
Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines
Reto Achermann1,2 Ashish Panwar1,3 Abhishek Bhattacharjee4 Timothy Roscoe2 Jayneel Gandhi1

1VMware Research 2ETH Zurich 3IISc Bangalore 4Yale University
reto.achermann@inf.ethz.ch, ashishpanwar@iisc.ac.in, abhishek@cs.yale.edu, troscoe@inf.ethz.ch, gandhij@vmware.com

Abstract
Multi-socket machines with 1-100 TBs of physical memory

are becoming prevalent. Applications running on multi-socket
machines suffer non-uniform bandwidth and latency when
accessing physical memory. Decades of research have focused
on data allocation and placement policies in NUMA settings,
but there have been no studies on the question of how to
place page-tables amongst sockets. We make the case for
explicit page-table allocation policies and show that page-
table placement is becoming crucial to overall performance.

We propose Mitosis to mitigate NUMA effects on page-table
walks by transparently replicating and migrating page-tables
across sockets without application changes. This reduces the
frequency of accesses to remote NUMA nodes when perform-
ing page-table walks. Mitosis uses two components: (i) a
mechanism to enable efficient page-table replication and mi-
gration; and (ii) policies for processes to efficiently manage
and control page-table replication and migration.

We implement Mitosis in Linux and evaluate its benefits on
real hardware. Mitosis improves performance for large-scale
multi-socket workloads by up to 1.34x by replicating page-
tables across sockets. Moreover, it improves performance by
up to 3.24x in cases when the OS migrates a process across
sockets by enabling cross-socket page-table migration.

1. Introduction
In this paper, we investigate the performance issues in large
NUMA systems caused by the sub-optimal placement not of
program data, but of page-tables, and show how to mitigate
them by replicating and migrating page-tables across sockets.

The importance of good data placement across sockets for
performance on NUMA machines is well-known [29, 32, 41,
46]. However, the increase in main memory size is outpacing
the growth of TLB capacity. Thus, TLB coverage (i.e. the size
of memory that TLBs map) is stagnating and is causing more
TLB misses [21, 50, 58, 59]. Unfortunately, the performance
penalty due to a TLB miss is significant (up to 4 memory
accesses on x86-64). Moreover, this penalty will grow to 5
memory accesses with Intel’s new 5-level page- tables [43].

Our first contribution in this paper (§ 3) is to show by ex-
perimental measurements on a real system that page-table
placement in large-memory NUMA machines poses perfor-
mance challenges: a page-table walk may require multiple
remote DRAM accesses on a TLB miss and such misses are
increasingly frequent. We show this effect due to page-table
placement on a large-memory machine in two scenarios. The
first is a multi-socket scenario (§ 3.1), where large-scale mul-
tithreaded workloads execute across all sockets. In this case,

0
0.5

1
1.5

2
2.5

3
3.5

local remote Mitosis

GUPS

N
or

m
al

ize
d 

Ru
nt

im
e

3.24x

0
0.2
0.4
0.6
0.8

1

first-touch first-touch

Canneal

N
or

m
al

ize
d 

Ru
nt

im
e 1.34x

+Mitosis (interfere)

Sockets  0    1    2    3
Remote  86%  68%  71%  75%
Local   14%  32%  29%  25%

Single-Socket
Remote        100%
Local           0%

Figure 1: Top Table: Percentage of local and remote leaf
PTEs as observed from each socket on a TLB miss and Bot-
tom Graph: Normalized runtime, for two workloads showing
multi-socket (left) and workload migration (right) scenarios
with their respective improvement using Mitosis.

the page-table is distributed across sockets by the OS as it sees
fit. Such page placement results in multiple remote page-table
accesses, degrading performance. We show the percentage
of remote/local page-table entries (PTEs) on a TLB miss as
observed from each socket in the top left table of Figure 1 for
one workload (Canneal) from the multi-socket scenario. We
observe that some sockets experience longer TLB misses since
up to 86% of leaf PTEs are located remotely. Large-memory
workloads like key-value stores and databases that stress TLB
capacity are particularly susceptible to this behavior.

Our second analysis configuration focuses on a workload
migration scenario (§ 3.2), where the OS decides to migrate
a workload from one socket to another. Such behavior arises
for many reasons: the need to load balance, consolidate, im-
prove cache behavior, or save power/energy [3, 31, 61]. A key
question with migration is what happens to the data that the
workload accesses. Existing NUMA policies in commodity
OSes migrates data pages to the target socket where the work-
load has been migrated. Unfortunately, page-table migration
is not supported [56], making future TLB misses expensive.
Such misplacement of page-tables leads to performance degra-
dation for the workload since 100% of TLB misses require
remote memory access as shown in top right table of Figure 1
for one workload (GUPS) from workload migration scenario.
Workload migration is common in environments where virtual
machines or containers are consolidated on large systems [3].
Ours is the first study to show this problem of sub-optimal
page-table placement on NUMA machine using these two
commonly occurring scenarios.

Our second contribution (§ 4) is a technique, Mitosis, which
replicates and migrates page-tables to reduce this effect. Mi-
tosis works entirely within the OS and requires no change
to application binaries. The design consists of a mechanism

ar
X

iv
:1

91
0.

05
39

8v
2 

 [
cs

.O
S]

  8
 N

ov
 2

01
9



to enable efficient page-table replication and migration (§ 5),
and associated policies for processes to effectively manage
page-table replication and migration (§ 6). Mitosis builds on
widely-used OS mechanisms like page-faults and system calls
and is hence applicable to most commodity OSes.

Our third contribution (§ 5, 6) is an implementation of Mi-
tosis for an x86-64 Linux kernel. Instead of substantially
re-writing the memory subsystem, we extend the Linux PV-
Ops [9] interface to page-tables and provide policy extensions
to Linux’s standard user-level NUMA library, allowing users
to control migration and replication of page-tables, and selec-
tively enable it on a per-process basis. When a process is sched-
uled to run on a core, we load the core’s page-table pointer
with the physical address of the local page-table replica for
the socket. When the OS modifies the page-table, the updates
are propagated to all replicas efficiently and that page-table
reads return consistent values based on all replicas.

An important feature of Mitosis is that it requires no changes
to applications or hardware, and is easy to use on a per-
application basis. For this reason, Mitosis is readily deployable
and complementary to emerging hardware techniques to re-
duce address translation overheads like segmentation [21, 49],
PTE coalescing [58, 59] and user-managed virtual mem-
ory [16]. We will release our implementation of Mitosis to
enable future research on page-table placement and plan to
upstream our changes to Linux.

Our final contribution (§ 8) is a performance evaluation
of Mitosis on real hardware. We show the effects of page-
table replication and migration on a large-memory machine
in the same two scenarios used before to analyze page-table
placement. In the first, multi-socket scenario, we had observed
that page-table placement results in multiple remote memory
accesses, degrading performance for many workloads. The
graph on the bottom left of Figure 1 shows the performance
of a commonly used “first-touch” allocation policy which
allocates data pages local to the socket that touches the data
first. This policy is not ideal as it cannot allocate page-tables
locally for all sockets. Mitosis replicates page-tables across
sockets to improve performance by up to 1.34x in this scenario.
These gains come at a mere cost of 0.6% memory overhead
compared to the exorbitant memory cost of data replication.

In the second, workload migration scenario, we had ob-
served that page-table migration is not supported, which makes
TLB misses expensive for workloads after their migration
across sockets. The graph on the bottom right in Figure 1
quantifies the worst-case performance impact of misplacing
page-tables on memory that is remote with respect to the appli-
cation socket (see remote (interfere) bar). The local bar shows
the ideal execution time with locally allocated page-tables.
Mitosis improves this situation by enabling cross-socket page-
table migration, and boosts performance by up to 3.24x.

2. Background

2.1. Virtual Memory

Translation Lookaside Buffers (TLBs) enable fast address
translation and are key to the performance of a virtual mem-
ory based system. Unfortunately, TLBs only cover a tiny
fraction of physical memory available on modern systems
while workloads consume all memory for storing their large
datasets. Hence, memory-intensive workloads incur frequent
costly TLB misses requiring page-table lookup by hardware.

Research has shown that TLB miss processing is pro-
hibitively expensive [21, 24, 25, 26, 38, 53] as walking page-
tables (e.g., 4-level radix tree on x86-64) requires multiple
memory accesses. Even worse, virtualized systems need two-
levels of page-table lookups which can result in much higher
TLB miss processing overheads (24 memory accesses instead
of four on x86-64). Consequently, address translation over-
heads of 10-40% are not unusual [21, 24, 25, 39, 40, 50], and
will worsen with emerging 5-level page-tables [43].

In response, many research proposals improve address
translation by reducing the frequency of TLB misses and/or
accelerating page-table walks. Use of large pages to in-
crease TLB-coverage [34, 35, 36, 55, 57, 63, 64, 66] and
additional MMU structures to cache multiple levels of the
page-tables [19, 24, 26] are some of the techniques widely
adopted in commercial systems. In addition, researchers have
also proposed TLB-speculation [20, 60], prefetching transla-
tions [47, 53, 62], eliminating or devirtualizing virtual mem-
ory [42], or exposing virtual memory system to applications to
make the case for application-specific address translation [16].

We observe that prior works studied address translation
on single-socket systems. However, page-tables are often
placed across remote and local memories in large-memory
systems. Given the sensitivity of large page placement on such
systems [41], we were intrigued by the question of how page-
table placement affects overall performance. In this paper, we
present compelling evidence to show that optimizing page-
table placement is as crucial as optimizing data placement.

2.2. NUMA Architectures

Multi-socket architectures, where CPUs are connected via
a cache-coherent interconnect, offer scalable memory band-
width even at high capacity and are frequently used in modern
data centers and cloud deployments. Looking forward, this
trend will only increase; large-memory (1-100 TBs) machines
are integrating even more devices with different performance
characteristics like Intel’s Optane memory [6]. Furthermore,
emerging architectures using chiplets and multi-chip modules
[17, 33, 44, 45, 48, 54, 65, 67] will drive the multi-socket and
NUMA paradigm: accessing memory attached to the local
socket will have higher bandwidth and lower latency than
accessing memory attached to a remote socket. Note that ac-
cessing remote memory can incur 2-4x higher latency than
accessing local memory [1]. Given the non-uniformity of

2



access latency and bandwidth, optimizing data placement in
NUMA systems has been an active area of research.

2.3. Data Placement in NUMA machines

Modern OSes provide generic support for optimizing data
placement on NUMA systems through various allocation and
migration polices. For example, Linux provides first-touch vs.
interleaved allocation to control the initial placement of data,
and additionally employs AutoNUMA to migrate pages across
sockets in order to place data closer to the threads accessing it.
To further optimize data placement, Carrefour [32] proposed
data-page replication along with migration. In addition, data
replication has also been proposed at data structure level [29]
and via NUMA-aware memory allocators [46] to further re-
duce the frequency of remote memory accesses. In contrast,
our work focuses on page-table pages, not data pages.

Some prior research has proposed replicated data struc-
tures for address spaces. RadixVM [30] manages the process’
address space using replicated radix trees to improve the scal-
ability of virtual memory operations in the research-grade xv6
OS [15]. However, RadixVM does not replicate page-tables.
Similarly, Corey [28] divides the address space into shared and
private per-core regions where these explicitly shared regions
share the page-table. In contrast, we use replication to manage
NUMA effects of page-table walks in an industry-grade OS.
Techniques for data vs. page-table pages: One may expect
prior migration and replication techniques to extend readily to
page-tables. In reality, subtle distinctions between data and
page-table pages merit some discussion. First, data pages are
replicated by simple bytewise copying of data, without any spe-
cial reasoning of the contents of the pages. Page-table pages,
however, require more care and cannot rely simply on byte-
wise copying – to semantically replicate virtual-to-physical
mappings, upper page-table levels must hold pointers (phys-
ical addresses) to their replicated, lower level page-tables –
which differ from replica to replica except at the leaf level.
Moreover, data replication has high memory overheads and
maintaining consistency across replicated pages (especially
for write-intensive pages) can outweigh the benefits of repli-
cation. While data replication has its values, we show that
page-table replication is equally important – it incurs negli-
gible memory overhead, can be implemented efficiently and
delivers substantial performance improvement.

3. Page-Table Placement Analysis

In this section, we first present an analysis of page-table dis-
tributions when running memory-intensive workloads on a
large-memory machine (multi-socket scenario § 3.1) and then
quantify the impact of NUMA effects on page-table walks
(workload migration scenario § 3.2). Our experimental plat-
form is a 4-socket Intel Xeon E7-4850v3 with 512 GB physical
memory (more detailed machine configuration in § 8).

Process

Socket 2 Socket 3

Process

Socket 1Socket 0

Process ProcessD L4

L2

L3

L1

M
em

or
y 

1
M

em
or

y 
3

M
em

or
y 

0
M

em
or

y 
2

Figure 2: An illustration of current page-table and data place-
ment for a multi-socket workload using 4-socket system.

3.1. Multi-Socket Scenario

We focus on page-table distributions where workloads use
almost all resources in a multi-socket system. Consider the
example in Figure 2. If a core in socket 0 has a TLB miss
for data "D", which is local to the socket, it has to perform
up to 4 remote accesses to resolve the TLB miss to ultimately
discover that data was actually local to its socket. Even though
MMU caches [19] help reduce some of the accesses, at least
leaf-level PTEs have to be accessed. Since big-data workloads
have large page-tables that are absent from the caches, system
memory accesses are often unavoidable [25].
Methodology. We are interested in the distribution of pages
for each level in the page-table; i.e., which sockets page-tables
are allocated on. We write a kernel module that walks the
page-table of a process and dumps the PTEs including the
value of the page-table root register (CR3) to a file. The
kernel module is then invoked every 30 seconds while a multi-
socket workload (e.g., Memcached) ran, producing a stream
of page-table snapshots over time. We use 30 second time
intervals as page-table allocation occurs relatively infrequently
and smaller time interval does not change results significantly.
We use first-touch or interleaved data allocation policy while
enabling/disabling AutoNUMA [2] data page migration with
different page sizes for multi-socket workloads in Table 1.

Workload Description MS WM

Memcached a commercial distributed in-memory object
caching system [8] 350GB –

Graph500 a benchmark for generation, compression and
search of large graphs [5] 420GB –

HashJoin a benchmark for hash-table probing used in
database applications and other large applications 480GB 17GB

Canneal a benchmark for simulated cache-aware annealing
to optimize routing cost of a chip design [10] 382GB 32GB

XSBench a key computational kernel of the Monte Carlo neu-
tronics application [14] 440GB 85GB

BTree a benchmarks for index lookups used in database
and other large applications 145GB 35GB

LibLinear a linear classifier for data with millions of instances
and features [7] – 67GB

PageRank a benchmark for page rank used to rank pages in
search engines [23] – 69GB

GUPS a HPC Challenge benchmark to measure the rate of
integer random updates of memory [11] – 64GB

Redis a commercial in-memory key-value store [12] – 75GB

Table 1: Workloads used for analysis in multi-socket (MS) and
workload migration (WM) scenarios.

3



Level | Socket 0 | Socket 1 | Socket 2 | Socket 3
L4 | 0 [ 0 0 0 0] ( 0%) | 1 [ 8 3 0 1] (75%) | 0 [ 0 0 0 0] ( 0%) | 0 [ 0 0 0 0] ( 0%)
L3 | 1 [ 56 66 40 37] (72%) | 3 [ 33 43 26 26] (66%) | 0 [ 0 0 0 0] ( 0%) | 0 [ 0 0 0 0] ( 0%)
L2 | 89 [11k 11k 11k 11k] (75%) | 109 [13k 13k 13k 13k] (75%) | 66 [ 8k 8k 8k 8k] (75%) | 63 [ 7k 7k 7k 8k] (75%)
L1 | 40k [ 6M 4M 4M 4M] (67%) | 40k [ 4M 6M 4M 4M] (67%) | 40k [ 4M 4M 6M 4M] (67%) | 40k [ 4M 4M 4M 6M] (67%)

Figure 3: Analysis of page-table pointers from a page-table dump for a multi-socket workload: Memcached.

0%

25%

50%

75%

100%

Canneal Memcached XSBench Graph500 HashJoin BTree

Socket 0 Socket 1 Socket 2 Socket 3

Figure 4: Percentage of remote leaf PTEs as observed from
each socket for our multi-socket workloads.

Analysis. We analyze the distribution of page-tables for each
snapshot in time. For each page-table level, we summarize the
number of per-socket physical pages and the number of valid
PTEs pointing to page-table pages (or data frames) residing
on a local or remote socket. From these snapshots, we collect
a distribution of leaf PTEs and which sockets they are located
on. We focus on leaf PTEs as there are orders of magnitude
more of them than non-leaf PTEs and because they generally
determine address translation performance (upper-level PTEs
can be cached in MMU caches [25]). These distributions
indicate how many local and remote sockets a page-table walk
may visit before resolving a TLB miss.
Results. Due to space limitations, we show a single, processed
snapshot of the page-table for Memcached in Figure 3. This
snapshot was collected using 4KB pages, local allocation, and
AutoNUMA disabled. We studied 2MB pages as well and
present observations from them later. The processed dump
shows the distribution of all four levels of the page-table (L4
being the root, and L1 the leaf). The dump is organized in four
columns representing the four-sockets in this system. In each
cell, the first number is the total physical pages at that level-
socket combination (e.g. socket 1 has the only L4 page-table
page). Next is the distribution of pointers in square brackets
of the valid PTEs at this level/socket (e.g. L4 on socket 1 has
8 pointers to L3 on socket 0, 3 pointers locally, and 1 pointer
to socket 3). The percentage numbers in rounded brackets are
the fraction of valid PTEs pointing to remote physical pages.

Figure 4 shows the percentage of remote leaf PTEs observed
by a thread running on each socket. Each workload’s cluster
has per-socket values representing the percentage of remote
leaf PTEs in the page-table. We made these observations from
the page-table dumps and distribution of leaf PTEs:
1. Page-tables pages are allocated on the socket initializing

the first data structures that the page-table pages point to.
This is similar to data frame allocation but has important
unintended performance consequences. Consider that each
page-table page has 512 entries. This means that the choice
of where to allocate a page-table page is entirely dependent
upon which of the 512 entries in the page-table page gets

allocated first, and which socket the allocating thread runs
on. If subsequently, other entries in the page-table page
are used for threads on another socket, remote memory
references for page-table walks become common.

2. With first touch policy, the number of page-tables tends
to be skewed towards a single socket (e.g. socket 1 for
Graph500 on Figure 4). This is especially the case when a
single thread allocates and initializes all memory.

3. The interleaved policy evenly distributes page-table pages
across all sockets.

4. While we observed data pages being migrated with AutoN-
UMA, page-table pages were never migrated. The fraction
of data pages migrated over time depends on the workload
and its access locality.

5. On all levels, a significant fraction of page-table entries
points to remote sockets. In the case of interleave policy,
this is (N −1)/N for an N-socket system.

6. Due to the skew in page-table allocation, some sockets
experience longer TLB misses since up to 99% of leaf
PTEs are located remotely.

Summary On multi-socket systems, page-table page alloca-
tion is skewed towards sockets that initialize the data struc-
tures. While data pages are migrated by default OS policies,
page-table pages remain on the socket they are allocated. Con-
sequently, remote page-table walks are inevitable and multi-
socket workloads suffer from longer TLB misses as their asso-
ciated page-table walks require remote memory accesses.

3.2. Workload Migration Scenario

We now focus on the impact of NUMA on page-table walks
in scenarios where a process on a single socket is migrated to
another. Such situations arise frequently in commercial cloud
deployments due to the need for load balancing and improving
process-data affinity [52, 27]. Particularly, the prevalence of
virtual machines and containers that rely on hypervisors and
NUMA-aware schedulers to consolidate workloads in data cen-
ters are making inter-socket process migrations increasingly
common. For e.g., VMware ESXi may migrate processes at a
frequency of 2 seconds [3]. Today, data can be migrated across
sockets but page-tables cannot, compromising performance.
Configurations. We run each workload in isolation while
tightly controlling and changing i) the allocation policies for
data pages and page-table pages, ii) whether or not the sockets
are idle and iii) whether transparent, 2MB large pages (THP)
are enabled. We disable NUMA migration. To study page-
table allocations in a controlled manner, we modified Linux
kernel to force page-table allocations on a fixed socket. We use
the configurations shown in Table 2 and visualized in Figure 5.
We use the STREAM benchmark [13] running on the socket

4



PT D

Process

PT D

Process

D

(i) Baseline: LP-LD (ii) Process migration: RP-RD

Socket 0 Socket 1 Socket 0 Socket 1

PT D

Process

D
Data 
migration

(iii) Data migration: RP-LD

Socket 0 Socket 1

PT

Process

D

(iv) Loaded remote PT: RPI-LD

Socket 0 Socket 1

Other
Process

process
migration

PT

Process

D

(v) Process re-migration from iii: LP-RD

Socket 0 Socket 1

PT

Other
Process

D

(vi) Loaded Remote Data: LP-RDI

Socket 0 Socket 1

Process
process
migration

Memory 0 Memory 1 Memory 0 Memory 1 Memory 0 Memory 1 Memory 0 Memory 1 Memory 0 Memory 1 Memory 0 Memory 1

Figure 5: Different configurations for workload migration scenario. We show only 6 out of 7 configurations here. The 7th
configuration (RPI-RDI) can be easily created from (ii) by running another process on Socket 0.

Config. Workload Page-Table Data Interference
(T)LP-LD A A: Local PT A: Local Data -
(T)LP-RD A A: Local PT B: Remote Data -
(T)RP-LD A B: Remote PT A: Local Data -
(T)RP-RD A B: Remote PT B: Remote Data -
(T)RPI-LD A B: Remote PT A: Local Data B: Interfere on PT
(T)LP-RDI A A: Local PT B: Remote Data B: Interfere on Data
(T)RPI-RDI A B: Remote PT B: Remote Data B: Interfere on PT&Data

Table 2: Configurations for workload migration scenario,
where A and B denote different sockets. T denotes if THP
in Linux is used for 2MB pages. Interference is another pro-
cess that runs on a specified socket and hogs its local mem-
ory bandwidth. Figure 5 shows the 2-socket case.

indicated by interference to create a worst-case scenario of
co-locating a memory-bandwidth heavy workload. Memory
allocation and processor affinity are controlled by numactl.
Measurements. We use perf to obtain performance counter
values such as execution cycles and TLB load and store miss
walk cycles (i.e., the cycles that the page walker is active for).
Results. We then run our workloads for all seven configura-
tions. Figure 6 shows the normalized run times with a 4KB
page size. The base case is the LP-LD configuration where
both page-tables and data pages are local and the system is
idle. For each configuration, hashed part of the bar denotes
the fraction of time spent on page-table walks. We observe the
following from this experiment:
1. All workloads spend a significant fraction of execution

cycles (up to 90%) performing page-table walks. Parts of
these walks may be overlapped with other work; neverthe-
less, they present a performance impediment.

2. LP-LD runs most efficiently for 4KB page size.
3. The local page-table, remote data case (LP-RD and LP-

RDI) suffers 3x slowdown versus the baseline. This is
not surprising and has motivated prior research on data
migration techniques in large-memory NUMA machines.

4. More surprisingly, the remote page-table, local data case
(RP-LD and RPI-LD) suffers 3.3x slowdown. This slow-
down can even be more severe than remote data accesses.

5. When both page-tables and data pages are placed remotely
(RP-RD and RPI-RDI), the slowdown is 3.6x and is the
worst placement possible for all workloads.

6. With 2MB page size (figure omitted for space), TLB reach
improves and the number of memory accesses for a page-
table walk decreases to 3 rather than 4. These two factors
reduce the fraction of execution cycles devoted to page-
table walks. Even so, overall performance is still vulnerable
to remote page-table placement.

Summary. The NUMA node on which page-table pages are
placed significantly impacts performance. Remote page-tables
can have similar, and in some cases even worse, slowdown
than remote data pages accesses. Moreover, the slowdown is
visible even with large pages.

4. Design Concept

Mitosis’ key concept is a mechanism and its policies to repli-
cate and migrate page-tables and reduce the frequency of
remote memory accesses in page-table walks. Mitosis requires
two components: i) a mechanism to support low-overhead
page-table replication and migration and ii) policies for pro-
cesses to efficiently manage and control page-table replication
and migration. Figure 7 illustrates these concepts. Our dis-
cussion focuses on the multi-socket and workload migration
scenarios used before in § 3.

4.1. Multi-socket Scenario

We showed in § 3.1 that multi-socket workloads will, assum-
ing a uniform distribution of page-table pages, have N−1

N PTEs
pointing to remote pages for an N-socket system. Page-tables

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

LP
-L

D
LP

-R
D

LP
-R

DI
RP

-L
D

RP
I-L

D
RP

-R
D

RP
I-R

DI

GUPS BTree HashJoin Redis XSBench PageRank LibLinear Canneal

N
or

m
al

iz
ed

 R
un

tim
e

Figure 6: Normalized runtime of our workloads in workload migration scenario with 4KB page size. The lower hashed part of
each bar is time spent in walking the page-tables. All configurations are shown in Table 2.

5



Data migration

Page-table migration

L2

Process

So
ck

et
 2

So
ck

et
 3

Process

L3

L4

So
ck

et
 1

So
ck

et
 0

Process Process

D L4,L3,L2,L1 D L4,L3,L2,L1 D D L4,L3,L2,L1 D DL4,L3,L2,L1

L4,L3,L2,L1 L4,L3,L2,L1

L4,L3,L2,L1L4,L3,L2,L1 D

L1

(b) Workload migration scenario(a) Multi-socket scenario

(i) Process – initially (ii) Process after migration (iii) Process after migration with Mitosis (i) Process without page-table replication (ii) Process with page-table replication

Data migration

Process
So

ck
et

 2

So
ck

et
 3

Process

So
ck

et
 1

So
ck

et
 0

Process Process

So
ck

et
 2

So
ck

et
 3

So
ck

et
 1

So
ck

et
 0

Process

So
ck

et
 2

So
ck

et
 3

So
ck

et
 1

So
ck

et
 0

Process

So
ck

et
 2

So
ck

et
 3

So
ck

et
 1

So
ck

et
 0

Process

Figure 7: Mitosis: Page-table migration and replication on large-memory machines

may be distributed among the sockets in a skewed fashion. Fig-
ure 7 (a)(i) shows a scenario where threads of the same work-
load running on different sockets have to make remote memory
accesses during page-table walks.

From Figure 7 (a)(i) we can see that if a thread in socket
0 has a TLB miss for data “D” (which is local to the socket),
it has to perform up to 4 remote accesses to resolve the TLB
miss to only find out that the data was local to its socket.

With Mitosis, we replicate the page-tables on each socket
where the process is running (shown in Figure 7 (a)(ii)). This
results in up to 4 local accesses to the page-table, precluding
the need for remote memory accesses in page-table walks.

4.2. Workload Migration Scenario

Single-socket workloads suffer performance loss when pro-
cesses are migrated across sockets while page-tables are not
(shown in Figure 7 (b)(ii)) The process is migrated from
socket 0 to socket 1, the NUMA memory manager trans-
parently migrate data pages, but page-table pages remain on
socket 1. In contrast, Mitosis migrates the page-tables along
with the data (Figure 7 (b)(iii)). This eliminates remote mem-
ory accesses for page-table walks, improving performance.

5. Mechanism
Replication and migration are inherently similar. We first
describe the building blocks which are required to support
page-table replication and later show how we can leverage the
replication infrastructure to achieve page-table migration.

Mitosis enables per-process replication; the virtual memory
subsystem needs to maintain multiple copies of page-tables
for a single process. Efficient replication of page-tables can
be divided into three sub-tasks: i) strict memory allocation to
hold the replicated page-tables, ii) managing and keeping the
replicas consistent, and iii) using replicas when the process
is scheduled. We now describe each sub-task in detail by
providing a generalized design and our Linux implementation.
We also discuss how Mitosis handles accessed and dirty bits.

5.1. Allocating Memory for Storing Replicas

General design: All page-table allocations are performed by

the OS on a page-fault–an explicit mapping request can be
viewed as an eager call to the page-fault handler for the given
memory area. Mitosis extends the same mechanism to allocate
memory across sockets for different replicas.

Such allocation is strict, i.e. it has to occur on a particular
list of sockets at allocation time. It is, therefore, possible
that it may fail due to the unavailability of memory on those
sockets. There are multiple ways to sidestep this problem
by reserving pages on each socket for page-table allocations
using per-socket page-cache. These pages can be explicitly
reserved through a system call or automatically when a process
allocates a virtual memory region. Alternatively, the OS can
reclaim physical memory through demand paging mechanisms
or evicting a data page onto another socket.
Linux implementation: We rely on the existing page allo-
cation functionality in Linux to implement Mitosis. When
allocating page-table pages, we explicitly supply the list of
target sockets for page-table replication. Since strict allocation
can fail, we implemented per-socket page-caches to reserve
pages for page-table allocations. The size of this page-cache
is explicitly controlled using a sysctl interface.

5.2. Management of Updates to Replicas

General design: For security, OSes usually do not allow user
processes to directly manage their own page-tables. Instead,
OSes export an interface through which page-table modifica-
tions are handled, e.g. map/unmap/protect of pages. Mitosis
extends the same interfaces for updates to page-tables to keep
all replicas consistent. One way to implement this is to eagerly
update all replicas at the same time via this standard interface
when an update to the page-table is performed on any replica.

On an eager update, the OS finds the physical location to
update in the local replica by walking the local replica of
the page-table. It is required to walk other replicas of the
page-table to locate the physical location to update all the
replicas at the same time. Therefore, an N-socket system in
x86_64 will need 4N memory accesses with replication on
a page-table update: 4 memory accesses to walk the page-
table on each of the N sockets. To reduce this overhead, we
designed a circular linked-list of all replicas. The metadata

6



Replica 
page 0

PTE

Replica 
page 1

PTE

Replica 
page 2

PTE

Replica 
page 3

PTE

CR3-0 CR3-1 CR3-2 CR3-3

Metadata 
for page 0 

Metadata 
for page 1

Metadata 
for page 2

Metadata 
for page 2

Added pointers for circular linked list

Figure 8: Circular linked list to locate all replicas efficiently
(implemented in Linux with struct page).

about each physical page is utilized to store the pointers to
the next physical page holding the replica of the page-table.
Figure 8 shows an illustration with 4-way replication. This
allows updates to proceed without walking the page-tables to
perform the update. With this optimization, the update of all
N replicas takes 2N memory references (N for updating the N
replicas and N for reading the pointers to the next replica).
Linux implementation: We implemented eager updates to
the replica page-tables in Linux. This required intercepting any
writes to the page-tables and propagate updates accordingly.
But instead of revamping the full-memory subsystem in Linux,
we used a different interface, PV-Ops [9], which is required
to support para-virtualization environments such as Xen [18].
The Linux kernel shipped with distributions like Ubuntu has
para-virtualization support enabled by default.

Conceptually, this is done by indirect calls to the native
or Xen handler functions. Effectively, the indirect calls are
patched with direct calls once the subsystem is initialized. The
PV-Ops subsystem interface consists of functions to allocate
and free page-tables of any level, reading and writing the
translation base register (CR3 on x86_64), and writing page-
table entries. The PV-Ops interface can be seen in Listing 1.
void write_cr3(unsigned long x);
void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn);
void paravirt_release_pte(unsigned long pfn);
void set_pte(pte_t *ptep, pte_t pte);

Listing 1: Excerpt of the PV-Ops interface

We implemented Mitosis as a new backend for PV-Ops
alongside with the native and Xen backends. When the kernel
is compiled with Mitosis, the default PV-Ops is switched to the
Mitosis backend. We implemented the Mitosis backend with
great care to ensure identical behavior to the native backend
when Mitosis is turned off. Besides, note that replication is
generally not enabled by default, and thus the behavior is the
same as the native interface.

The PV-Ops subsystem provides an efficient way for Mitosis
to track any writes to the page-tables in the system. Propa-
gating those updates efficiently requires a fast way to find the
replica page-tables based solely on the information provided
through the PV-Ops interface (Listing 1) i.e. using a kernel
virtual address (KVA) or a physical frame number (PFN).

We augment the page metadata to keep track of replicas
with our circular linked list. The Linux kernel keeps track
of each 4KB physical frame in the system using struct page.
Moreover, each frame has a unique KVA and PFN. Linux
provides functions to convert between struct page and it’s
corresponding KVA/PFN, which is typically done by adding,
subtracting or shifting the respective values and are hence
efficient operations. We can, therefore, obtain the struct

page directly from the information passed through the PV-Ops
interface and update all replicas efficiently.

5.3. Efficiently Utilizing Page-Table Replicas

General design: When the OS schedules a process or task,
it performs a context switch, restores processor registers and
resumes execution of the new process or task. The context
switch involves programming the page-table base register of
the MMU with the base address of the process’ page-table
and flushing the TLB. With Mitosis, we extend the context
switch functionality, to select and set the base address of the
socket’s local page-table replica efficiently. This enables a
task or process to use the local page-table replica if present.
Linux implementation: For each process, we maintain an
array of root page-table pointers which allows directly select-
ing the local replica by indexing this array using the socket
id. Initializing this array with pointers to the very same root
page-table is equivalent to the native behavior.

5.4. Handling of Bits Written by Hardware

General design: A page-table is mostly managed by software
(the OS) most of the time and read by the hardware (on a TLB
miss). On x86, however, hardware–namely the page-walker–
reports whenever a page has been accessed or written to by
setting the accessed and dirty bits in the PTEs. In other words,
page-table is modified without direct OS involvement. Thus,
accessed and dirty bits do not use the standard software inter-
face to update the PTE and cannot be replicated easily without
hardware support. Note, that these two bits are typically set
by the hardware and reset by the OS. They are used by the
OS for system-level operations like swapping or writing back
memory-mapped files if they are modified in memory. With
Mitosis when replicated, we logically OR accessed and dirty
bits of all the replicas when read by the OS.
Linux implementation: We need to read accessed/dirty bits
from all replicas as well as reset them in all replicas. Unfortu-
nately, the PV-Ops interface doesn’t provide functions to read
a page-table entry, worse we have found code in the Linux
kernel which even writes to the page-table entry without going
through the PV-Ops interface. We augmented with the corre-
sponding get functions to PV-Ops which consult all copies of
page-table entry and make sure the flags are returned correctly.
The new function reads all the replicas and ORs the bits in all
replicas to get the correct information.

7



5.5. Page-Table Migration

We use replication to perform migration in the following way:
we use Mitosis to replicate the page-table on the socket to
which the process has been migrated. The first replica can
be eagerly freed after migration, or alternatively kept up-to-
date in the case the process gets migrated back and lazily
deallocated in case physical memory is becoming scarce.

6. Policy
The policies we implement with Mitosis control when page-
tables are replicated and determine the processes and sockets
for which replicas are created. As with NUMA policies, page-
table replication policies can be applied system-wide or upon
user request. We discuss both in this section.

6.1. System-wide Policies

General design: System-wide policies can range from simple
on/off knobs for all processes to policies that actively moni-
tor performance counter events provided by the hardware to
dynamically enable or disable Mitosis.

Event-based triggers can be developed for page-table mi-
gration and replication within the OS. For instance, the OS
can obtain TLB miss rates or cycles spent walking page-tables
through performance counters that are available on modern
processors and then apply policy decisions automatically. A
high TLB miss rate suggests that a process can benefit from
page-table replication or migration. By taking the ratio be-
tween the time spent to serve TLB misses and the number of
TLB misses can indicate a replication candidate. Processes
with a low TLB miss rate may not benefit from replication.

Even if the OS makes a decision to migrate or replicate the
page-tables, there it may be costly to copy the entire page-
table as big memory workloads easily achieve page-tables
of multiple GB in size. By using additional threads or even
DMA engines on modern processors, the creation of a replica
can happen in the background and the application regains full
performance when the replica or migration has completed.

The target applications of Mitosis are long-running, big-
memory workloads with high TLB pressure, and therefore
we disable page-table replication for short-running processes
since the performance and memory cost of the replicated page-
tables for short-running processes cannot be amortized (§ 8.3).
Linux implementation: We support a straightforward,
system-wide policy with four states: i) completely disable
Mitosis, ii) enable per-process basis, iii) fix the allocation
of page-tables on a particular socket, and iv) enabled for all
processes in the system. This system-wide policy can be set
through the sysctl interface of Linux. We leave it as future
work to implement an automatic, counter-based approach.

6.2. User-controlled Policies

General design: System-wide policies usually imply a one-
size-fits-all approach for all processes, but user-controlled

policies allow programmers to use their understanding of their
workloads and to select policies explicitly. These user-defined
replication and migration policies can be combined with data
and process placement primitives. Such policies can be se-
lected when starting the program by defining the CPU set and
replication set, or at runtime using corresponding system calls
to set affinities and replication policies. All of these policies
can be set per-process so that users have fine-grained control
on replication and migration.
Linux implementation: We implement user-defined policies
as an additional API call to libnuma and corresponding pa-
rameters of numactl. Similar to setting the allocation policy,
we can supply node-mask or a list of sockets to replicate the
page-tables (Listing 2). Applications can thus select the repli-
cation policy at runtime, or we can use numactl to select the
policy without changing the program.
numactl [--pgtablerepl= | -r <sockets>]
void numa_set_pgtable_replication_mask(struct bitmask *);

Listing 2: Additions to libnuma and numactl

Both, libnuma and numactl use two additional system
calls to set and get the page-table replication bitmask. When-
ever a new mask is set, Mitosis will walk the existing page-
table and create replicas according to the new bitmask. The
bitmask effectively specifies the replication factor: N bits set
corresponds to copies on N sockets and by passing an empty
bitmask, the default behavior is restored.

7. Discussion

7.1. Why Linux Implementation?

As a proof-of-concept, we implement Mitosis in the widely-
used Linux OS. Choosing Linux as our testbed allows us to
prototype our ideas on a complex and complete OS where the
subtle interactions of many systems features and Mitosis stress-
tests its evaluation. Specifically, we use mainline Linux kernel
v4.17 and implement Mitosis for the x86_64 architecture. We
plan to release this implementation for everyone to use and
plan to upstream the changes to the Linux kernel.

7.2. Applicability to Library OS

We have chosen to implement the prototype of Mitosis in
Linux. However, the concept of Mitosis is applicable to other
operating systems. Microkernels, for instance, push most
of their memory management functionality into user-space
libraries or processes while the kernel enforces security and
isolation. In Barrelfish [22], for example, processes manage
their own address space by explicit capability invocations to
update page-tables with new mappings.

In such a system, one could implement Mitosis purely in
user-space by linking to a Mitosis-enabled libraryOS, and the
kernel itself would not need to be modified at all. The library
can keep track of the address space, including page-tables,
replicas etc. Those data-structures can easily be enhanced

8



to include an array of page-table capabilities instead of a
single such table. This would allow policies to be defined
at application level by using an appropriate policy library.
Updates to page-tables might need to be converted to explicit
update messages to other sockets, which avoid the need for
global locks and propagates updates lazily. On a page-fault,
updates can be processed and applied accordingly in the page-
fault handling routine. We leave such an implementation to
future work, but believe it to be straightforward.

7.3. Huge/Large Pages Support?

Larger page sizes help reduce address translation overheads
by increasing the amount of memory that each TLB entry map
by orders of magnitude. Even with 2MB and 1GB page size
support in x86-64 on an Intel Haswell processor, the TLB
reach is still less than 1%, assuming 1TB of main memory
for any page size. Moreover, many commodity processors
provide limited numbers of large page TLB entries especially
1GB TLB entries, which limits their benefit [21, 39, 49] and
additionallly huge-pages are not always the best choice [41].

Since, address translation overheads are non-negligible with
larger page sizes, they are susceptible to NUMA effects on
page-table walks. Thus, our implementation of Mitosis sup-
ports larger page sizes and evaluate them. We extend trans-
parent huge pages (THP) or 2MB page size in Linux which
requires coalescing smaller pages to a large page and split-
ting larger pages in to smaller ones. Mitosis is implemented to
replicate the page-tables even in presence of such mechanisms.

7.4. Applicability to Virtualized Systems?

Virtualized systems widely use hardware-based nested paging
to virtualize memory [37]. This requires two-levels of page-
table translation:
1. gVA to gPA: guest virtual address to guest physical address

via a per-process guest OS page-table (gPT)
2. gPA to hPA: guest physical address to host physical address

via a per-VM nested page-table (nPT)
In the best case, the virtualized address translation hits in the
TLB to directly translate from gVA to hPA with no overheads.
In the worst case, a TLB miss needs to perform a 2D page walk
that multiplies overheads vis-a-vis native, because accesses
to the guest page-table also require translation by the nested
page-table. For x86-64, a nested page-table walk requires up
to 24 memory accesses. This 2D page-table walk comes with
additional hardware complexity.

Understanding page-table placement in virtualized systems
is a major undertaking and requires a separate study. We be-
lieve we can extend Mitosis’ design to replicate both guest
page-tables and nested page-tables independently if the un-
derlying NUMA architecture is exposed to the guest OS to
improve performance of applications. To extend the design,
we can rely on setting accessed and dirty bits at both gPT
and nPT by the nested page-table walk hardware available
since Haswell [4]. Thus, we can extend our OS extension

for or-ing the access and dirty bits across replicas to get the
correct information at both levels independently. However,
the main issue is that most cloud systems prefer not to expose
the underlying architecture to the guest OS making a case
for novel approaches to replicate and migrate both levels of
page-tables in a virtualized environment.

7.5. Consistency across page-table replicas?

Coherence between hardware TLBs is maintained by the OS
with the help of TLB flush IPIs and updates to the page-table
are already thread-safe as they are performed within a critical
section. In Linux, a lock is taken whenever the page-table
of a process is modified and thus ensuring mutual exclusion.
The updates to the page-table structure are made visible after
releasing the lock. When an entry is modified, its effect is
made visible to other cores through a global TLB flush as the
old entry might still be cached.

With Mitosis, we currently keep the same consistency guar-
antees by updating all page-table replicas eagerly while being
in the critical section. Thus, only one thread can modify the
page-table at a time. Hardware may read the page-table while
updates are being carried out. The critical section ensures cor-
rectness while serving the page-fault while again, the global
TLB flush ensures consistency after modification of an entry
in case a core has cached the old one.

8. Evaluation
We evaluate Mitosis using a set of big-memory workloads and
micro-benchmarks. We show: (1) how multi-threaded pro-
grams benefit from Mitosis (§ 8.1), (2) how Mitosis eliminates
NUMA effects of page-walks when page-tables are placed
on remote sockets due to task migration (§ 8.2) and (3), the
memory and runtime overheads of Mitosis (§ 8.3).

Hardware Configuration We used a four-socket Intel Xeon
E7-4850v3 with 14 cores and 128GB memory per-socket (512
GB total memory) with 2-way hyper-threading running at
2.20GHz. The L3 cache is 35MB in size and the processor has
a per-core two-level TLB with 64+1024 entries. Accessing
memory on the local NUMA socket has about 280 cycles
latency and throughput of 28GB/s. For a remote NUMA
socket, this is 580 cycles and 11GB/s respectively.

8.1. Multi-socket Scenario

In this part of the evaluation, we focus on multi-threaded
workloads running in parallel on all sockets in the system.
For a machine with N NUMA sockets, in expectation N−1

N of
page-table accesses will be remote while the remote sockets
are busy themselves. We evaluate six workloads (see § 3.1),
for all commonly used configurations that influence data and
page-table placement (see Table 3). Performance is presented
as an average of three runs, excluding the initialization phase.

The results are shown in Figure 9a for 4KB pages and Fig-
ure 9b with 2MB large pages respectively. All bars are normal-

9



0.0
0.2
0.4
0.6
0.8
1.0

F
F+

M F-
A

F-
A+

M I
I+

M F
F+

M F-
A

F-
A+

M I
I+

M F
F+

M F-
A

F-
A+

M I
I+

M F
F+

M F-
A

F-
A+

M I
I+

M F
F+

M F-
A

F-
A+

M I
I+

M F
F+

M F-
A

F-
A+

M I
I+

M

Canneal Memcached XSBench Graph500 HashJoin BTree

N
or

m
al

ize
d 

Ru
nt

im
e

1.
17

x

1.
13

x

1.
14

x

1.
12

x

1.
12

x

1.
10

x

1.
34

x

1.
24

x

1.
16

x

1.
07

x

1.
02

x

1.
05

x

1.
04

x

1.
02

x

1.
03

x

1.
08

x

1.
09

x

1.
02

x

(a) 4KB Pages

0.0
0.2
0.4
0.6
0.8
1.0

TF
TF

+M TF
-A

TF
-A

+M TI
TI

+M TF
TF

+M TF
-A

TF
-A

+M TI
TI

+M TF
TF

+M TF
-A

TF
-A

+M TI
TI

+M TF
TF

+M TF
-A

TF
-A

+M TI
TI

+M TF
TF

+M TF
-A

TF
-A

+M TI
TI

+M TF
TF

+M TF
-A

TF
-A

+M TI
TI

+M

Canneal Memcached XSBench Graph500 HashJoin BTree

N
or

m
al

ize
d 

Ru
nt

im
e

1.
14

x

1.
31

x

1.
09

x

1.
13

x

1.
09

x

1.
01

x 1.
06

x

1.
05

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
03

x

1.
03

x

1.
07

x

(b) 2MB Large Pages

Figure 9: Normalized performance with Mitosis for multi-socket workloads with 4KB and 2MB page size. The lower hashed part
of each bar is execution time spent in walking the page-tables.

Config. Data pages Page-table pages
(T)F

First-touch allocation
First-touch allocation (bar: purple)

(T)F+M Mitosis replication (bar: green)
(T)F-A First-touch allocation First-touch allocation (bar: purple)
(T)F-A+M + Auto page migration Mitosis replication (bar: green)
(T)I

Interleaved allocation
Interleaved allocation (bar: purple)

(T)I+M Mitosis replication (bar:green)

Table 3: Configurations for multi-socket scenario where work-
load runs on all sockets. T denotes Linux with THP. M denotes
the corresponding data allocation policy with Mitosis.

ized to 4KB first-touch allocation policy (bar: F). Bars with the
same allocation policy are grouped in boxes for comparison.
The number on top of Mitosis bars (green) shows improvement
from corresponding non-Mitosis bars (purple) within a box.
Note that data allocation policy impacts performance and is
shown across boxes for each workload. The results for 2MB
pages are normalized to 4KB (bar: F) to show performance
impact with increase in page size.

We observe that with 4KB pages, up to 40% of the total
runtime is spent in servicing TLB misses. Mitosis reduces the
overall runtime for all applications with the best-case improve-
ment of 1.34x for Canneal. Most of the improvements can be
noted in the reduction of page-walk cycles due to replication
of page-tables.

Large pages can significantly reduce translation overheads
for many workloads. However, NUMA effects of page-table
walks are still noticeable, even if all workload memory is
backed by large pages. Hence, Mitosis provides significant
speedup e.g., 1.14x, 1.13x, 1.06x and 1.07x for Canneal, Mem-
cached, XSBench and BTree, respectively. Note that the use
of large pages can lead to decreased performance on NUMA
systems and still not used for many systems [41].

Using various data page placement policies improves per-
formance for our workloads as expected. In combination with
all policies, Mitosis consistently improves performance.

We have provided evidence that highly parallel workloads
experience NUMA effects of remote-memory accesses due
to page-table walks. Yet, running a workload concurrently
means we cannot inspect a thread in isolation: a TLB miss
on one core may populate the cache with the PTE needed
to serve the TLB miss on another core of the same socket.
Moreover, accessing a remote last-level cache may be faster
than accessing DRAM. Nevertheless, we have shown that
Mitosis is still able to improve multi-threaded workloads by
up to 1.34x and that too for both page sizes. Again, Mitosis
does not cause any slowdown.

8.2. Workload Migration Scenario

As we observed in § 3.2, NUMA schedulers can move pro-
cesses from one socket to another under various constraints.
In this part of the evaluation, we show that Mitosis elimi-
nates NUMA effects of page-walks originating due to data
and threads migrating to a different socket while page-tables
remain fixed on the socket where workload was first initialized.

We execute the same workloads used for workload migra-
tion scenario in § 3.2. As an additional configuration, we
enabled Mitosis when the page-table is allocated on a remote
socket. Recall, we disabled Linux’ AutoNUMA migration,
and pre-allocated and initialized the working set (17-85GB).

The results are shown in Figure 10a and Figure 10b with
4KB and 2MB page sizes respectively. Table 2 in § 3.2 showed
the configurations used for evaluation: LP-LD (Local PT -
Local Data) and RPI-LD (Remote PT with interference - Local
Data). RPI-LD+M shows the improvement with page-table

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

LP
-L

D
RP

I-L
D

RP
I-L

D
+M

LP
-L

D
RP

I-L
D

RP
I-L

D
+M

LP
-L

D
RP

I-L
D

RP
I-L

D
+M

LP
-L

D
RP

I-L
D

RP
I-L

D
+M

LP
-L

D
RP

I-L
D

RP
I-L

D
+M

LP
-L

D
RP

I-L
D

RP
I-L

D
+M

LP
-L

D
RP

I-L
D

RP
I-L

D
+M

LP
-L

D
RP

I-L
D

RP
I-L

D
+M

GUPS BTree HashJoin Redis XSBench PageRank LibLinear Canneal

N
or

m
al

ize
d 

Ru
nt

im
e

3.
24

x

1.
97

x

2.
10

x

1.
80

x

1.
44

x

1.
83

x

1.
42

x

1.
95

x

(a) 4KB Pages

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

TL
P-

LD
TR

PI
-L

D
TR

PI
-L

D+
M

TL
P-

LD
TR

PI
-L

D
TR

PI
-L

D+
M

TL
P-

LD
TR

PI
-L

D
TR

PI
-L

D+
M

TL
P-

LD
TR

PI
-L

D
TR

PI
-L

D+
M

TL
P-

LD
TR

PI
-L

D
TR

PI
-L

D+
M

TL
P-

LD
TR

PI
-L

D
TR

PI
-L

D+
M

TL
P-

LD
TR

PI
-L

D
TR

PI
-L

D+
M

TL
P-

LD
TR

PI
-L

D
TR

PI
-L

D+
M

GUPS BTree HashJoin Redis XSBench PageRank LibLinear Canneal

N
or

m
al

ize
d 

Ru
nt

im
e

1.
00

x

1.
02

x

1.
00

x

1.
70

x

1.
00

x

1.
00

x

1.
31

x

2.
35

x

(b) 2MB Large Pages

Figure 10: Normalized performance with Mitosis for workloads in workload migration scenario with 4KB and 2MB page size. The
lower hashed part of each bar is execution time spent in walking the page-tables.

10



migration enabled by Mitosis when RPI-LD case arises in
the system. The boxes denote the bars to compare to see the
improvement due to page-table migration. The number on top
of the bar denotes the improvement due to Mitosis (green bar)
as compared to non-mitosis bar (purple bar) within the same
box. All bars are normalized to 4KB LP-LD configuration.
The results for 2MB pages are normalized to 4KB (bar: LP-
LD) to show performance impact with increase in page size.

With 4KB pages (Figure 10a), remote page-tables cause
1.4x to 3.2x slowdown (bar: RPI-LD) relative to the baseline
(LP-LD). Mitosis can mitigate this overhead and has the same
performance as the baseline by migrating the page-tables with
process migration.

With 2MB large pages (Figure 10b), we see that the page
walk overheads are comparatively lower, nevertheless we ob-
serve a slowdown of up to 2.3x for TRPI-LD over TLP-LD
configuration. Again, Mitosis can mitigate this overhead and
has the same performance as the TLP-LD configuration. Note,
that for certain workloads the page-tables are cached well in
the CPU caches and thus there is no difference in runtime. For
example, in the case of GUPS, we observe roughly one TLB
miss per data access–two cache-line requests in total per data
array access. By breaking this down, we obtain that each leaf
page-table cache-line covers about 16MB of memory which
corresponds to 256k cache-lines of the data array. Therefore,
the page-table cache-lines are accessed 256k more often than
the data array cache-lines, and there are less than 500k page-
table cache lines which can easily be cached in L3 cache of
the socket. In summary, page-table entries are likely to be
present in the sockets processor cache.
Memory Fragmentation: Physical memory fragmentation
limits the availability of large pages as the system ages, lead-
ing to higher page-walk overheads [51, 56]. Figure 11 shows
the performance of Mitosis under heavy fragmentation while
using THP in Linux with 2MB page size. We observe that all
workloads, including those that did not show performance im-
provement with Mitosis while using 2MB pages in Figure 10b,
show dramatic improvement with Mitosis in this case. This
is due to workloads falling back to 4KB pages under frag-
mentation – which we have already shown to be susceptible
to NUMA effects of page-table walks. Note that we present
this experiment under heavy fragmentation to demonstrate
that even if large pages are enabled, page-walk overheads can

0 0.5 1 1.5 2

TRPI-LD+M
TRPI-LD
TLP-LD

TRPI-LD+M
TRPI-LD
TLP-LD

TRPI-LD+M
TRPI-LD
TLP-LD

XS
Be

nc
h

Re
di

s
GU

PS

Normalized Runtime 

2.73x

1.70x

1.08x

Figure 11: Performance of Mitosis in workload migration sce-
nario with 2MB pages under heavy memory fragmentation.

approach that of 4KB pages. In practice, the actual state of
memory fragmentation may depend on several factors and
these overheads will be proportional to the failure rate of large
page allocations.
Summary: With this evaluation, we have shown that Mitosis
completely avoids resulting overheads due to page-tables be-
ing misplaced on remote NUMA sockets. In none of the cases,
Mitosis resulted in a slowdown of the workload.

8.3. Space and Runtime Overheads

Enabling Mitosis implies maintaining replicas which consume
memory and use CPU cycles to be kept consistent. We eval-
uate these overheads by estimating the additional memory
requirement, and then perform micro-benchmarks on the vir-
tual memory operations and wrap up by running applications
end-to-end to set those overheads into perspective.
8.3.1. Memory Overheads We estimate the overhead of the
additional memory used to store the page-table replicas when
Mitosis is enabled. We define the two-dimensional function

mem_overhead(Foot print,Replicas) = Overhead%
that calculates memory overhead relative to the single page-
table baseline and evaluate it using different values for the
application’s memory footprint and the number of replicas.
For this estimation, we assume 4-level x86 paging with a
compact address space e.g. the application uses addresses
0..FootPrint. Each level has at least one page-table allocated
and a page-table is 4KB in size.

Table 4 shows the memory overheads of Mitosis for small
to large applications using up to 16 replicas. We use the
single page-table case as the baseline. The page-table accounts
for about 0.19% of the total footprint, except for the 1MB
case where it accounts for 1.5%. With an increasing memory
footprint used by the application, Mitosis requires less than
2.9% of additional memory for 16-replicas, whereas our four-
socket machine used just 0.6% additional memory.

The page-tables use a small fraction of the total memory
footprint of the application. For small programs, the fraction
is higher because there is a hard minimum of at least 16KB
of page-tables–a 4KB page for each level. This is reflected by
the large 23.1% increase in memory consumption for small
programs. However, putting this into perspective we advocate
not to use Mitosis in this case as the 1MB memory footprint
falls within the TLB coverage.

In summary, we showed that even with a 16-socket NUMA
machine, Mitosis adds just 2.9% memory overhead and this
overhead drops to 0.6% for our four-socket machine.

Number of Replicas
Footprint PT Size 1 2 4 8 16

1 MB 0.02 MB 1.0 1.015 1.046 1.108 1.231
1 GB 2.01 MB 1.0 1.002 1.006 1.014 1.029
1 TB 2.00 GB 1.0 1.002 1.006 1.014 1.029

16 TB 32.0 GB 1.0 1.002 1.006 1.014 1.029

Table 4: Memory footprint overhead for Mitosis

11



Operation 4KB region 8MB region 4GB region
mmap 1.021x 1.008x 1.006x

mprotect 1.121x 3.238x 3.279x
munmap 1.043x 1.354x 1.393x

Table 5: Runtime overhead of Mitosis for virtual memory oper-
ation system calls using 4-way Replication.

8.3.2. VMA Operation Overheads In this part of the eval-
uation, we are interested in understanding the overheads of
self-replicating page-tables for common virtual memory oper-
ations such as mmap, mprotect and munmap.

We conducted a micro-benchmark that repeatedly calls the
VMA operations and measured the time to complete the cor-
responding system calls. For each operation, we enforce that
the page-table modifications are carried out e.g. by passing
the MAP_POPULATE flat to mmap. We varied the number of
affected pages from a single page to a large region of memory
of multiple GB in size. We ran the micro-benchmark with
Mitosis enabled and disabled on an otherwise idle system. We
use 4KB pages and 4-way replication.

The results of this micro-benchmark are shown in Table 5.
The table shows CPU cycles required to perform the operation
on a memory region of size 4KB, 8MB, or 4GB with Mitosis
being on or off. Further, we calculate the overheads of Mitosis
by dividing the 4-way replicated case (Mitosis on) with the
base case, Mitosis off. For mmap, we observe an overhead of
less than 2%. For unmap, the overhead grows to 35% while
Mitosis adds more than 3x overheads for mprotect.

With 4-way replication, there are four sets of page-tables
that need to be updated resulting in four times the work. We
attribute the rather low overhead for mmap to the allocation and
zeroing of new data pages during the system call. Likewise,
when performing the unmap the freed pages are handed back
to the allocator, but not zeroed resulting in less work per page
and thus higher overhead of replication. Mitosis experiences
a large overhead for mprotect which is still smaller than
the replication factor. The mprotect operation does a read-
modify-write cycle on the affected page-table entries. This
process is efficient with no replicas as it results in sequential
access within a page-table. However, with the PV-OPS inter-
face, for each written entry all replicas are updated accordingly
which kills locality. This can be avoided by either changing
the PV-Ops interface or implementing lazy updates.
8.3.3. No End-to-End Slowdown We now set the VMA op-
erations micro-benchmark of the previous section into the
perspective of real-world applications. We show that our mod-
ifications to the Linux kernel to support Mitosis has negligible
end-to-end overhead for applications.

Workload Mitosis Off Mitosis On Overhead
GUPS 270.93 (0.43) 272.18 (0.00) 0.46%
Redis 633.94 (0.34) 636.31 (0.86) 0.37%

Table 6: Runtimes with LP-LD setting, including initialization
with and without Mitosis. Standard Deviation in Brackets.

We compare the execution time of the single-threaded
benchmarks. We run those benchmarks with and without
Mitosis and measure overall execution time, including alloca-
tion and initialization phase. We use the LP-LD configuration,
i.e. everything is locally allocated. THP is deactivated.

The results are shown in Table 6. We observe that in both
cases, GUPS and Redis, the overheads of Mitosis are less than
half a percent, which is small compared to the improvements
we have demonstrated earlier.

9. Conclusion
We presented Mitosis: a technique that transparently replicates
page-tables on large-memory machines, and provides the first
platform to systematically evaluate page-table allocation poli-
cies inside the OS. With strong empirical evidence, we made
the case for taking the allocation and placement of page-tables
to a first-class consideration, in turn, optimizing performance
on NUMA systems. We also demonstrated the benefits of
replicating page-tables in large-memory machines for various
use-cases, while observing negligible memory and runtime
overheads. We plan to open-source the tools used in this work
to inspire further research on optimizing page-table placement.
Moreover, we plan to work with the Linux community to get
Mitosis integrated into the mainline kernel.

References
[1] “Amd epyc infinity fabric latency ddr4 2400 v 2666: A

snapshot,” https://www.servethehome.com/amd-epyc-infinity-fabric-
latency-ddr4-2400-v-2666-a-snapshot/.

[2] “AutoNUMA: the other approach to NUMA scheduling,” https://
lwn.net/articles/488709/.

[3] “Extreme Performance Series: vSphere Compute & Mem-
ory Schedulers,” https://static.rainfocus.com/vmware/
vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/
SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf.

[4] “FOUR NEW VIRTUALIZATION TECHNOLOGIES ON THE
LATEST INTEL R© XEON,” https://software.intel.com/en-us/blogs/
2014/09/08/four-new-virtualization-technologies-on-the-latest-intel-
xeon-are-you-ready-to.

[5] “Graph500 | large scale benchmarks,” https://graph500.org.
[6] “Intel’s Enterprise Extravaganza 2019: Launching Cascade Lake,

Optane DCPMM, Agilex FPGAs, 100G Ethernet, and Xeon
D-1600,” https://www.anandtech.com/show/14155/intels-enterprise-
extravaganza-2019-roundup.

[7] “Liblinear – a library for large linear classification,” https://
www.csie.ntu.edu.tw/~cjlin/liblinear/.

[8] “memcached: a distributed memory object caching system,” https:
//memcached.org.

[9] “Paravirt_ops,” https://www.kernel.org/doc/Documentation/virtual/
paravirt_ops.txt.

[10] “Parsec benchmark suite,” https://parsec.cs.princeton.edu/
overview.htm.

[11] “RandomAccess: GUPS (Giga Updates Per Second),” https://
icl.utk.edu/projectsfiles/hpcc/RandomAccess/.

[12] “Redis,” https://redis.io.
[13] “STREAM: Sustainable Memory Bandwidth in High Performance

Computers,” https://www.cs.virginia.edu/stream/.
[14] “XSBench: The Monte Carlo Macroscopic Cross Section Lookup

Benchmark,” https://github.com/ANL-CESAR/XSBench.
[15] “Xv6, a simple Unix-like teaching operating system,” https://

pdos.csail.mit.edu/6.828/2012/xv6.html.
[16] H. Alam, T. Zhang, M. Erez, and Y. Etsion, “Do-it-yourself virtual

memory translation,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17, 2017, pp. 457–
468.

12

https://www.servethehome.com/amd-epyc-infinity-fabric-latency-ddr4-2400-v-2666-a-snapshot/
https://www.servethehome.com/amd-epyc-infinity-fabric-latency-ddr4-2400-v-2666-a-snapshot/
https://lwn.net/articles/488709/
https://lwn.net/articles/488709/
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://software.intel.com/en-us/blogs/2014/09/08/four-new-virtualization-technologies-on-the-latest-intel-xeon-are-you-ready-to
https://software.intel.com/en-us/blogs/2014/09/08/four-new-virtualization-technologies-on-the-latest-intel-xeon-are-you-ready-to
https://software.intel.com/en-us/blogs/2014/09/08/four-new-virtualization-technologies-on-the-latest-intel-xeon-are-you-ready-to
https://graph500.org
https://www.anandtech.com/show/14155/intels-enterprise-extravaganza-2019-roundup
https://www.anandtech.com/show/14155/intels-enterprise-extravaganza-2019-roundup
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://memcached.org
https://memcached.org
https://www.kernel.org/doc/Documentation/virtual/paravirt_ops.txt
https://www.kernel.org/doc/Documentation/virtual/paravirt_ops.txt
https://parsec.cs.princeton.edu/overview.htm
https://parsec.cs.princeton.edu/overview.htm
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://icl.utk.edu/projectsfiles/hpcc/RandomAccess/
https://redis.io
https://www.cs.virginia.edu/stream/
https://github.com/ANL-CESAR/XSBench
https://pdos.csail.mit.edu/6.828/2012/xv6.html
https://pdos.csail.mit.edu/6.828/2012/xv6.html


[17] AMD, “The Next Generation AMD Enterprise Server Product
Architecture,” https://www.hotchips.org/wp-content/uploads/
hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/
HC29.22.921-EPYC-Lepak-AMD-v2.pdf.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
Art of Virtualization,” in Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’03. Bolton
Landing, NY, USA: ACM, 2003, pp. 164–177. [Online]. Available:
http://doi.acm.org/10.1145/945445.945462

[19] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching:
Skip, Don’t Walk (the Page Table),” in Proceedings of the 37th
Annual International Symposium on Computer Architecture, ser.
ISCA ’10, Saint-Malo, France, 2010, pp. 48–59. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815970

[20] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A mechanism for
speculative address translation,” in 2011 38th Annual International
Symposium on Computer Architecture (ISCA), June 2011, pp. 307–317.

[21] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, ser.
ISCA ’13, Tel-Aviv, Israel, 2013, pp. 237–248. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485943

[22] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The Multikernel: A New
OS Architecture for Scalable Multicore Systems,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
ser. SOSP ’09, Big Sky, Montana, USA, 2009, pp. 29–44. [Online].
Available: http://doi.acm.org/10.1145/1629575.1629579

[23] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available:
http://arxiv.org/abs/1508.03619

[24] A. Bhattacharjee, “Large-reach Memory Management Unit Caches,”
in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-46, Davis, California,
2013, pp. 383–394. [Online]. Available: http://doi.acm.org/10.1145/
2540708.2540741

[25] A. Bhattacharjee, “Translation-Triggered Prefetching,” in Proceedings
of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’17, Xi’an, China, 2017, pp. 63–76. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037705

[26] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-level
TLBs for Chip Multiprocessors,” in Proceedings of the 2011 IEEE
17th International Symposium on High Performance Computer
Architecture, ser. HPCA ’11, 2011, pp. 62–63. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2014698.2014896

[27] J. Bouron, S. Chevalley, B. Lepers, W. Zwaenepoel, R. Gouicem,
J. Lawall, G. Muller, and J. Sopena, “The Battle of the
Schedulers: FreeBSD ULE vs. Linux CFS,” in Proceedings
of the 2018 USENIX Conference on Usenix Annual Technical
Conference, ser. USENIX ATC ’18. Berkeley, CA, USA:
USENIX Association, 2018, pp. 85–96. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3277355.3277364

[28] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang, “Corey: An Operating System for Many Cores,”
in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. San Diego,
California: USENIX Association, 2008, pp. 43–57. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855741.1855745

[29] I. Calciu, S. Sen, M. Balakrishnan, and M. K. Aguilera, “Black-box
Concurrent Data Structures for NUMA Architectures,” in Proceedings
of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’17, Xi’an, China, 2017, pp. 207–221. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037721

[30] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “RadixVM: Scal-
able Address Spaces for Multithreaded Applications,” in Proceedings
of the 8th ACM European Conference on Computer Systems, ser. Eu-
roSys ’13, Prague, Czech Republic, 2013, pp. 211–224.

[31] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross:
Lightweight elasticity in shared storage databases for the cloud using
live data migration,” in Proceedings of the 2011 VLDB Endowment,
ser. VLDB ’11, 2011.

[32] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic Management: A Holistic Approach
to Memory Placement on NUMA Systems,” in Proceedings of the
Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS
’13, Houston, Texas, USA, 2013, pp. 381–394. [Online]. Available:
http://doi.acm.org/10.1145/2451116.2451157

[33] Y. Demir, Y. Pan, S. Song, N. Hardavellas, J. Kim, and
G. Memik, “Galaxy: A High-performance Energy-efficient Multi-chip
Architecture Using Photonic Interconnects,” in Proceedings of the
28th ACM International Conference on Supercomputing, ser. ICS
’14, Munich, Germany, 2014, pp. 303–312. [Online]. Available:
http://doi.acm.org/10.1145/2597652.2597664

[34] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, “Supporting
Superpages in Non-Contiguous Physical Memory,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 223–234.

[35] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and S. A. McKee,
“Reevaluating Online Superpage Promotion with Hardware Support,” in
Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, ser. HPCA ’01, 2001, pp. 63–. [Online].
Available: http://dl.acm.org/citation.cfm?id=580550.876428

[36] N. Ganapathy and C. Schimmel, “General Purpose Operating System
Support for Multiple Page Sizes,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC
’98, New Orleans, Louisiana, 1998, pp. 8–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268256.1268264

[37] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile Paging for Efficient
Memory Virtualization,” IEEE Micro, vol. 37, no. 3, pp. 80–86, 2017.

[38] J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S. McKin-
ley, M. Nemirovsky, M. M. Swift, and O. S. Ünsal, “Range Translations
for Fast Virtual Memory,” IEEE Micro, vol. 36, no. 3, pp. 118–126,
May 2016.

[39] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient
Memory Virtualization: Reducing Dimensionality of Nested
Page Walks,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47,
Cambridge, United Kingdom, 2014, pp. 178–189. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.37

[40] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile Paging: Exceeding
the Best of Nested and Shadow Paging,” in Proceedings of the 43rd
International Symposium on Computer Architecture, ser. ISCA ’16,
Seoul, Republic of Korea, 2016, pp. 707–718. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.67

[41] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and
V. Quéma, “Large Pages May Be Harmful on NUMA Systems,” in
Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, ser. USENIX ATC’14, Philadelphia, PA, 2014,
pp. 231–242. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2643634.2643659

[42] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing memory
in heterogeneous systems,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New
York, NY, USA: ACM, 2018, pp. 637–650. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3173194

[43] Intel Corp., “5-Level Paging and 5-Level EPT,” https:
//software.intel.com/sites/default/files/managed/2b/80/5-
level_paging_white_paper.pdf.

[44] Intel Corp., “New Intel Core Processor Combines High-Performance
CPU with Custom Discrete Graphics from AMD to Enable Sleeker,
Thinner Devices,” https://newsroom.intel.com/editorials/new-intel-
core-processor-combine-high-performance-cpu-discrete-graphics-
sleek-thin-devices/.

[45] S. S. Iyer, “Heterogeneous Integration for Performance and Scaling,”
IEEE Transactions on Components, Packaging and Manufacturing
Technology, vol. 6, no. 7, pp. 973–982, July 2016.

[46] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris, “Shoal: Smart
Allocation and Replication of Memory for Parallel Programs,” in
Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference, ser. USENIX ATC ’15, Santa Clara, CA, 2015,
pp. 263–276. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2813767.2813787

[47] G. B. Kandiraju and A. Sivasubramaniam, “Going the Distance for
TLB Prefetching: An Application-driven Study,” in Proceedings
of the 29th Annual International Symposium on Computer
Architecture, ser. ISCA ’02, 2002, pp. 195–206. [Online]. Available:
http://dl.acm.org/citation.cfm?id=545215.545237

13

https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-AMD-v2.pdf
http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/1815961.1815970
http://doi.acm.org/10.1145/2485922.2485943
http://doi.acm.org/10.1145/1629575.1629579
http://arxiv.org/abs/1508.03619
http://doi.acm.org/10.1145/2540708.2540741
http://doi.acm.org/10.1145/2540708.2540741
http://doi.acm.org/10.1145/3037697.3037705
http://dl.acm.org/citation.cfm?id=2014698.2014896
http://dl.acm.org/citation.cfm?id=3277355.3277364
http://dl.acm.org/citation.cfm?id=1855741.1855745
http://doi.acm.org/10.1145/3037697.3037721
http://doi.acm.org/10.1145/2451116.2451157
http://doi.acm.org/10.1145/2597652.2597664
http://dl.acm.org/citation.cfm?id=580550.876428
http://dl.acm.org/citation.cfm?id=1268256.1268264
http://dx.doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/ISCA.2016.67
http://dl.acm.org/citation.cfm?id=2643634.2643659
http://dl.acm.org/citation.cfm?id=2643634.2643659
http://doi.acm.org/10.1145/3173162.3173194
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://newsroom.intel.com/editorials/new-intel-core-processor-combine-high-performance-cpu-discrete-graphics-sleek-thin-devices/
https://newsroom.intel.com/editorials/new-intel-core-processor-combine-high-performance-cpu-discrete-graphics-sleek-thin-devices/
https://newsroom.intel.com/editorials/new-intel-core-processor-combine-high-performance-cpu-discrete-graphics-sleek-thin-devices/
http://dl.acm.org/citation.cfm?id=2813767.2813787
http://dl.acm.org/citation.cfm?id=2813767.2813787
http://dl.acm.org/citation.cfm?id=545215.545237


[48] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-based dis-
integration of multi-core processors,” in 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Dec 2015,
pp. 546–558.

[49] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift,
“Performance analysis of the memory management unit under scale-
out workloads,” in 2014 IEEE International Symposium on Workload
Characterization (IISWC), Oct 2014, pp. 1–12.

[50] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill,
K. S. McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal,
“Redundant Memory Mappings for Fast Access to Large Memories,”
in Proceedings of the 42Nd Annual International Symposium on
Computer Architecture, ser. ISCA ’15, Portland, Oregon, 2015, pp. 66–
78. [Online]. Available: http://doi.acm.org/10.1145/2749469.2749471

[51] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel,
“Coordinated and efficient huge page management with ingens,” in
Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’16. Berkeley, CA, USA:
USENIX Association, 2016, pp. 705–721. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026877.3026931

[52] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova,
“The linux scheduler: A decade of wasted cores,” in Proceedings of the
Eleventh European Conference on Computer Systems, ser. EuroSys
’16. New York, NY, USA: ACM, 2016, pp. 1:1–1:16. [Online].
Available: http://doi.acm.org/10.1145/2901318.2901326

[53] D. Lustig, A. Bhattacharjee, and M. Martonosi, “TLB Improvements
for Chip Multiprocessors: Inter-Core Cooperative Prefetchers
and Shared Last-Level TLBs,” ACM Trans. Archit. Code Optim.,
vol. 10, no. 1, pp. 2:1–2:38, Apr. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2445572.2445574

[54] Marvell Corporation, “MoChi Architecture,” http://www.marvell.com/
architecture/mochi/.

[55] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Transparent
Operating System Support for Superpages,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 89–104, Dec. 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844138

[56] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages
actually useful,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’18. New York, NY,
USA: ACM, 2018, pp. 679–692. [Online]. Available: http:
//doi.acm.org/10.1145/3173162.3173203

[57] M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos, “Prediction-
based superpage-friendly TLB designs,” in 2015 IEEE 21st Inter-
national Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 210–222.

[58] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing TLB
reach by exploiting clustering in page translations,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2014, pp. 558–567.

[59] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-45, Vancouver, B.C., CANADA, 2012, pp. 258–269. [Online].
Available: https://doi.org/10.1109/MICRO.2012.32

[60] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large
Pages and Lightweight Memory Management in Virtualized
Environments: Can You Have It Both Ways?” in Proceedings
of the 48th International Symposium on Microarchitecture, ser.
MICRO-48, Waikiki, Hawaii, 2015, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2830772.2830773

[61] K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: Fine-grained
power management for multi-core systems,” in Proceedings of the
2009 International Symposium on Computer Architecture, ser. ISCA
’09, 2009.

[62] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-based
TLB Preloading,” in Proceedings of the 27th Annual International
Symposium on Computer Architecture, ser. ISCA ’00, Vancouver,
British Columbia, Canada, 2000, pp. 117–127. [Online]. Available:
http://doi.acm.org/10.1145/339647.339666

[63] A. Seznec, “Concurrent Support of Multiple Page Sizes on a Skewed
Associative TLB,” IEEE Trans. Comput., vol. 53, no. 7, pp. 924–927,
Jul. 2004. [Online]. Available: https://doi.org/10.1109/TC.2004.21

[64] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach Using
Superpages Backed by Shadow Memory,” in Proceedings of the
25th Annual International Symposium on Computer Architecture, ser.
ISCA ’98, Barcelona, Spain, 1998, pp. 204–213. [Online]. Available:
https://doi.org/10.1145/279358.279388

[65] Taiwan Semiconductor Manufacturing Company, “CoWoS Services,”
http://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm.

[66] M. Talluri and M. D. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support,” in Proceedings
of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS VI,
San Jose, California, USA, 1994, pp. 171–182. [Online]. Available:
http://doi.acm.org/10.1145/195473.195531

[67] J. Yin, Z. Lin, O. Kayiran, M. Poremba, M. S. B. Altaf, N. E. Jerger, and
G. H. Loh, “Modular Routing Design for Chiplet-Based Systems,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018, pp. 726–738.

14

http://doi.acm.org/10.1145/2749469.2749471
http://dl.acm.org/citation.cfm?id=3026877.3026931
http://doi.acm.org/10.1145/2901318.2901326
http://doi.acm.org/10.1145/2445572.2445574
http://www.marvell.com/architecture/mochi/
http://www.marvell.com/architecture/mochi/
http://doi.acm.org/10.1145/844128.844138
http://doi.acm.org/10.1145/3173162.3173203
http://doi.acm.org/10.1145/3173162.3173203
https://doi.org/10.1109/MICRO.2012.32
http://doi.acm.org/10.1145/2830772.2830773
http://doi.acm.org/10.1145/339647.339666
https://doi.org/10.1109/TC.2004.21
https://doi.org/10.1145/279358.279388
http://www.tsmc.com/english/dedicatedFoundry/services/cowos.htm
http://doi.acm.org/10.1145/195473.195531

	1 Introduction
	2 Background
	2.1 Virtual Memory
	2.2 NUMA Architectures
	2.3 Data Placement in NUMA machines

	3 Page-Table Placement Analysis
	3.1 Multi-Socket Scenario
	3.2 Workload Migration Scenario

	4 Design Concept
	4.1 Multi-socket Scenario
	4.2 Workload Migration Scenario

	5 Mechanism
	5.1 Allocating Memory for Storing Replicas
	5.2 Management of Updates to Replicas
	5.3 Efficiently Utilizing Page-Table Replicas
	5.4 Handling of Bits Written by Hardware
	5.5 Page-Table Migration

	6 Policy
	6.1 System-wide Policies
	6.2 User-controlled Policies

	7 Discussion
	7.1 Why Linux Implementation?
	7.2 Applicability to Library OS
	7.3 Huge/Large Pages Support?
	7.4 Applicability to Virtualized Systems?
	7.5 Consistency across page-table replicas?

	8 Evaluation
	8.1 Multi-socket Scenario
	8.2 Workload Migration Scenario
	8.3 Space and Runtime Overheads
	8.3.1 Memory Overheads
	8.3.2 VMA Operation Overheads
	8.3.3 No End-to-End Slowdown


	9 Conclusion

