposed bulk transport framework could be adapted to the
heterogeneous architecture of our system. We justify our claim by the fact that
their proposed framework already supports bulk transport between two distinct
address spaces using Ethernet. To enable bulk transport between host and co-
processors similar techniques can be applied. Strategies of the Ethernet backend
for receive buffer handling combined with control channels of the shared memory
backend and DMA transfers is expected to produce an optimal framework. Due
to time constraints this approach could not be implemented.

Comparison to VirtIO

The proposed bulk transfer framework of [1, 11] differs significantly from VirtIO.
Following, we list the major differences between the two architectures:

Buffers In contrast to VirtIO, the bulk transport framework makes use of
buffer pools that are allocated and assigned to a channel. Only buffers belonging
to an assigned pool can be sent over a channel. On the other hand, VirtIO does
not know such restrictions. Using the bulk transport framework, the problem of
authenticating addresses and distributing capabilities can be done once during
assignment time of the buffer pool.

Descriptor Rings By using message passing as the control channel, the need
for polling a descriptor ring and device registers, in other words, multiple mem-
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ory locations, is no longer existent. Each advance of the head pointer can be
translated into a message with the needed information. Furthermore, we can
use a single control channel can be used for all data paths, which eliminates
polling multiple UMP channels.

Buffer Re-Use A bulk transfer pool can be assigned to multiple channels
resulting in a multi-hop path. That way a buffer can be easily shared and
passed around to a network stack or file system/block service stack without the
need for wrapping the buffers into another framework.

Buffer Sizes The bulk transport implementation allows only buffer sizes
which can be represented by a capability (in minimum page size and a power of
two). This gives the benefits of associating a single buffer to a capability which
is not the case in VirtIO where the buffers can have arbitrary sizes.

6.10.3 Virtual Devices: A Conclusion

Applying common virtualization techniques in a heterogeneous multikernel sys-
tem results in several pitfalls because some assumptions no longer hold. Trans-
forming the VirtIO descriptor rings into a message passing based equivalent is
definitely the way to go. We give further directions in the future work section
(Section 8.11). In any case, applying the Xeon Phi driver model combined with
elements of VirtIO may bring the best of both architectures together.



Chapter 7

Applications

In the previous chapters we have seen the hardware features of the Xeon Phi
with its performance characteristics and the architecture of our proposed soft-
ware framework. In this Chapter we will investigate possible use cases and ap-
plications of the system. In order to set the context of potential applications we
first discuss offloading in general (Section 7.1). Next we present our implemen-
tation of a non-shared address space version of the OpenMP library for parallel
processing (7.2). In Section 7.3 we evaluate the performance of an offloaded
OpenMP matrix multiplication and compare it with host only execution.

7.1 Work Offloading

A generic use case for any co-processors in particular the Xeon Phi is to offload
from the main processor. The motivations why offloading is used are versatile.
There is a strong desire to complete a certain task more efficiently in terms of
time and/or energy. We give four examples to motivate possible use cases of
offloading:

I Free Host Resources: Assume a server handling tasks of different types,
some of which are long running. The server will receive normal and high
priority tasks from its clients and should process them accordingly to their
assigned priority. In order to free up host resources, low priority tasks and
long running tasks are offloaded to the co-processor. This gives the host
the possibility to use the local resources for high priority or small tasks
resulting in an better response time in expectation while making progress
on the long running task simultaneously.

II Specialized Hardware: The current CPUs are general purpose compute
units. Even though they are capable of handling any task its execution may
require additional instructions which slows down the overall computation
or even affects other programs running on the same machine by spilling the
cache for instance. Hence offloading certain parts of the computation to
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specialized hardware such as a crypto co-processor or video decoder card
for instance not only reduces the used cycles of the host CPU but also
diminishes possible effects on other running tasks.

III Energy Efficiency: With specialized hardware as described in the pre-
vious paragraph the overall execution may be carried out faster and more
efficient resulting in a lower energy consumption compared to the host CPU-
only execution. This is not only important for mobile devices but also for
huge data centers as a reduction of some milliwatts per request results in
a noticeable effect on the total operating costs.

IV Exploiting Parallelism: By adding new (co-)processors software may
be able to exploit the offered parallelism by distributing the work among
more nodes resulting in a faster execution in terms of lower response time
and higher throughput.

Offloading with the Xeon Phi: The use case of the Xeon Phi can be best
described with scenario I and IV: the host exploits the compute power of the
co-processor to offload certain tasks of the execution or even complete tasks
natively to the Xeon Phi. Further with its huge number of cores and the extra
wide vector registers the Xeon Phi brings massive parallelism to the system.
However, in contrast to GPGPUs the level of specialization of the Xeon Phi is
rather low compared to the general purpose x86 64 CPUs.

7.1.1 Requirements for Offloading

Recall the memory layout of the Xeon Phi which introduces a separate physical
address space for each co-processor. In addition to that we have a distinct
architecture compared to x86 64. Hence, in order to make offloading work
several things have to be ensured:

1. Code to execute in the target architecture(s)

2. Synchronization between the nodes (including locks to prevent race con-
dition)

3. Access to data of the working set

In contrast to some highly specialized accelerators such as audio decoders, gen-
eral purpose co-processors need to know what has to be computed. This implies
that the co-processor must be able to obtain or work out the sequence of instruc-
tions to execute. Thus, for each target architecture there must be a compatible
version of the binary available.1 This requires that the entire application or spe-
cific parts of it are compiled with the target instruction set architecture of the
co-processor (unless there is a shared subset supported by both architectures).

Secondly, a basic form of synchronization among the execution units is required
to avoid data races and inconsistent states when a shared data structure is

1This can be separate or integrated into one big binary as in [79]
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accessed. Further barriers are needed to coordinate the progress of the partici-
pating compute nodes.

Third, the co-processor must have access to the data of the working set. This
can be achieved by having the host loading data into the co-processor’s memory
and/or the co-processor must be able to access the host memory directly (pull or
push model). The Xeon Phi is capable of doing both. Recall the measurement
results of Chapter 5, therefore choosing an appropriate the data location is of
great importance and suitable techniques for replication must be applied.

Offloading in Barrelfish

Translating the described requirements above to the Barrelfish environment we
must be able to:

1. Execute code on the co-processor by spawning a (worker) domain on it

2. Synchronize using atomic instructions or message passing

3. Share state by distributing frame capabilities

With the system as described in Chapter 6 we have all the needed building
blocks to offload work onto the Xeon Phi. What’s left is to specify the compute
models and the corresponding interface.

7.2 OpenMP

In general, a program’s execution can be made parallel or offloaded by explicitly
create threads and/or domains to process the data and by dividing the working
set among the workers. When doing this standard task manually, it has to be
repeated for every new program. Hence, the likelihood of copy-and-paste bugs
increases. A generic approach to the problem at hand is specified by OpenMP2.
The mission of OpenMP is to standardize techniques to provide a high level
of parallelism by adding compiler directives (pragmas) and hence remove the
burden of managing the threads from the programmer and push the logic into
a support library. OpenMP is supported by various companies which form
the Architecture Review Board. The standard is defined in the OpenMP API
[62]. We won’t go into the specification in detail but rather briefly mention the
compute-model and its underlying assumptions.

7.2.1 Computation Model

The fundamental rule for any OpenMP program is that it must not depend ot
the OpenMP provided parallelism for correctness. Therefore, it is completely
valid for a compiler to ignore the OpenMP directives and produce scalar code
instead. Listing 7.1 shows a basic example of an OpenMP program.

2OpenMP Architecture Review Board, http://openmp.org/

http://openmp.org/


CHAPTER 7. APPLICATIONS 86

# pragma omp parallel for
2 for(int i = 0; i < length ; ++i) {

sum += data[i];
4 }

Listing 7.1: OpenMP: A Basic Use of OpenMP Pragmas

/**
2 * \ brief generated function for a parallel section

*
4 * \ param arg pointer to the program argument

*/
6 void main. _omp_fn .0( void *arg)

{
8 /* extracted code from for loop */

/* sum += data [i]; */
10 }

Listing 7.2: OpenMP: Generated Function

The execution of an OpenMP program follows the so-called fork-join program-
ming model [12]: the program’s execution starts with a single threaded in other
words with the initial thread. At the point where the control flow reaches the
start of a parallel section (for instance #pragma omp parallel in Listing 7.1)
the execution gets parallelized by forking new threads and waiting for them to
finish (join). Additional keywords as defined in [62] may be used to adjust the
behavior of the OpenMP parallel section.

Assumptions of OpenMP

The fundamental assumption made by the memory model of OpenMP is the
existence of a shared virtual address space: each thread has access to the memory
– the OpenMP term referring to local, global and heap variables – as well as
a private view of the memory, in other words: a thread local storage. Any of
the OpenMP managed threads can any access variables declared and initialized
prior the parallel section and hence there is no work involved to share data.

Enabling OpenMP

In order to activate the OpenMP parallelism, two things are required: First
an OpenMP compatible compiler such as GCC3 has to be used to compile
the program. In general, a compiler will ignore OpenMP directives unless the
appropriate flags are supplied. Secondly the program needs to be linked against
an OpenMP runtime support library. GCC uses its internal libgomp for this
purpose. The support library has to be operating system dependent as certain
OS services such as creating threads are invoked.

3GNU Compiler Collection

https://gcc.gnu.org/
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7.2.2 BOMP: Barrelfish OpenMP

In Barrelfish the runtime support for OpenMP is supplied by the BOMP library.
The library does not support all features specified by the OpenMP 4.0 standard
[62]. Compared to the Linux implementation, using OpenMP on Barrelfish
requires additional initialization steps such as spanning a domain over a subset
of available cores. Further, the threads have to be created on a specific core
otherwise the threads will be run on the same core. We have chosen to let the
programmer decide when to initialize the library by invoking the corresponding
function. The BOMP library satisfies the assumption of a shared address space.

7.2.3 XOMP: OpenMP for Exclusive Address Spaces

Recall the need of a shared address space for OpenMP programs. However, this
may be hard to establish even impossible to achieve due to system design. We
face such a situation with our heterogeneous system having multiple physical
address spaces. Therefore, we need a way to provide OpenMP functionality
which does not rely on a shared address space. We propose XOMP an eXclusive
address space OpenMP support library.

Rationale for the Need of non-shared Address Space

Recall the potential issues with multiple physical address spaces in a heteroge-
neous system. Establishing a shared virtual address space between two physical
address spaces may be not feasible because of mismatching address sizes. Even
further, the different base addresses of the page tables makes their reuse impos-
sible and therefore requires copying and adjusting the page tables. In addition
to that the mappings must be kept up-to-date.4 Another point to mention is
the lack of flexibility with shared address spaces: a certain virtual address will
point to the same byte in memory. If it resides in remote memory, this results in
high penalties for accessing memory as shown in Section 5.2. To sum up, a non-
shared implementation gives us the possibility to use OpenMP between different
architectures and address spaces as well as the flexibility of data locality.

OpenMP with Exclusive Address Spaces

In the following we detail our implementation of a non-shared address space
OpenMP support library. The Barrelfish’s existing libbomp was extended by
an additional backend called XOMP – to clarify: XOMP is part of libbomp
and not a standalone library – which provides the runtime support for exclusive
address spaces. The following list outlines the changed characteristics of the
new XOMP backend compared to the original libbomp implementation:

1. Library Initialization: For each OpenMP thread we have to spawn an
entire worker domain. In general, spawning a new process is much more
heavyweight than creating a new thread. In Barrelfish however, we need to

4This involves propagating every new mapping which may occur in response to a malloc()
and every time a mapping is removed. Besides the mappings, the capability structure needs
also to be synchronized as well
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allocate a new dispatcher in both cases which evens out the initialization
time (refer to Section 7.2.5).

2. Roles: The domain started initially is called master while the other do-
mains are labeled as workers. Designated worker domains act as gateways.

3. Accessing Global State: With exclusive address spaces, global state
has to be shared explicitly. Data accesses from within parallel sections
needs to be done with great care to avoid dangling pointers.

4. Distributing Work: Instead of creating threads, the task is distributed
using message passing to the worker domains.

5. Barriers: Implementation using message passing instead of accessing a
shared barrier variable.

Even though most of the things mentioned in the list are abstracted by the
library, the most important one has to be handled with extra precaution: en-
suring access to data. The programmer needs to be aware of the data which
may be accessed within an OpenMP parallel section and has to ensure that the
corresponding frames must be shared and the pointers to it initialized properly.
We ensure this by mapping the shared frame at the same virtual address.

OpenMP in a heterogeneous System

We implemented the non-shared address space variant of OpenMP to work on
a shared physical address space and on a heterogeneous system with multiple
physical address spaces. Our implementation is based on the software framework
described in Chapter 6 and enables offloading to the co-processor using standard
OpenMP compiler directives.

We have to emphasize that heterogeneous execution, in other words executing a
task concurrently on different micro architectures, does not necessarily work out
of the box: first, as we spawn new worker domains we must compile the code
for each of the target micro architectures. Compiling a program with different
tool-chains most likely generates varying binaries, especially with distinct ar-
chitectures, resulting in different addresses for the functions. Secondly, we have
to do a function address translation as the compiler generates new functions
(Listings 7.2 and 7.1) for each parallel section. Last, we need to make sure the
data argument pointer is valid in the worker domains.

Function Address Translation When entering a parallel section, the gen-
erated code calls into the support library supplying the function address, an
argument pointer and the number of threads to be used. We came up with a
method for transforming the function address into a target architecture valid
representation.

Our mechanism is based on the following observations and assumptions: We ob-
served that the generated functions can be identified by having the tag omp fn
in their symbol name. In addition, we assume the number and order of the gen-
erated functions within the symbol table is consistent among the architectures.
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An extract of the interface can be found in Appendix C.3. We briefly outline
the translation process at this point:

1. Spawning: The OpenMP program needs to be spawned with specific
spawn flags namely SPAWN FLAGS OMP. When the OpenMP flag is sup-
plied, spawnd scans the symbol table and builds an index of the OpenMP
functions by extracting the information out of the symbol table. The index
for the binary is stored in the SKB.

2. Library Initialization: During the initialization phase of the XOMP
backend, master and worker side, a cache of the generated index is ob-
tained from the SKB to speed up future look-ups.

3. Work Distribution: The master domain will look up the function index
if the target worker is of a difference architecture. It then masks and sends
the index instead of the function address to the worker domain. Receiving
a masked index, the worker extracts the function number and queries the
local cache for the actual function address.

Implementation Variants

With our implementation of the exclusive address space OpenMP based on mes-
sage passing there is more freedom we on how to structure the flow of control
messages during task execution. The following paragraphs name a few possibil-
ities of which we implemented III.

I Star We apply the well known star topology with the master in the center
connected to all its workers directly. The benefits for this structure includes
the ability direct communication with each worker and hence tight control.
However, with more workers the number of open connections that needs
to be polled also increases. Further any message for memory sharing and
task distribution needs to be sent by the master which results in a linear
execution.

II Clustered This topology groups worker domains into clusters reflecting
the underlying system architecture: for each co-processor and NUMA node
a cluster will be formed. A dedicated domain of each cluster will act as
gateway to talk to the master and potential to other clusters. The number
of connections at the master are lower than in the star setup resulting in a
more parallel way to distributed and share memory. The gateway domains
will receive the requests form the master and forward them to the cluster-
local workers. One of the drawbacks of this approach is that the master
has no direct connection to the clients.

III Memory Gateway The message topology which is currently implemented
is based on a combination of the two named above: The master has a
communication channel for each client to distribute work. However, each
Xeon Phi and the host will form a node in the memory distribution graph
(NUMA is currently ignored). The frame capability is sent only to the
gateway domains and the other worker in the node will request the memory
directly from their local gateway.
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IV Hybrid Another possibility would be to combine both the shared and
exclusive backend: using the clustered approach between nodes and the
shared memory implementation within the clusters. The gateways will act
as a local master.

The loss of control in variant II and IV is contradictory towards the OpenMP
idea of the initial thread. However, applying a hierarchical approach may in-
crease performance because work and memory distribution can be better paral-
lelized.

7.2.4 Library Initialization

The BOMP/XOMP library has to be initialized explicitly by a call to the ini-
tialization function of the corresponding backend (Listing 7.3, page 90). The
last initialized backend will be active and used by the library. During the ini-
tialization the needed threads or domains are spawned based on the supplied
arguments.

Use cases such as parallel loading on the host followed by distributing work to
the co-processors require the ability to switch between the different implemen-
tations. Our interface provides a bomp switch backend() function to context-
switch between the two different backends.

/**
2 * \ brief initializes the shared address space backend of BOMP

*
4 * \ param nthreads the number of threads to activate

*/
6 int bomp_bomp_init ( unsigned int nthreads );

8 /**
* \ brief initializes the exclusive address space backend of BOMP

10 *
* \ param args pointer to backend arguments

12 */
int bomp_xomp_init ( void *args);

14

/**
16 * \ brief switches the backend to be used

*
18 * \ param backend Backend to activate

*/
20 int bomp_switch_backend ( bomp_backend_t backend );

Listing 7.3: Barrelfish OpenMP Initialization

7.2.5 Library Scaling Characteristics

The two backend variants are fundamental disparate in how they are initialized
and in their underlying compute model. Before we evaluate the performance of
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the OpenMP library we are interested in the overheads introduced for initializing
the library, sharing the frames and distribute the work.

Initialization Phase

During the initialization the (master) domain is either spanned to other cores
or new worker domains are spawned. Clearly, spawning is expected to be more
cost intensive than just spanning. Interestingly the measured initialization times
show exactly the opposite as we will elaborate later (Figure 7.1, page 92). Fur-
thermore, we also account distributing memory to the initialization phase. The
sharing of frames was expensive but for different reasons which we will explain
in Figure 7.2 on page 94.

Spawning of Worker Domains Currently, there is no asynchronous imple-
mentation to spawn new domains in Barrelfish therefore the spawning process
is rather serial than parallel. Accordingly, the time to initialize the non-shared
backend of the library linearly in the number of worker domains to spawn. The
library initialization can definitely benefit from asynchronous spawn implemen-
tation because each request is sent to another core.

The time difference between spawning local and remote workers is roughly an
order of magnitude, to be more precise 8x, a value which we will encounter again
later. The estimated time it takes to initialize the library on our system can be
calculated using the following formula with l, r being the number of local and
remote workers respectively:

init time(l, r) = 40k · l + 330k · r [Normalized Cycles]

The time measured was from the sending of the spawn request until the mas-
ter successfully receives a new connection attempt on the supplied Flounder
channel.

BOMP Domain Spanning Even though the spanning of a domain does not
require new domains to be spawned the process is carried out quite similar: in
both cases a new dispatcher has to be allocated and initialized. This is done
by sending a message to that core. Once the dispatcher is created the remote
initialization function is being executed. With certain blocking operations as the
spanning request and the remote initialization the overall process is serialized as
well. The resulting average time to initialize the shared backend of the library
takes longer than with the non-shared XOMP backend.

Distributing Memory (Sharing Phase) The duration of the sharing pro-
cess depends on several factors as shown in the graph: the number of worker do-
mains which need to have access to the frame, the size of the frame to be shared
and whether it is replicated or not. In contrast to spawning/spanning, memory
distribution is mostly asynchronous except for gateway nodes. Figure 7.2 shows
two graphs: purely local memory sharing (top) and the distribution of frames
between host and Xeon Phi (bottom). Note, the graphs are in log scale.

We see two completely different behaviors in terms of frame sizes: Whereas
a single page can be distributed with a constant overhead as seen on the top
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graph the sharing of bigger frames takes longer with each additional worker. The
reader may also note the differences between host, Xeon Phi and heterogeneous
sharing.

• 4 kB Buffer: Mapping a single 4kB page occupies just one slot in the page
table. In x86 64 there are 512 slots per page table and hence allocating
a frame to hold a new page table is scarcely needed. Scaling up to 50
worker domains results in an almost constant distribution time because
of the asynchronous implementation and the parallel mapping operations.
Note the larger standard error when the Xeon Phi is active: with multiple
runs per experiment there will be the situation that a new page table has
to be allocated resulting in a map time explosion. Overall, when going
over PCI Express (red) we pay a constant overhead as the first memory
transfer needs to go through the Xeon Phi driver.

• 32 MB Buffer: Comparing to a single 4k page mapping a 32MB buffer
requires 8192 page table entries and 16 page directory slots. Thus, map-
ping as 4k pages results in 16 requests for memory to hold the new page
tables. Each request is handled by the memserver which turns into a se-
rialization point of the operation. The total request count grows in the
number of workers and so does the total execution time. The effect is even
stronger when messaging latency is bad as it is on the Xeon Phi (green).
Furthermore, we obtain that distributing over PCI Express scales quite
nicely: with two Xeon Phis and the host a total of 70 workers ends up
at 30 domains per Xeon Phi. Comparing red at 70 with green at 30 we
have about the same value. With larger frames, the mapping dominates
the replication time.

Overall we can say that there is a relatively high overhead for sharing memory.
With an increasing number of workers and frame size the proportional overhead
of message passing goes down and the time is dominated by the mapping oper-
ation. To overcome the bottleneck, the use of large pages is highly encouraged
as soon as their support is integrated into Barrelfish. In addition, having a
single memory server clearly acts as a serialization point and thus the use of a
distributed version is suggested. We provide additional data on the mapping
times in Section C.1 of Appendix C.

Work Phase

The steps needed to initialize and terminate a work phase are very different:
in the shared backend new threads are created to execute the tasks whereas
in the non-shared backend a message is sent to the worker domain. We are
interested in the raw time to distribute work and how it scales with respect to
an increasing number of worker domains/threads.

As a workload for this benchmark, we have chosen a simple parallel for loop
on which every thread does a constant number of iterations; in other words the
total amount of loop iterations scales with the number of threads. Figure 7.3
shows the normalized results of this benchmark and the corresponding absolute
values can be seen on Table 7.1. The values shown on the graph is the overhead
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Host Xeon Phi
# Threads BOMP XOMP BOMP XOMP

2 13422 15698 45560 36798
10 4484 5022 4888 3775
20 3297 3669 4186 3395
30 3777 3189 4020 3331
40 3960 2959 3942 3286
50 - - 3900 3249

Median time in non-normalized, local cycles to distribute work per thread

Table 7.1: Barrelfish OpenMP Library: Work Distribution (Local)

per thread i.e. total running time divided by the number of workers. We use
the 99-percentile values on the graph. The medians can be seen in Table 7.1.

Local Work Distribution Running the benchmark purely local shows a
decreasing overhead per thread as the number of workers grows. On the Xeon
Phi, there is no statistically significant difference between the shared and non-
shared implementation. On the host, message passing seems to be the better
option with more worker domains. In general the trend on both nodes is the
same: reduced overhead per thread with an increasing number of workers. The
results are consistent with previous benchmarks as the Xeon Phi has a worse
message passing latency than the host resulting in a higher overhead. Overall
there is a median overhead that needs to be paid per thread of about 4000
normalized cycles.

Work Distribution over PCI Express Recall the message passing bench-
mark: when going over PCI Express we have encountered a significant increase
in terms of message passing latency. With an growing number of worker domains
on the Xeon Phi not only the Flounder channel count at the master is increased
but also the share of channels going over PCI Express among those goes up.
The polling and involved messages issue many PCI Express transactions. This
results in a higher overhead per thread as shown on Figure 7.3 (bottom). Com-
pared to the local measurements, the 99-percentile value increases with more
present workers (green) caused by more slow memory sharing over PCI Express.

7.3 Use Case Example: Matrix Multiplication

To demonstrate the compute-performance and the correctness of the OpenMP
library for Barrelfish we use a matrix multiplication program. The algorithm
takes two square matrices, multiplies them and calculates the sum of the diago-
nal. To check for correctness, summed up value is written to a shared memory
location and validated against the expected value. The implementation is based
on a cache-optimized O(N 3) nested loops algorithm shown in Listing B.2 in
Appendix B.

The rationale behind taking the matrix multiply as an example is the following:
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on the one hand, its work is evenly distributed and on the other hand there are
may applications, signal processing for instance, which use matrix multiply. We
are interested in how the program execution scales when parts of the matrix
multiplication are offloaded onto the co-processor.

7.3.1 General Benchmark Description

For any of the benchmarks we used the parameter values as shown on Table 7.2
below. The master domain runs on the host. The term remote workers refers
to worker domains spawned on the Xeon Phi and local workers to the domains
running on the host. For any of the results only the execution time of the
OpenMP loop was taken into account. We did not make use of special hardware
features such as the 512-bit vector registers of the Xeon Phi and use just scalar
integer operations.

Key Value
Matrix Dimensions 1500x1500
Element Type long (64-bit)
Matrix Size 17.16 MB
Local Workers 10
Remote Workers 55 (per node)
Data Replicated
Repetitions 25
Hardware Features None

Table 7.2: OpenMP Matrix Multiplication Settings

7.3.2 Baseline: Local Benchmarks

To get an idea how the different Barrelfish OpenMP library backends scale
on the host and the Xeon Phi we take local benchmarks as a baseline for the
heterogeneous benchmarks. The outcome of the running time compared to the
single threaded run can be seen in Figure 7.4 or on Table 7.3. With the 10
threads used we reached the expected performance improvement by a factor of
10. Further, we see that the Xeon Phi is about factor 9 slower than the host for
doing the same task.

Location Single OpenMP Speedup
Host (BOMP) 8400316 712342 11.79x
Host (XOMP) 8400316 885877 9.48x
Xeon Phi (BOMP) 70010484 7343763 9.53x
Xeon Phi (XOMP) 70010484 6980953 10.02x

(Normalized Cycles)

Table 7.3: OpenMP Matrix Multiplication Local Parallelization
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Figure 7.4: Local Matrix Multiplication using OpenMP

7.3.3 Effect of Data Replication

The memory throughput and latency benchmarks revealed the huge penalties
when accessing remote memory locations. To measure the drawback of non-
local data buffers the exact same benchmark has been repeated with a matrix
buffer residing in the system memory. Thus, the Xeon Phi worker domains had
to access the data through PCI Express. The replicated version is about two
orders of magnitude faster (1.4 vs 149 Billion cycles) than the non-replicated
version. As shown in the Library initialization above the replication of data
using the DMA engine adds a reasonable small overhead to the memory distri-
bution process because it has only to be done once per node. Compared to the
penalty for accessing the shared frames on the system memory, it is definitely
required to have the (read-only) data replicated.

7.3.4 Matrix Multiply using Heterogeneous OpenMP

So far, we have run the matrix multiplication example locally and achieved
the expected speedup by the number of threads. How does this scale when we
incorporate the Xeon Phi co-processors and distribute the work? The results of
this experiment series can be seen on Section 7.3.4. The following subsections
discuss the different outcomes.

Try 1: Host and one Xeon Phi

To the 10 threads on the host we add a Xeon Phi with its 55 additional threads.
Each of the threads now has to do one 65th of the work (compared to a 10th of
the local benchmark). Under normal conditions the expected speed up would
be a factor of 6 to the local baseline. However, compared to the host-only
benchmarks with 10 threads the task is executed significantly slower. Why is
that the case?
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Figure 7.5: Matrix Multiplication on Heterogeneous System using OpenMP

Recall the Xeon Phi local benchmarks. To get an accurate estimation of the
expected running time, we have to take the slowest element of the computation
into consideration: 10 threads on the Xeon Phi had about 7 Million normalized
cycles. Thus, doing just about one 6.5th of the work results in approximately
1.08 Million normalized cycles. Multiplying hat with the normalizing factor of
the host we get about 2.6 Billion cycles which is in the range of the measured
result. Doing the same calculations backwards we can estimate the number of
threads needed such that we acheive a speed up compared to host-only variant.
We obtained a value of at least 90 threads again the factor the Xeon Phi was
slower.

Try 2: Host and two Xeon Phi

Even though it is possible to have more than 228 hardware threads on a single
Xeon Phi we restrict the number Barrelfish cores to the number of physical
cores and go with 55 worker domains per Xeon Phi. This leaves us two cores for
system services and the Xeon Phi driver. We have a total of 10 + 2× 55 = 120
threads which is above the calculated threshold.

Doing the same calculation as in try 1 gives us an estimate of 1500 Billion cycles
which is about that what we measured in the experiment. Even though we went
from 10 threads to over 120 did not result in the performance increase we hoped
to see: the Xeon Phi and its poor scalar integer performance seems to be the
bottleneck. But can we do better?

Introduction of vTreads

Obviously, when increasing the total number of workers to distribute the task,
not only the Xeon Phi threads have to do less work, but also the 10 local threads
on the host. By estimating the time it takes for a tread on the host to finish its
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work based on the local measurements we expect the host threads to be done
after 184 Million cycles. Hence, the host is waiting for more than a Billion cycles
for the completion of the workers on the Xeon Phi.

Depending on the offload-paradigm, this spare cycles could either be used for
other tasks or we need to find a way to balance the work load more. We
estimated that the Xeon Phi needs about 9x times more time to execute the
same task. We introduce virtual threads (vThreads) to OpenMP that tries
to balance out the compute-power differences between host and co-processor
in a static OpenMP schedule. The idea behind vTreads is to have the faster
workers for a mini-cluster which does the work of multiple threads: instead of
just getting a single OpenMP thread ID a worker with enabled vTreads gets a
contiguous range of thread IDs depending on the number of assigned vThreads.
This can be implemented using the code in Listing 7.4.

for (int i = 0; i < num_vtreads ; ++i) {
2 omp_function ( omp_data );

thread_id ++;
4 }

Listing 7.4: OpenMP vThreads

Try 3: Host and two Xeon Phi (Balanced)

We re-run the benchmark with two Xeon Phis and add 8 vThreads for each of
the host worker domains to balance out the differences. The master domain
does not get vThreads. This results in 1+ 9× (1 + 8)+ (2× 55) = 192 threads.
Doing the same calculations as above we would expect around 930 Million cycles.
However, the measured total runtime was clearly above 1000 Million cycles in
average – the fastest run (minimum) was about 950 Million. The breakdown
of the running times into remote and local revealed that the host threads are
now taking longer than the ones on the Xeon Phi. An optimal value would be
somewhere between 7 and 8 vThreads.

Future Try 4: Activating Special Hardware Features

As stated in the benchmark description, we did not activate special hardware
features such as AVX-512 of the Xeon Phi5. With the nature of matrix multipli-
cations this is expected to give to a speed up. However, such hardware features
may not always be usable in various workloads.

7.4 Conclusion

The experiments about distributing work among the host and Xeon Phi worker
domains showed that even with vast amounts of additional cores the perfor-
mance gain is not as expected. The Xeon Phi’s integer calculation performances

5AVX-512 is available as compiler intrinsics from version 4.9 and later
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and memory latencies have a too big impact on the performance. Nevertheless,
depending on the offload-paradigm the use of co-processors and accelerators still
pays off as work can be split up and/or done more efficiently. Moreover, the
utilization of the host resources is decreased.

In addition, we accounted only the raw execution times of the matrix multipli-
cation OpenMP loop and left the initialization phase and the memory sharing
phase aside which takes significantly more time than the actual execution. There
may be an additional performance gain implementing the missing prefetch in-
structions and using the extra wide vector registers. This is left for future
evaluations.

Moreover, implementing the hybrid approach reduces the required effort for
distributing memory. The capabilities have only been transferred to the gateway
domains – or the node-local masters in that case.

Another open problem is how can we make sure, that data updates from the
worker domains are propagated to the other nodes and especially to the master
domain. Explicit scatter and gatter operations may be needed.

To sum up, we have shown how our proposed system can be used to distribute a
matrix multiplication using a non-shared memory implementation of OpenMP
among heterogeneous processors using bulk transport and message passing.



Chapter 8

Future Work

The current state of the system left several research questions and engineering
tasks open. This Section summarizes possible anchor points for future work such
as a truly heterogeneous operating system, virtual devices and bulk transport
implementations.

8.1 Towards One System

Intel’s solution for Xeon Phi systems is to have a separate Linux instance running
on each Xeon Phi which is treated as an independent execution environment.
Hence, the resulting system architecture of a single machine looks like a small
networked cluster or a virtual environment setup.

Our proposed system is slightly more integrated in terms of OS service accessi-
bility: the co-processor instances make use of the system wide services such as
the global name service. However, its integration is still rather loosely coupled.
In the end, the Barrelfish’s OS nodes should work more in a coupled way: for
instance, the cores and memory of the Xeon Phi should be managed by the
host as it is done with the local resources including memory management. In
any case system services such as name service and ramfsd should be existing
only once for the entire machine or alternatively in an appropriate distributed
design.

Designing and developing of such a system spanning host and co-processors
arises several questions. Some of which are purely an engineering task while
others need a more in depth investigation of the problem:

• Resource Management: Some co-processors as the Xeon Phi may
bring their own local memory. This leads to the question on how these
local resources are managed and by whom. Basically there are two ap-
proaches: either the co-processor manages its local resources or its owner
the host takes care of the resources. Both ways come with their own
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trade-offs which have to be elaborated. With any possible design it must
be feasible to get a locally valid representation of capabilities. In the end
it should be possible to allocate memory in a specific address space.

• Naming and Addressing: In Barrelfish IREFs refer to exported ser-
vices and are assigned by the kernel monitors. In a heterogeneous en-
vironment the service may be running on any of the nodes. Therefore,
we need a way to seamlessly refer to the exported interfaces on a remote
node. The runtime system must be aware of the location because setting
up a communication channel may have to be done differently. This could
be handled by an additional Flounder backend.

• Task Migration: Migrating a task (or domain) from one core to another
is highly non trivial: several things need to be ensured such as the valid-
ity of the domain’s CSPACE or the seamless operation of open Flounder
channels1 for instance. Saving energy by consolidating machines is a stan-
dard approach in data centers and therefore we may want to do the same
with co-processors: shutting them down when they are no longer needed.
This implies we will have to migrate all task from one co-processor to
another or even to the host. Migrating a task between physical address
spaces even architectures is a challenge which may even be impossible to
some extent. The question that arises is how to properly encapsulate the
state2 of a domain and how to resume its execution in a different physical
address space.

• Multiple Address Spaces: How does an operating system deal with
multiple physical address spaces in general especially when they are non-
static. Refer to Section 8.3.

• Non-static Physical Addresses: As with the SMPT of the Xeon Phi
a physical address may no longer be static but be mapped onto another
physical address and this mapping can change during runtime. What does
a physical address really mean now? To what extend can hardware vir-
tualization technology techniques such as extended page tables of virtual
machine monitors be applied?

• xNUMA: Systems with NUMA nodes have been around for quite a
while. With the Xeon Phi the resulting system can be seen as an exten-
sion to normal NUMA nodes as a new type of memory becomes available
(Section 5.1). The system needs to be aware of the highly skewed archi-
tecture and memory access latencies.

• Heterogeneous Scheduling: Managing a system with asymmetric
cores especially supporting different architectures poses several challenges
on the operating system towards its scheduling decisions. The OS can
no longer simple dispatch tasks to any of the available cores. Wrong
scheduling decisions may lead to poor performance or even unsupported
instruction traps in the worst case. The optimal schedule may even de-
pend to the current program counter as certain parts of an algorithm may
benefit from special hardware features.

1especially when the used backend has to be switched e.g. LMP → UMP
2including the stack, static variables, CSPACE, communication channels and so forth
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• System Architecture: Having multiple physical address spaces poses
the question on how the structure of the system looks like in particular
whether a hierarchical decomposition may be favorable compared to a flat
design. Is a clustering of resources (co-processors, NUMA nodes) with
multi-hop communication beneficial or can every resource being treated
equally (i.e. each core of the co-processor is equivalent to a core on the
host). How does the system scale in terms of memory consumption, mes-
sage channels and state replication?

• Execution Targets: In a heterogeneous system an architecture specific
version of each executable must be available either separately or integrated
into one single file. It’s the task of the operating system and/or the run-
time environment to select the correct code to execute. How can such
a multi-architecture execution environment be supported in case of span-
ning between co-processors and host? Further, how can multi architecture
support be integrated into executables and how can the control flow be
made hardware dependent?

To sum up, designing a heterogeneous system with multiple physical address
spaces is highly non-trivial and poses may open research questions. Techniques
used in architecture independent languages such as Java may be worth investi-
gating.

8.2 Xeon Phi as a Collection of Cores

This topic is related to the previous one but we would like to stress some ad-
ditional points about processor cores here. In the current state, the host treats
the Xeon Phi as an ordinary PCI Express device with its driver and program-
ming model. Hence, the host is not directly aware of the cores available on it:
The Xeon Phi is treated as an independent compute node which manages its
resources on its own. With the points mentioned in Section 8.1 the available
cores should be exposed to and managed by the host. This implies that the host
system must be able to handle late discovery of new cores of a different archi-
tecture. Further, the way the cores are managed must be highly scalable as the
amount of cores3 literally explodes. Obviously accessing shared data structures
do not scale as remote memory access involves huge penalties.

A word on Simultaneous Multi-Threading Intel introduced simultaneous
multi-threading (SMT, or hyper threading) to keep the pipeline full in the event
of stalls caused by cache misses or other events preventing the processor from
executing the next instruction. Current server and desktop CPUs have two
hardware threads per core showing up as two logical cores to the operating
system. The Xeon Phi has four such logical cores per physical core. With the
design of Barrelfish each of the cores would have its own CPU driver running.
This arises the question to what extent such logical cores should be treated real
cores or if they should be better ignored. Alternatively having a single CPU

3On our system, the two Xeon Phi co-processors bring 2×4×57 = 456 new cores / threads
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driver per physical core managing all of its local hardware threads. Currently
Barrelfish is not capable of booting all cores of the Xeon Phi (see Section 8.4).

8.3 Multiple Address Spaces

With the design of the Xeon Phi the assumption that a physical address is
unique is no longer true. Recall the points stated in Section 4.3.3: a physical
address may now refer to two different memory locations and on the other hand
two different physical addresses may point to the same memory location. A
physical address space thus behaves similar to a virtual address space to some
extent. The following points arise when we try to unify physical address spaces:

• Addressing: How can a single memory location be addressed uniquely
such that the address is unambiguous at any time and can be transformed
into a locally valid representation.

• Address Spaces: What forms a physical address space and how is it
identified. Who is assigning the potential identifier to the address space?

• Translation: How are addresses of a remote address space translated
into the local address space. What happens when such a mapping changes
during runtime? How about security: should every address space be able
to translate or should the translating function better be protected by
means of capabilities?

• RDMAWith technologies such as RDMA how is the memory of a remote
address space4 referred to especially how are possible address space identi-
fiers assigned to independent, networked machines. Is there any difference
to multiple machine-local address spaces?

8.4 Barrelfish: Explore Scaling Behavior

Booting Cores: Hard Limit With the Xeon Phi we had the finally the
possibility to boot Barrelfish on a big machine with up to logical 228 cores.
However, the attempt to boot all of the 228 hardware threads failed due to
memory constraints: The total amount of RAM consumption for kernel, Moni-
tor and spawnd for any additional cores is about 30 MB5. The created messaging
channels between the monitors are not included in this 30 MB. This implies,
that after about 138 cores, the memory consumption is near 4GB and hence
allocating memory in the low 4GB address segment is no longer possible. Fur-
ther, with that memory consumption it is not possible to boot all of the 228
cores as it would require about 6.5 GB of memory just to hold the basic system
domains and with only a total 6 GB of memory available. Therefore we need to
investigate what uses so much memory.

4in this case the one of another machine
5there is some fragmentation to be expected, as capabilities have to be a power of two.
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Booting Cores: Setup Time A brief evaluation of the Monitor initialization
times (Section C.2) suggests a quadratic growth of the boot up time6 for each
additional Monitor present in the system. It may be debatable whether or not
such a growth in initialization time for large core counts is acceptable or if
the whole process needs to be partially revised by clustering the Monitors into
groups and have multi-hop communication between the clusters.

Boot Modules Currently all the modules to be booted are specified in the
menu.lst file. Thus, every new module increases the total size of all modules
to be loaded especially with huge ones such as the Xeon Phi multiboot image.
After a certain total size of the modules exceeds the machine goes into a boot
loop, which could be replicated on various machines. To avoid this problem, the
menu.lst should only contain the core domains needed for providing essential
system services plus the network stack. Additional domains should be loaded
on demand over NFS for instance as it is already done with the Xeon Phi image.

Memory Mappings The benchmarks have revealed a monotonically increas-
ing mapping time with the number of mapped virtual memory regions in the
virtual address space. With any new mapping, the number of VREGIONS
increases and so does the representation of the page tables in user space. In
addition to that the capability tree is also getting bigger. All this results in
a steadily increasing mapping time with every new mapping. The effects are
expected to get even worse if the data structures no longer fit in the L1 cache.

8.5 Networking to the Xeon Phi and Host VFS

As explained in Chapter 6 the Xeon Phi multiboot image contains all the mod-
ules which can be spawned on the co-processor. Obviously the number of mod-
ules determine the size of the image. A reasonable approach would be to have
only the core modules inside this multiboot image and have additional modules
requested form the host7. This can be achieved with various approaches:

• Networking: The host exports a networking service or a virtual network
device to the Xeon Phi. The local ramfsd service requests the additional
modules over NFS. That way the host is not directly in control of the
modules to be loaded.

• ramfsd: The ramfsd service of the host exports its interface to the Xeon
Phi and allows requests from the Xeon Phi. This involves adapting the
bulk transfer mechanisms to work over PCI or to do a pre-allocation of
the buffer on the Xeon Phi and directly DMA into it.

6from call to main() until entering the messaging loop
7note that this applies only to the current system. Having a single system as described in

Section 8.1 makes this no longer needed. The following points will have to be solved anyway
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8.6 Extending Flounder

With our solution to bootstrap Flounder over PCI Express we lose the ability
to send a capability. Even though we provide means to transfer capabilities be-
tween address spaces automated transfers such as in standard Flounder are not
supported. In addition to that integrating DMA based bulk transport mecha-
nism into Flounder may lead to interesting use cases for copying larger buffers.

8.7 DMA Library

The current DMA library provides only mechanism for memory copy operations
and polled operation mode. Bringing interrupts for larger transfers, 1MB and
more, may be a better option. Further implementing the missing transfer types
may enables for faster memset() implementations.

8.8 OpenMP

The support of OpenMP in Barrelfish is not at all complete. There are several
open points to discuss and/or implement concerning the OpenMP library.

• OpenMP Library: The current OpenMP implementation of Barrelfish’s
libbomp lacks the support of most schedule types except for static sched-
ules. Especially the dynamic schedule is of need, as the processing capabil-
ities of host and co-processor differ. Further other language features such
as a teams, nested parallel sections and the internal control variables need
to be properly implemented according to the OpenMP specification. With
the new OpenMP 4.0 standard, explicit offload pragmas are introduced
which could be a handy feature to have for controlling the execution and
attack the problem with different architectures.

• Implicit Sharing: It may be debatable whether or not sharing of state
should done explicit. The problem with non-shared address spaces is
mostly caused by having pointers to memory which is not mapped in
the domain. A hook in malloc()’s morecore may do the trick by sharing
the requested memory every time a new frame gets allocated. The shar-
ing itself could be deferred but OpenMP parallel sections must not start
before the sharing is completed. Despite possible drawbacks such as lack
of replication control, this would solve the problem of the void pointer
argument of the generated work function.

• Replication: Currently a frame has to be replicated explicitly. However,
it is desirable that only the parts are replicated that are really accessed by
the workers on the node. Further processed data should also be merged
back to the master node correctly. This involves additional compiler in-
trinsics to figure out which data was touched and has to be updated on the
other nodes. Using a double buffer approach data could be transferred in
background using DMA while processing is done on the secondary buffer.
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• Distributing Memory and Capabilities: Since master and workers
theoretically should have access to each other’s resources it may be bene-
ficial to have a way to remotely control the worker’s CSPACE. This would
enable the master to update virtual memory mappings and so forth. How-
ever, as workers are full-blown domains this would stress the notion of
capabilities to its extreme.

• Control Channels: In the current implementation the master domain
has a control channel to each of the worker domains. Hence, the number
of channels grows linearly in the number of workers. To reduce the polling
overhead a hierarchical structure may be favored: for each compute node8

a dedicated worker acts as a gateway to the master. The gateway will
receive a certain thread range which is the further distributed among the
node-local workers which may even use a shared memory approach.

• vThreads: Using various kinds of processors simultaneously inevitably
leads to the case that some cores are much faster in executing tasks than
others. In our approach we balanced the difference by introducing of
vThreads which solved the problem partially. However, the estimation of
the vThreads count should be done automatically during library initial-
ization rather than hard coding the value. Alternatively, this can be done
either by implementing a dynamic schedule which tries to distribute the
work evenly.

8.9 Bulk Transport over PCI Express

With the possibility to share frames and do DMA transfers the system pro-
vides a basic support for bulk transfers. However, extending the bulk transfer
framework as proposed in [1, 11] would provide more flexibility and security
enforcements as described in their trusted/non-trusted model. Based on the
findings in Chapter 5 the DMA engine certainly will have to be used leading to
a similar model as with the bulk transport over Ethernet backend. In contrast
to the Ethernet backend, there will be more control where to place the buffer
and the problems with receive buffers as stated in [1] may disappear. In any
case, a protocol needs to be applied to make sure that the buffer contents are
not changed while the move/copy operation has not finished yet.

8.10 Xeon Phi Hardware Features

Currently, special hardware features such as AVX512 are not used. The Xeon
Phi may be considered as a vector processing device and hence the extra wide
vector operations should be used for optimal throughput. Additionally, the
Xeon Phi is able to send MSI-X interrupts to the host and other Xeon Phi co-
processors. Enabling interrupts to enhance message passing may be beneficial
for PCI Express crossing channels.

8Host and Xeon Phi, possible also NUMA node
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8.11 VirtIO

The implementation attempt of a VirtIO conforming support library showed sev-
eral issues (recall Section 6.10.1). Certain elements of the programming model
and its assumptions seem not to be the best option in a multikernel operating
system. Based on these insights we may propose an additional message pass-
ing based transport layer in addition to the ones specified in [78]. Essentially
the device register representation has to be transformed into a message passing
interface. In addition to that whether or not parts of the virtqueue are also
transformed into message passing is left as an open question at this point.
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Appendix A

Memory Access
Benchmarks

This appendix contains additional information about the conducted memory
access benchmarks of Chapter 5.

A.1 Xeon Phi Caches

The total combined cache size on the Xeon Phi is 512kB ×#cores. This adds
up to 28.5MB in our case. However, due to its design that total value is only
available if every core runs different applications which access distinct parts of
memory. In the worst case, if all cores execute the same program and access
the very same data the effective total combined cache size for all cores is 512kB.
To sum up, a cache line can only be present in one of the cores. The Xeon Phi
Systems Developer Manual [20] gives more information about the caches and
its protocols.

A.2 Memory Latency

A.2.1 Experiment Description

The experiment setup contains circular linked lists of different sizes residing in
the target memory regions. There are two types of lists as shown in Listing A.1:

1. Cache Friendly: The list is basically an array of pointers and initialized
as such: the next element is located right next to its predecessor.

2. Randomized: The list contains cache line sized elements linked in a
random way such that every access to the next element is expected to miss
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the last level cache and the value has to be fetched from main memory.
The list is randomized using Knuth shuffle.

/// cache line sized list element for randomized access
2 struct elem {

struct elem *next;
4 uint8_t pad[ CHACHE_LINE_SIZE - sizeof ( void *) ];

};
6

/// pointer sized list element for cache friendly access
8 struct celem {

struct celem *next;
10 };

Listing A.1: List Element Description

To minimize the loop overhead, each loop is manually unrolled with preproces-
sor macros. Each loop iteration accesses 1000 elements. The time measured
for the entire loop execution is then divided by the number of elements tra-
versed in the list to get the value of a single access. The implementation can
be seen in Listing A.2. A the entire code of the benchmark can be found in
usr/bench/mem latency.

/**
2 * perform a single run of the benchmark on a given buffer

*/
4 static cycles_t run_benchmark ( void *buffer ,

volatile void ** ret_elem )
6 {

volatile struct elem *e = buffer ;
8

cycles_t tsc_start = bench_tsc ();
10 for ( uint32_t i = 0; i < LOOP_ITERATIONS ; ++i) {

NEXT_1000 (e);
12 }

cycles_t tsc_end = bench_tsc ();
14

* ret_elem = e;
16

return calculate_time (tsc_start , tsc_end )
18 / ( LOOP_ITERATIONS * 1000) ;

}

Listing A.2: Measuring Memory Latency

A.2.2 Experiment Parameters

The used benchmark parameters can be seen on Table A.1 below. The chosen
values are based on the hardware specifications of the described system (Sec-
tion 4.1. We have chosen the working set sizes to be based on the available cache
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sizes: less than L1 cache for the cache-friendly access pattern and a multiple of
the last level cache for the randomized access pattern.

Parameter Value
Working-set Size (Random) 200MB (Host) or 228MB (Xeon Phi)
List Size (Random) 3.2M (Host) or 3.7M (Xeon Phi)
Working-set Size (Friendly) 8KB
List Size (Friendly) 1024
Repetitions 1000
Loop Unrolling Factor 1000

Table A.1: Experiment Parameters: Memory Access Latency

A.3 Memory Throughput

A.3.1 Experiment Description

The benchmark consists of copying a data from one buffer into another buffer
while we measure the time to copy and calculate the throughput based on the
buffer size divided by the time. In order to have consistent experiments we used
the benchmarking functionality of libdma which supports memcpy() and DMA
based transfers. The benchmarks can be enabled by setting the switch in the
dma benchmark header file:

1 /* dma/ dma_benchmark .h*/

3 /// DMA Benchmark control
# define DMA_BENCH_RUN_BENCHMARK 1

A.3.2 Experiment Parameters

The used experiment parameters can be seen in Table A.2 below. DMA transfers
had to be done at cache line granularity and hence the minimum transfers size
is 64 bytes.

Parameter Value
Working-set Size 64 Bytes to 128 MB
Repetitions 500

Table A.2: Experiment Parameters: Memory Throughput

A.4 Memcopy Closeup

Compared to DMA transfers memcpy() was too slow to see a potential difference
on the same graph. We show a closeup of only memcpy transfers (Figure A.1).
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Figure A.1: Memcopy Throughput

The graph displays the throughput of copying buffers over PCI Express either
local to remote or vice versa measured on the host and on the Xeon Phi.

First of all, we notice the peak of the host copying buffers from its local main
memory onto the co-processors GDDR. The peak may be caused by a cached
write in, other words, the actual write was not always done immediately result-
ing in a higher perceived throughput and standard error. With more data to
copy the, write cache gets filled up and hence has to be executed more often
resulting in a lower transfers rate.

Comparing the transfer speeds with bigger buffer sizes we get a more stable
result and clearly see differences in the copy direction. Transferring data from
local to remote memory is always faster even though the actual copy direction
changes depending on who initiates the transfer. This can be explained in the
way it gets translated into PCI Express transactions. A remote write involves
sending a write message with the payload while reading is like sending a read
request and waiting for the data.

A.5 DMA Driver Overhead

In our benchmarks we have considered the raw DMA performance by measuring
directly at the driver. Because domains need to use the DMA service offered by
the driver domain to issue requests there is a certain overhead introduced for
the message passing. Figure A.2 shows the comparison between the time at the
driver (dotted line) and the time at the client domain (solid line) for each of
the tree DMA services. We get a almost constant overhead which is introduced
by Flounder, request handling and book keeping of about 30k cycles. With an
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Figure A.2: DMA Driver Overhead

increased transfer size the actual transfer dominates hence after about 512kB
we see that the dashed and solid lies match.

A.6 Message Passing

A.6.1 Experiment Description

The message passing latencies were measured using the ump latency for local
measurements and xphi ump bench for PCI Express crossing benchmarks. The
Xeon Phi benchmarks can be found usr/bench/xeon phi ump.

A.6.2 Experiment Parameters

Buffer placements can be controlled by enabling the preprocessor defines in
benchmark.h of the Xeon Phi UMP benchmark. Table A.3 shows the relevant
benchmark parameters.

Parameter Value
Backen UMP (polling)
Payload 0 Bytes
Repetitions 10000
Core Number 6 (host), 5 (Xeon Phi)

Table A.3: Experiment Parameters: UMP Latency
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A.6.3 UMP Latency Distribution

Because message passing is of such importance we are interested if there is a
difference in the roundt trip times between different cores. Figure A.3 shows
the distribution of the measured RTTs between core 0 and any other core in the
system. On the host we nicely see the increase in the round trip time when we
cross the NUMA boundary. With the ring-like interconnect on the Xeon Phi we
expect to have varying latencies with respect to the distance between the cores.
However, the measured latencies have no statistical significant difference which
may correlate to the core distances of the die. Where as on the host we get a
better latency when we are on the same core sending to a different hardware
thread.
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Appendix B

OpenMP Benchmark

B.1 Library Initialization

The library initialization benchmarks were conducted using the library inte-
grated event tracing. The library measures the times for each worker and it also
aggregates the measurements for local and remote workers.

The benchmark facility can be activated by compiling the library with the re-
spective switch and a call to the enable function as shown in Listing B.1. Notice,
that the number of threads and the number of runs must match the benchmark
settings. The different events to measure can be activated by passing the ap-
propriate flags.
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1 /* <xomp / xomp .h> */

3 /// enable the benchmarking facility
# define XOMP_BENCH_ENABLED 1

5

/* <xomp / xomp_master .h> */
7

/// flags which events to measure
9 # define XOMP_MASTER_BENCH_SPAWN (1 << 0)

# define XOMP_MASTER_BENCH_MEM_ADD (1 << 1)
11 # define XOMP_MASTER_BENCH_DO_WORK (1 << 2)

13 /**
* \ brief enables basic benchmarking facilities

15 *
* \ param runs the number of runs of the experiment

17 * \ param flags flags which benchmarks to enable
*

19 * \ returns SYS_ERR_OK on success
*/

21 errval_t xomp_master_bench_enable ( size_t runs , size_t nthreads ,
uint8_t flags );

23

/**
25 * \ brief prints the results of the enabled benchmarks

*/
27 void xomp_master_bench_print_results ( void );

Listing B.1: Enabling the BOMP Benchmark

B.2 Matrix Multiplication

The matrix multiplication was conducted using a slightly cache optimized ver-
sion of the O(N 3) nested loops implementation as shown in Listing B.2. The
entire code can be found in usr/bench/bomp mm.
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1 static void mm_omp ( MATRIX_TYPE *a,
MATRIX_TYPE *b,

3 MATRIX_TYPE *c,
struct mm_frame * mm_frame )

5 {
# pragma omp parallel

7 {
uint64_t nrows = mm_frame ->rows;

9 uint64_t ncols = mm_frame ->cols;
uint64_t counter = 0;

11 MATRIX_TYPE sum = 0;

13 # pragma omp for nowait schedule (static , 1)
for (int i = 0; i < nrows ; i++) {

15 counter ++;
uint64_t row = i * nrows ;

17 MATRIX_TYPE * c_row_i = c + row;
MATRIX_TYPE * a_row_i = a + row;

19 for (int k = 0; k < nrows ; ++k) {
MATRIX_TYPE * b_row_k = b + k * nrows ;

21 MATRIX_TYPE a_elem = a_row_i [k];
for (int j = 0; j < ncols ; ++j) {

23 c_row_i [j] += a_elem * b_row_k [j];
}

25 }

27 for (int j = 0; j < ncols ; ++j) {
sum += c_row_i [j] > 0;

29 }
}

31

__sync_fetch_and_add (& mm_frame ->sum , sum);
33 }

}

Listing B.2: OpenMP Version of Matrix Multiply



Appendix C

Barrelfish

This appendix contains additional benchmarks and information about the Bar-
relfish operating system conducted during the development of the system.

C.1 Memory Mapping in Barrelfish

The sharing of frames among worker domains requires mapping the frame in the
respective local address spaces. Depending on the mapping size several frames
for the needed page tables have to be allocated and their respective VSPACE
and page table structures initialized. The results of the measured time used for
the mapping operation can be seen on Figure C.1.

C.1.1 Benchmark Discussion

The experiments have been conducted on the host machine with purely local
worker domains. The local measurements were conducted on the master on core
0, the core mem server is running on. The number of threads is the sum of 1
master and n additional workers. Hence the difference between local and the 2
T is only the location where the mapping measurement is conducted (core 1 in
this case)

As shown in the graph, the performance characteristics differ by buffer size
hence we distinguish the discussion between those buffer sizes.

4kB Buffers Recall a single 4 kB buffer occupies a single slot in a x86 64 page
table and hence the additional resources needed for a mapping are low. This
results in a quite stable mapping performance compared to a local mapping, or
with 2 or 40 worker domains.

32 MB Buffers In contrast to the 4 kB buffers, mapping larger buffers, 32
MB in our case, is getting slower because of the additional page tables that
need to be allocated. The resulting overhead is expected to be emphasized with
larger buffer sizes. The additional resources have to be allocated which needs
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Figure C.1: Memory Mapping Performance with Multiple Domains

additional messages this results in an quite big increase of the running time by
two orders of magnitude for 40 threads.

C.1.2 Side Effects

For each mapping a new frame and virtual address range is allocated hence
increasing the number of total mapped capabilities and VREGIONS with every
new mapping. Even though the calculated standard errors are rather small,
the measured time highly depends the size of the VSPACE data structures. As
many of the data structures are basic lists the access time to those is O(N ). The
benchmarks have shown that the time required for mapping the buffer linearly
increased with the number of total mappings.

C.1.3 Conclusions

Having a single mem server is clearly no good option when having a work load
that issue a lot of requests to the single mem server. The effects are amplified
when the buffer sizes increases.

C.2 Boot Performance

The architecture of Barrelfish as described in 3.1 requires explicit updating of
the replicated state. This is done purely in user space by the Monitors while the
kernel itself does not have state. This requires the Monitors to have commu-
nication channels between each other which need to be initialized. Figure C.2
shows the initialization times for each Monitor during the boot process. The
elapsed time measured is from the point where main() is called to just before
the message handling loop. The initialization time per monitor grows with each
additional monitor running in the system.
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Figure C.2: Initialization Time per Monitor

Quite surprisingly there is a high variance if we see compare the initialization
times of two consecutive cores resulting in a zic-zac representation in the graph.
We expect that this is caused by an already initialized cache when the second
hardware thread is initialized.

Besides the interesting zic-zac pattern one clearly sees the the growth in the
initialization time from about 110 Million cycles up to about 2000 Million cycles
per monitor. There are few exceptions such as the bootstrap monitor of core 0.
The graph itself suggests a quadratic growth of the initialization times (shown
in red and blue).

C.3 Querying and Registering Symbols

If a binary is to be spawed with the SPAWN FLAGS OMP bit set in the supplied
flags during the architecture specific loading spawn parse omp functions gets
invoked which scans through the symbol table of the ELF binary and extracts
the information about the OpenMP generated functions. Without the appro-
priate flags, this data is not extracted and hence not available for later use.

C.3.1 Interface Specification

An extract of the interface can be seen in Listing C.1. In order to use it the
domain has to link with libspawndomain. The interface is declared in:

# include <spawndomain / spawndomain .h>
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Listing C.1 below shows the functions used in our heterogeneous OpenMP back-
end to register and obtain the symbol values.

1 /**
* \ brief executes a lookup query on octopus to obtain the symbol

3 *
* \ param binary name of the binary to query

5 * \ param idx index of the symbol to query
* \ param retname returns the name of the symbol

7 * \ param retaddr returns the address of the symbol
*/

9 errval_t spawn_symval_lookup ( const char *binary , uint32_t idx ,
char ** retname , genvaddr_t * retaddr );

11

/**
13 * \ brief registers a found symbol with octopus for later retrieval

*
15 * \ param binary the name of the binary

* \ param idx index of the symbol to insert
17 * \ param symname name of the symbol to insert

* \ param address address of the sybol to insert
19 */

errval_t spawn_symval_register ( const char *binary , uint32_t idx ,
21 char *symname , genvaddr_t address );

23 /**
* \ brief looks up the symbol information based on its address

25 *
* \ param addr the address to lookup

27 * \ param retidx returns the symbol index
* \ param retname returns the symbol name

29 */
errval_t spawn_symval_lookup_addr ( genvaddr_t addr ,

31 uint32_t *retidx , char ** retname );

33 /**
* \ brief looks up the symbol by a given index

35 *
* \ param idx the index of the symbol to look up

37 * \ param ret_name returns the name of the symbol
* \ param ret_addr returns the address of the symbol

39 */
errval_t spawn_symval_lookup_idx ( uint32_t idx , char ** ret_name ,

41 genvaddr_t * ret_addr );

Listing C.1: Interface to obtain Symbol Information
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