Comparing Isolation Mechanisms with OSmosis

Sidhartha Agrawal
University of British Columbia
Vancouver, Canada

Linh Pham*
Hammerspace
Toronto, Canada

Aastha Mehta
University of British Columbia
Vancouver, Canada

Shaurya Patel
University of British Columbia,
Google
Vancouver, Canada

Ilias Karimalis
University of British Columbia
Vancouver, Canada

Reto Achermann
University of British Columbia
Vancouver, Canada

Arya Stevinson®
Oracle Labs
Vancouver, Canada

Hugo Lefeuvre
University of British Columbia
Vancouver, Canada

Margo L. Seltzer
University of British Columbia
Vancouver, Canada

Abstract

There exist many mechanisms, ranging from processes to
virtual machines, for isolating untrusted computations from
each other. Each mechanism explicitly isolates certain re-
sources while, either implicitly or explicitly, sharing the rest.
Unfortunately, we lack a comprehensive way to formally and
systematically reason about which resources are shared, to
what extent they are shared, and how this sharing determines
the degree of isolation between any two computations.

We present OSmosis, a model that enables reasoning about
the precise set of resources shared between two protection
domains. The OSmosis model represents resources, protec-
tion domains, and their relationships as a graph. This graph
exposes interactions that affect the confidentiality, integrity,
and availability of a protection domain.

We present a tool that extracts the OSmosis graph on Linux,
using information available through procfs. We demon-
strate the utility of the model by using it to identify how four
popular container implementations differ from one another
in terms of the resources shared and trusted processes.

CCS Concepts: « Software and its engineering — Oper-
ating systems; « Security and privacy — Virtualization
and security.

Keywords: Containers, Virtual Machines, Isolation mecha-
nisms, Trusted Computing Base, Formal model

ACM Reference Format:

Sidhartha Agrawal, Shaurya Patel, Arya Stevinson, Linh Pham,
Ilias Karimalis, Hugo Lefeuvre, Aastha Mehta, Reto Achermann,
and Margo I Seltzer. 2025. Comparing Isolation Mechanisms with

“Work done while at the University of British Columbia.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

PLOS °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2225-7/25/10
https://doi.org/10.1145/3764860.3768325

OSmosis. In 13th Workshop on Programming Languages and Operat-
ing Systems (PLOS °25), October 1316, 2025, Seoul, Republic of Korea.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3764860.
3768325

1 Introduction

From the moment that more than one person wanted to use a
computer at the same time (some 60 years ago), the systems
community has developed myriad techniques to facilitate
safe multiplexing. The community continues to develop new
mechanisms to facilitate isolation and sharing of different
resources among applications and their users [4, 5, 7, 10, 12,
13, 25, 31, 41, 50, 54]. For example, the rise of serverless com-
puting, where low startup latency and strong isolation are
both desired, inspired many new mechanisms in search of
one that would achieve the isolation of virtual machines with
the overhead and startup latency of containers. This plethora
of mechanisms makes choosing the correct one challenging;
each one prioritizes a different goal, e.g., improving perfor-
mance [7, 13, 42, 43, 66], improving security [40, 41, 50], or
providing reproducibility in developer workflows [2, 5, 19].

Choosing the right isolation mechanism for deploying an
application involves many factors (e.g., ease of use, cost, trust
assumptions, security requirements, performance), which
requires a way for developers to meaningfully compare the
mechanisms with respect to these factors [58]. While devel-
opers can rely on design specifications and code documenta-
tion to determine how easy a mechanism would be to use
and deploy, these only vaguely specify the isolation guar-
antees provided. Consequently, developers resort to ad-hoc
interactions with engineering teams to better understand
isolation guarantees while making deployment decisions, a
process that is laborious and error-prone [57, 58].

The root cause of this problem lies in the absence of a
principled approach to identify application state, what parts
of it are shared with or isolated from other applications, and
which part of the system enforces isolation. While some
application state is well understood (e.g., heap, code, data,
files), an application might share a significant amount of

https://orcid.org/0000-0003-3194-6037
https://orcid.org/0009-0000-6759-1069
https://orcid.org/0009-0000-3037-5514
https://orcid.org/0009-0002-5047-5605
https://orcid.org/0009-0004-6594-0359
https://orcid.org/0000-0001-9547-7458
https://orcid.org/0009-0005-3416-5254
https://orcid.org/0000-0003-3263-7236
https://orcid.org/0000-0002-2165-4658
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3764860.3768325
https://doi.org/10.1145/3764860.3768325
https://doi.org/10.1145/3764860.3768325

PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea

its state with other applications (e.g., system-level services,
files in different namespaces, caches); this sharing is not well
understood. Worse yet, the details of what is shared depend
on the isolation mechanism’s configuration, its implemen-
tation, and/or the underlying hardware topology. A lack of
understanding of this shared state leads to many problems,
ranging from performance anomalies due to unintentional
sharing [68], overheads from too much isolation [68], vulner-
abilities caused by unintentional sharing of state [72], and
unclear trusted computing base [24, 36].

We present the OSmosis model (Sec. 3), a formal model that
unambiguously describes sharing and isolation of resources
between tasks on a system, enabling developers to reason
about these aspects. The OSmosis model is a graph, with
nodes corresponding to resources, protection domains (PD)
and resource spaces, which are the context for the allocation
of the resources. The edges of the graph precisely describe
how nodes interact with each other.

Queries on the OSmosis model graph (Sec. 4) reveal how
the isolation of PDs varies under different isolation mech-
anisms. Query results allow us to compute metrics that es-
timate high-level confidentiality, integrity, and availability
properties. For example, we contribute queries to compute
the Trusted Computing Base (TCB) and the Impact Boundary
(IB) metrics. In the OSmosis model, the TCB of a protection
domain PD, is the set of PDs on which PD, relies. The IB
of PDy is the set of PDs that can be affected by the behavior
of PD,. These definitions are grounded in Miller’s notion of
“reliance set” [55], which we formalize with OSmosis queries.

We introduce LinTool (Sec. 5), a tool that extracts the run-
time OSmosis model state from Linux by querying the /proc
pseudo filesystem. We use it to illustrate how the TCB and
IB vary across four container mechanisms—Docker, Docker
in rootless mode, Apptainer, and Podman (Sec. 5). For exam-
ple, we show that the daemon-less mechanisms and Docker
rootless mode have less impact (e.g., cannot restart the OS)
on the host kernel relative to Docker regular mode.

Overall, we contribute a new approach to quantify the
isolation provided by different mechanisms. This enables
many future works, such as building new metrics to evaluate
the confidentiality, integrity, and availability of systems, or
designing operating systems that facilitate the extraction of
OSmosis models (Sec. 7).

2 Anatomy of a Usecase

We use the running example of an application using a Key-
Value Store (KVS) to both motivate the need for a model to
describe isolation and later to demonstrate how the OSmosis
model helps us precisely compare isolation mechanisms.
Fig. 1illustrates six different application configurations. (a)
The application links with the KVS library in a single process,
so there is no isolation between the application and the KVS,
and Get and Set operations are simple function calls. (b) The

Agrawal, et al.

8 File B Kvstore [App

@OMemory i os #8 Hypervisor

Figure 1. Some options for deploying an application and a
Key-Value (KV) Store in: (a) the same process, (b) the same
process with intra-address space compartmentalization, (c)
separate processes (sharing files, but not memory), (d) sep-
arate containers (not sharing files), (e) separate processes
inside VMs, and (f) separate unikernel VMs. Scenarios (a)
and (b) communicate via shared memory, (c) communicates
via IPC and (d) to (f) communicate via the network.

application and KVS are part of the same process, but they
are compartmentalized [46], sharing only a limited number
of pages, so Get and Set require compartment switching.
The shared pages are explicitly set up during application
initialization. (c) The application and the KVS run in separate
processes on the same OS, Get and Set operations require
IPC via a socket. (d) The application and the KVS run in
separate containers on the same host (the file resource is no
longer shared as they are in separate mount namespaces). (e)
The application and the KVS run in separate processes, each
in a separate virtual machine hosted on a shared hypervisor.
(f) The application and the KVS run in separate unikernel [43,
52] virtual machines on a shared hypervisor, which is shown
by each of the application and the KVS merged with their
unique copies of the OS. In the last three configurations, the
application and the KVS communicate over the network.

2.1 Two Perspectives on Isolation

It is widely accepted that scenarios (a) to (e) offer increasing
isolation between the application and the KVS. But what
exactly makes a scenario more isolated than the previous
one? The answer to this question is rooted in two differ-
ent perspectives: (a) the application developer and (b) the
infrastructure provider.

Consider the scenario of a developer deploying the KVS ap-
plication on a shared cloud infrastructure. How should they
choose and justify an isolation mechanism? They would care
about the Trusted Computing Base (TCB), i.e., the parts of the
system that can crash (kill) or stall their application, the parts
that have access (read or write) to their application’s data,
and those that provide system services for the application.
For example, when running in a container, the TCB includes
the host kernel, orchestration middleware (e.g., Kubernetes),
and other containers that can exhaust shared resources and
disrupt the application [35, 51, 72, 73].

In contrast, cloud providers focus on the Impact Boundary
(IB), the potential damage a malicious application can wreak.

Comparing Isolation Mechanisms with OSmosis

For instance, can it crash the kernel [1], bring down the
hypervisor [20, 22], or escalate privileges to take over the
infrastructure [21, 37]? We formally define both TCB and IB
in Sec. 4, and link them to existing notions of confidentiality,
integrity, and availability.

2.2 Challenges

Determining the TCB and IB of the different configurations
is challenging for several reasons.

C1: Multiple implementations of the mechanisms:
Multiple implementations often exist for the same isolation
mechanism, making it hard to define exactly what isolation
each provides. This challenge persists across mechanisms,
such as containers, virtual machines, and intra-address space
isolation mechanisms.

‘Containers’ come in many forms, e.g., Docker, Apptainer,
Podman, Kata Containers, but lack a consistent definition.
As a result, it is unclear which resources are shared in each
case [39]. For example, Docker supports two modes: regu-
lar [5] and rootless [14]. Regular mode uses a centralized
daemon with root privileges to manage namespaces [10],
cgroups [3], and overlay file systems [9]. This shared dae-
mon introduces privilege escalation risks. Rootless mode
mitigates these risks by letting users run both the daemon
and containers without root privileges. Apptainer [2], un-
like Docker, runs containers as the invoking user and avoids
a centralized daemon. This reduces the attack surface and
simplifies integration in multi-user environments. However,
both Docker and Apptainer rely on kernel namespaces, so
they share the host kernel with other containers. In contrast,
Kata Containers [59] use hardware virtualization, avoiding
namespace-related risks as they do not share the kernel.

The presence or absence of a centralized daemon changes
the TCB of each mechanism, while differences in the way
they share resources affect their IB. Newer implementations
for emerging use cases [6, 19, 70] introduce further subtle
variations, complicating comparisons even more.

C2: Correct mechanism configuration: Isolation mech-
anisms often have configuration options that can be set prior
to execution. Even a specific implementation such as Docker
has configuration parameters that change the isolation guar-
antees it provides. For example, it is common for Docker
containers to be configured such that they share files (e.g.,
environment configurations) to enable access to the Docker
daemon from inside the container [53, 56], allowing unin-
tended interaction between containers. A class of path mis-
resolution vulnerabilities, such as symlink resolution cheat-
ing and inducing illegal file execution, arise due to incorrect
configuration of file sharing between containers [47]. While
mechanisms come with default configurations, even minor
changes can significantly impact their TCB and IB.

Takeaways: Isolation mechanisms, the implementation
variants of a mechanism, and their deployment configura-
tions differ in subtle ways. This makes it hard for developers

PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea

System Graph :- { nodes:Set<Node>, edges:Set<Edge> }
Node :- ProtectionDomain | Resource(ResourceType)
| ResourceSpace (ResourceType)

Edge :- (Node, Node, EdgeType, Set<EdgeAttribute>)
EdgeType :- Hold | Map | Request | Subset
EdgeAttribute :- ResourceType | Permissions
ResourceType :- Virtual Addr | DRAM Page

| Page Quota | File | Directory
Permissions :- Read | Write | Execute | Terminate

Listing 1. OSmosis Isolation Model

to understand the isolation guarantees isolation mechanisms
provide, pushing developers to rely on ad-hoc methods to
choose a mechanism for their deployment [29, 44, 71]. This
lack of a principled approach leads to unpleasant surprises,
such as runtime performance anomalies, and vulnerabilities
affecting confidentiality, availability, and integrity [39].

3 OSmosis Model

We present the OSmosis model to precisely describe the cur-
rent state of a system in terms of its protection domains,
resources and their relationships.

3.1 Design Goals

The first design goal of the OSmosis model is to express
and reason about sharing of resources between protection
domains. The state of most real-world systems can change
at runtime, e.g., by creating a process or sharing a page. We
design OSmosis to represent a static snapshot of the system
at a given point in time. Each variation of a system’s state
can be represented with a different instance of the model.

The second design goal is to express and reason about the
implications of a system’s sharing profile on availability. The
model achieves that by modeling hard quotas and allocation
limits, which are common mechanisms to prevent resource
exhaustion. However, we must maintain a balance between
the precision of the model and its usability. Thus, we do
not express soft policies for resource allocation, allowed
information flow, or cleanup strategies.

3.2 Model Definition

OSmosis models the system as a graph. Listing 1 shows the
model definition, and Fig. 2 illustrates how the model ex-
presses a process in a UNIX-like OS.

3.2.1 Nodes: The graph has three types of nodes. Protec-
tion domains (PDs) correspond to an execution context, such
as a process, container or virtual machine. Fig. 2 shows
a ‘Process’ and a ‘Kernel’ PD as elongated hexagons. Re-
source spaces provide pools for resource allocations, e.g., a
virtual address space, DRAM pages, or cgroups [3]. Fig. 2
shows two resource spaces: ‘virtaddr:1’ and ‘DRAM:0’ as
rounded rectangles. Resources are passive entities, such as

PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea

a virtual page (virtaddr), DRAM page, or file. Fig. 2 shows
a "virtaddr:code" resource in an oval node. Historically,
these are called objects [45, 63]. Resource and resource space
nodes have a type defining the kind of resource they rep-
resent. Fig. 2 shows resources and resource-spaces of type
virtaddr and DRAM.

3.2.2 Edges: There are four kinds of edges. Hold-edges in-
dicate that a PD currently holds rights over a resource (e.g.,
‘Process’ holds two virtual pages in Fig. 2), can allocate from
or change a resource space (e.g., ‘Kernel’ can allocate from
‘DRAM:0’), or controls another PD (e.g., ‘Kernel’ can termi-
nate ‘Process’). Request-edges between PDs signify that the
source PD can request resources of specific types from the
destination PD (e.g., a process can call mmap() to request
virtual memory i.e., resource type virtaddr from the kernel
in Fig. 2). Subset-edges indicate from which resource space a
resource is allocated (e.g., in Fig. 2 the virtual pages for code
and heap indicated by virtaddr:code and virtaddr:heap
are part of the virtual address space virtaddr:1). All resource
nodes must have the same type as the resource space from
which they are allocated. Map-edges connect two resource
nodes or two resource space nodes. A map-edge from one
resource to another expresses either a fixed mapping deter-
mined by the system topology (e.g., how a DRAM address
maps to cache sets) or a dynamically created one (e.g., the
code page maps to a DRAM page in Fig. 2), A map-edge from
one resource space to another indicates that resources from
the source map to resources from the destination (e.g., ‘virt-
addr:1’ maps to ‘DRAM:0’ in Fig. 2).

3.2.3 Edge Attributes: Some edges carry attributes.
Resource Type: Request-edges have a type specifying what
resources a PD can request. Fig. 2 shows the ‘virtaddr’
attribute on the request-edge between ‘Process’ and ‘Kernel’.
Listing 1 shows the resource types discussed in this paper,
but the model generalizes to other types of resources.
Permission: Hold-edges have permissions indicating what
a PD can do with a resource or another PD (e.g., in Fig. 2,

DRAM: Protection

Page1 Page Domain

Resource
Space

Subset

Process
H

RX

aleujwia}

Map
——p Hold
o Kemel 1 e » Request

Figure 2. OSmosis model graph for process and kernel PDs
in a UNIX-like OS. The process’s code and heap consist of
a single page. The request-edge allows the process to ask
for additional virtual memory resources (of type virtaddr)
from the kernel. For simplicity, we exclude the process data
segment and most OS resources.

Agrawal, et al.

‘Process’ has read and execute permissions on the code page,
and ‘Kernel has the permission to terminate ‘Process’).

3.3 Model Invariants

Graphs must satisfy invariants to be valid OSmosis models.
This is to ensure that OSmosis models represent only systems
that are meaningful and instantiable.

e Resource nodes must connect to a resource space of the
same type via a subset edge and must be reachable from a
PD via hold edge.

e Resource space nodes must be reachable from a PD node
via a hold edge.

o Request edges exist only between two PD nodes, and their
resource types must exist in the graph.

o Hold edges originate at a PD node.

e Map edges exist only between two resource nodes or be-
tween two resource space nodes.

e A map edge between two resource nodes exists only if
their corresponding resource spaces are also connected by
a map edge.

4 Applying the Model

The results of querying the model enable reasoning about
isolation and sharing with different mechanisms. We first
describe a parameterized breadth-first search (BFS, Sec. 4.1)
that constitutes our fundamental query building block. We
then show how BFS queries compose into larger OSmosis
queries that identify interactions between PDs in terms of
confidentiality, integrity, and availability (Sec. 4.2). Finally,
we show how OSmosis queries compute the TCB and IB of a
protection domain (Sec. 4.3).

4.1 The OSmosis Query Building Block

The parameterized BFS on an OSmosis graph starts from
a PD, and produces a complete picture of the resources,
resource spaces, and other PDs with which PD, interacts.
Depending on the question we want to answer, we may
limit the traversal based on EdgeTypes (e.g., request-edge
to a PD that provides resources), EdgeDirection (e.g., tra-
verse request-edges in reverse to find which PDs request
resources from PD,), AccessMode (e.g., permission on hold-
edge), and Depth (e.g., oo for a full BFS or 1 for a neighbor-
hood query). Sometimes, we also want to filter the results
based on NodeType (e.g., to find either PDs, resources, or
resource-spaces) or ResourceType (e.g., to identify all mem-
ory resources accessible to a PD). Our BFS primitive takes
parameters for each of these traversal and filtering criteria:
BFS(PD,, EdgeTypes, EdgeDirection, AccessMode,
Depth, NodeTypes, ResourceTypes)

4.2 Identifying PD interactions

We now illustrate how the BFS query identifies the PDs that
affect a given PD’s confidentiality, integrity, and availability.

Comparing Isolation Mechanisms with OSmosis

4.2.1 Shared Resources: PDs that can access the same
resources as PDy, either directly or indirectly through map-
pings, can compromise PD,’s confidentiality (if they have
read access) or integrity and availability (with write access).
We compute this set of PDs by iteratively intersecting the
results of two BFS traversals following only hold-edges and
map-edges, one starting at PD, and one at PD; for i over all
PDs of the system. The result of each intersection is a set of re-
sources. If this set is non-empty, then PD; has access to some
of the resources of PD,., and we add PD; to the final result set.
SharedResources(PD,, ResourceTypes, AccessMode) =
{ PD; | PD; # PDyx A (
BFS(PDy, {hold, map}, fwd, ANY, oo, {Resource},
ResourceTypes)
N BFS(PD;, {hold, map}, fwd, AccessMode, oo,
{Resource}, ResourceTypes) #0) }

4.2.2 PD Control: A PD can control the execution of an-
other PD. For example, the kernel PD can suspend or ter-
minate a process PD, hence affecting the availability of the
process PD. The OSmosis model expresses this as hold-edges
between PDs, so we can find the set of relevant PDs using
BFS traversal on the hold-edges to PD nodes.

CanControl(PD,) = BFS(PDy,{hold}, fwd, ANY, 1,{PD}, ANY)
ControlBy(PD,) = BFS(PD;,{hold}, rev, ANY, 1,{PD}, ANY)

4.3 Trusted Computing Base and Impact Boundary

We provide a definition of TCB from the literature and then
show how we can define the TCB using the OSmosis model
and the queries we just defined. Finally, we define the impact
boundary (IB) of a PD that quantifies how much a PD can
affect other PDs.

4.3.1 Trusted Computing Base (TCB). There exist sev-
eral definitions of TCB [46, 62, 64, 69]. We follow Miller’s
definition [55] of the TCB of PD, as its “reliance set”, i.e., all
the PDs on which PD, relies for its own correct behavior.
A PD “relying” on another is vague. We make it precise by
defining the reliance set of a PD, as the set of PDs that can
violate the confidentiality, integrity or availability of PDj.
We combine the OSmosis queries to compute the TCB.

TCB(PDy, types, mode) = SharedResources(PDy, types, mode)

U CanControl(PDy)

This definition can be specialized to specific resource types

and access modes.

4.3.2 Impact Boundary (IB). A faulty or malicious PDy
can violate the confidentiality, integrity, and availability of
other PDs in the system, and those PDs comprise the IB of
PD,.. We again use Miller’s reliance set to define a PD’s IB.
The only difference is that we want the PDs controlled by
PD, rather than those that can control PDy, so computing IB
is nearly identical to computing TCB. We combine OSmosis
queries to compute the IB. As with the TCB, we can also
specialize the IB by limiting the resource types.

PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea

IB(PDy, types, mode) = SharedResources(PDy, types, mode)
U ControlBy(PDxy)

There are other ways a PD can interact with other PDs
that affects its confidentiality, integrity, and availability. We
discuss these interactions and how to extend TCB and IB to
account for them in Sec. 7.

5 OSmosis Evaluation

We show that OSmosis model is 1) practical and 2) expressive.

For 1) we build LinTool, a Python script that extracts rele-
vant information (e.g., user permissions, signals, Linux capa-
bilities [60]) from the /proc system. LinTool demonstrates
that production-grade operating systems such as Linux al-
ready maintain the information needed to construct the OS-
mosis model and that this information can be accessed from
user-space without requiring any kernel modifications. Lin-
Tool models processes as PDs and the kernel as a special
PD, PDy. We add a hold-edge from a PD, to PD,, if the cor-
responding process x can send a signal (e.g., SIGKILL) to
process y. We add a hold-edge with its corresponding per-
missions from a PDy to a resource Ry (e.g., file) if a process
x can access the resource Ry. LinTool uses the networkx
Python package [11] to maintain and query the graphs. The
parameterized Bread First Search (BFS) query from Sec. 4.1
is written as a networkx BFS function, which is in turn used
to construct the TCB and IB functions in Python. We run
LinTool on an Intel Xeon W-2275 with 14 cores with hyper-
threading enabled and 128 GB RAM. The host OS is Ubuntu
24.04 with kernel v6.5. 3.

For 2), we compare processes and four container variants.
We show that we can use the model queries to answer two
non-trivial questions about scenarios involving different con-
tainer implementations (Sec. 5.1). Specifically:

e In what scenarios can PDs control each other? (Sec. 5.2)
e How are resources shared? (Sec. 5.3)

5.1 Evaluation Scenario Setup

We compare five scenarios from Sec. 2 using standard pro-
cesses, Apptainer [2], Podman [19], and Docker (regular and
rootless) [14]. PDapp and PDkys communicate via GRPC [18].
We built minimal images for each scenario and launched
them with default commands. In each setup, we deployed
both PDs and used LinTool to extract model graphs. Since
each setup runs a full Linux environment, LinTool captures
hundreds of processes. We focus only on subgraphs con-
nected to the PDs of interest.

We compare each mechanism’s TCB and IB as defined in
Sec. 4.3. Recall that TCB and IB use two sub-queries. As sub-
queries yield identical results, we highlight only those that
show differences. Thus, figures in these sections show partial
model graphs—limited to nodes and edges relevant to the
varying confidentiality, integrity, or availability properties.

PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea

Agrawal, et al.

Protection
Domain

L PDyys ; PDapp : PDyvs PDapp

Apptainer/ Process

—p Hold

Protection
Domain
Docker W

Daemon PD.

Docker Regular / Docker Rootless / Podman
Docker Regular

Podman

PDUSGFDFOC. Pl DLmux.

Process / Apptainer

ey | oocier |

CanControl(PDyys) ~ PDpp, PDiinux ~ PDpp, PDuser-proc, PDyser-proc, PDLinux,
PDyinu
ControlBy(PDyys) (4] (1) PDyser-proc

Docker Rootless

—— Hold
° /Podman

Query Apptainer /
Process

SharedResources(PDyys, {dir-resource}, {R, W}) PDppp [0)

Figure 4. OSmosis graphs showing differences in the direc-
tory resource sharing for five isolation mechanisms on Linux.
The table shows the differences in TCB and IB for PDgys
in these scenarios that arise when comparing results of the
9 “SharedResources” query.

Figure 3. OSmosis graphs showing the results of the “Can-

Control” and “ControlBy” queries, highlighting the relevant
hold-edges between PDs. Processes and Apptainer are identi-
cal and shown together on the bottom left. PDpp represents
the Docker Daemon. Colored edges highlight the differences
between mechanisms across the columns in the same row.

5.2 How PDs control each other

Fig. 3 shows which PDs can control each other (by virtue of
having hold-edges) to affect availability in the five scenar-
ios. The extra PDpp in the top row corresponds to Docker’s
daemon process; Apptainer and Podman do not have a dae-
mon process (bottom row). In Docker’s regular mode (top
left), the hold-edge from PDpp to PDyinyx (the kernel) indi-
cates that a compromise in the Docker daemon (which runs
with root privileges and has CAP_SYS_BOOT capability) can
affect the kernel. In contrast, the absence of such an edge
from PDpp to PDpny (top right) indicates that the (non-root)
Docker daemon has a lower impact on the kernel in Docker’s
rootless mode. In Docker’s regular mode (top left), the edges
from PDpp to PDapp, PDxys, and “user process” indicate that
the Docker daemon controls the App and KVS containers
in addition to all the users’ processes. In Docker’s rootless
mode (top right), the daemon controls only the containers it

started, not all users’ processes.

Broadening our discussion to Apptainer and Podman (bot-
tom row), the hold-edges from “user process” to PDpp, and

Takeaway: OSmosis graphs clearly illustrate how adding
a daemon that runs as root increases the IB. The daemon-
less mechanisms and Docker rootless mode have less impact
on the host kernel compared to Docker regular mode. In
contrast, processes and containers can directly impact each
other in all modes except Docker regular mode.

5.3 How resources are shared

There are many resources in each isolation mechanism. In
the interest of space, we focus on discussing the filesystem
directory resource, which illustrates key differences in con-
tainer configurations. Fig. 4 (left) shows that both Apptainer
instances and standard processes share directories of the
same user, because the user’s home directory is shared with
the container by default. Docker and Podman (right) con-
tainer instances do not share the home directory by default,
although changing configuration options allows for the cre-
ation of the shared directory setup of Apptainer.
Takeaway: With Apptainer and a standard process isolation
mechanism, all processes of the same user appear in the TCB
and IB of PDgys for file resources; thus, they can violate the
confidentiality and integrity of the KVS.

Both observations match the recommendations of con-
tainer security blog posts [29, 71] and prior academic stud-
ies [39]. This shows that OSmosis graphs are expressive
enough to extract useful, non-trivial differences between
container technologies.

PDgys in Docker rootless, Process/Apptainer, and Podman

indicate that the App and KVS containers can be killed by
any process running as the user running the containers.
In contrast, the absence of these edges in Docker’s regular
mode indicates that the user’s other processes cannot kill
the containers in this configuration. Unlike with Docker and
Podman, when the App and KVS are run as either Apptainer
containers or standard processes, they can also kill other
processes of the same user (indicated by blue hold-edges in
the bottom left). The same is impossible in the other config-
urations, because the containers in these mechanisms run in

separate PID namespaces.

6 Related Work

Modeling operating systems has been an active area of re-
search since the 1970s. The proposed models vary based on
the question they are intended to answer. Our model is heav-
ily inspired by the models built to answer questions about
protection in an operating system [27, 28, 32, 38, 45, 46, 48,
49, 55, 61, 63, 65] as well as the models built specifically to
verify operating systems [23, 62, 67]. Our model adopts the
ideas of protection-domains (aka principals) and resources
(aka objects) that appear in all prior models. However, we
add the notion of mappings, which let us obtain a closure of

Comparing Isolation Mechanisms with OSmosis

all the resources accessible to a protection domain. Models
for verification often focus exclusively on tangible resources
(e.g., physical memory), whereas OSmosis also models ab-
stract resources (e.g., file, quota). Sockeye [33, 34] creates
a model expressing which resources can be accessed from
which cores. It explicitly models who can change the config-
uration of the memory hardware, e.g., by writing to the page
tables. This corresponds to changing map-edges in the OS-
mosis Graph. Similar to models built for verification, Sockeye
focuses primarily on physical memory resources, whereas
OSmosis also considers other resources (e.g., virtual memory,
page quota, files, directories). Tracking information flow [32]
is out of scope for us, so if a resource is shared, we assume
that information flow can happen through it.

Prior work has presented approaches that compare pro-
tection for a subset of the information we track [30, 69]. For
instance, Liang et al. [30] compare access control mecha-
nisms across different operating systems. While similar in
motivation to our work, we focus on comparing different iso-
lation mechanisms in their entirety, which includes resource
quota isolation and hierarchical protection domains.

Our definitions for TCB and IB are grounded in Miller’s
[55] definition of “reliance set”. We add precision to the no-
tion of “a PD being vulnerable to another PD,” by identifying
CIA violations by composing OSmosis queries. This compo-
sition also allows the user to define a narrower definition of
TCB, containing only PDs enforcing specific policies [64, 69].
Our approach of using the flexible definitions of TCB and
IB to compare the mechanisms is rooted in the different
concerns of the developer and the infrastructure provider.

7 Future Work

Extending TCB and IB with other interactions: PDs
can affect each other in three major ways apart from the
interactions we already discussed: (1) by being the PD that
is managing a resource used by another PD (i.e., being a re-
source server), (2) by sharing a resource server (3) by sharing
aresource space with another PD. The TCB and IB definitions
can be easily extended to capture these interactions.

Enhancing LinTool: Our current implementation of Lin-
Tool extracts information related only to a process’ ability
to send signals and its access to file system resources. It
can be extended by adding information from other subsys-
tems (e.g., networking) and resource control mechanisms
(e.g., cgroups [3], seccomp [15], SELinux [16]), allowing us
to compare more mechanisms such as VMMs.

OSmosis focused OS: Linux-based tools can only approx-
imate the OSmosis model, as no single source provides a com-
plete system view. A capability-based kernel (e.g., seL4 [17],
Barrelfish [26], Genode [8]) could enable direct extraction of
the full OSmosis model, since capabilities explicitly record
rights and interactions, simplifying graph construction.

PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea

Design Space Exploration: OSmosis provides a way to
express isolation mechanisms as graphs. By exploring dif-
ferent graph structures and edge attributes, we can explore
the design space of isolation mechanisms. As the number of
possible graphs is practically infinite, we need a way to set
meaningful starting points (e.g., an existing mechanism) and
termination strategies (desired TCB and IB).

8 Conclusion

The lack of a principled way to express the level of isolation
and sharing between different OS abstractions and isola-
tion mechanisms makes comparing them challenging. We
present the OSmosis model, which lets us precisely state
what resources are shared between applications. This lets us
compare and reason about the explicit and implicit sharing
between applications in a principled way using TCB and
IB. Our analysis on Linux showed that we can extract use-
ful instances of the OSmosis model and uncover non-trivial
differences between container technologies.

References
(1

—

[n.d.]. All Linux CVEs. https://cve.mitre.org/cgi-bin/cvekey.cgi?

keyword=linux [Accessed 10-09-2025].

[2] [n.d.]. Apptainer User Guide. https://apptainer.org/docs/user/main/.

[Accessed 10-09-2025].

[n.d.]. cgroups(7) - Linux manual page. https://man7.org/linux/man-

pages/man7/cgroups.7.html [Accessed 10-09-2025].

[4] [n.d.]. clone(2) - Linux manual page. https://man7.org/linux/man-
pages/man2/clone.2.html [Accessed 10-09-2025].

[5] [n.d.]. Docker. https://docs.docker.com/ [Accessed 10-09-2025].

[6] [n.d.]. Firejail Security Sandbox. https://firejail.wordpress.com/. [Ac-
cessed 10-09-2025].

[7] [n.d.]. FreeBSD Manual Pages: jail. https://www.freebsd.org/cgi/man.
cgi?jail [Accessed 10-09-2025].

[8] [n.d.]. Genode Operating System Framework. https://genode.org/
[Accessed 10-09-2025].

[9] [n.d.]. The Linux Kernel documentation: Overlay Filesystem. https:
//docs.kernel.org/filesystems/overlayfs.html. [Accessed 10-09-2025].

[10] [n.d.]. namespaces(7) — Linux manual page. https://man7.org/linux/
man-pages/man7/namespaces.7.html [Accessed 10-09-2025].

[11] [n.d.]. NetworkX: Network Analysis in Python. https://networkx.org/.
[Accessed 18-04-2025].

[12] [n.d.]. OpenVZ Container. https://wiki.openvz.org/Container [Ac-
cessed 10-09-2025].

[13] [n.d.]. Oracle Solaris Information Library: zones(5).
https://docs.oracle.com/cd/E36784_01/html/E36883/zones-
5.htmI#REFMAN5zones-5 [Accessed 10-09-2025].

[14] [n.d.]. Rootless mode. https://docs.docker.com/engine/security/
rootless [Accessed 10-09-2025].

[15] [n.d.]. SecComp BPF Secure Computing with filters. https://www.
kernel.org/doc/html/v5.0/userspace-api/seccomp_filterhtml. [Ac-
cessed 10-09-2025].

[16] [n.d.]. SELinux(8) - Linux manual page. https://man7.org/linux/man-
pages/mang/selinux.8.html. [Accessed 10-09-2025].

[17] [n.d.]. The seL4 Microkernel. https://sel4.systems/ [Accessed 10-09-
2025].

[18] [n.d.]. What is gRPC? Core concepts, architecture and lifecycle. https:
//grpc.io/docs/what-is-grpc/core-concepts/. [Accessed 10-09-2025].

[19] [n.d.]. What is Podman? https://docs.podman.io/en/latest/index.html.

[Accessed 10-09-2025].

E

—

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux
https://apptainer.org/docs/user/main/
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man2/clone.2.html
https://man7.org/linux/man-pages/man2/clone.2.html
https://docs.docker.com/
https://firejail.wordpress.com/
https://www.freebsd.org/cgi/man.cgi?jail
https://www.freebsd.org/cgi/man.cgi?jail
https://genode.org/
https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://networkx.org/
https://wiki.openvz.org/Container
https://docs.oracle.com/cd/E36784_01/html/E36883/zones-5.html#REFMAN5zones-5
https://docs.oracle.com/cd/E36784_01/html/E36883/zones-5.html#REFMAN5zones-5
https://docs.docker.com/engine/security/rootless
https://docs.docker.com/engine/security/rootless
https://www.kernel.org/doc/html/v5.0/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v5.0/userspace-api/seccomp_filter.html
https://man7.org/linux/man-pages/man8/selinux.8.html
https://man7.org/linux/man-pages/man8/selinux.8.html
https://sel4.systems/
https://grpc.io/docs/what-is-grpc/core-concepts/
https://grpc.io/docs/what-is-grpc/core-concepts/
https://docs.podman.io/en/latest/index.html

PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea

[20] 2019. CVE-2019-19332. https://www.cve.org/CVERecord?id=CVE-
2019-19332 [Accessed 10-09-2025].

[21] 2021. CVE-2021-22543. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=2021-22543 [Accessed 10-09-2025].

[22] 2021. CVE-2021-43056. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-43056 [Accessed 10-09-2025].

[23] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.
2018. Physical Addressing on Real Hardware in Isabelle/HOL. In
Interactive Theorem Proving, Jeremy Avigad and Assia Mahboubi (Eds.).
Springer International Publishing, Cham, 1-19.

[24] Markuze Alex, Shay Vargaftik, Gil Kupfer, Boris Pismeny, Nadav Amit,
Adam Morrison, and Dan Tsafrir. 2021. Characterizing, exploiting,
and detecting DMA code injection vulnerabilities in the presence
of an IOMMU. In Proceedings of the Sixteenth European Conference
on Computer Systems (Online Event, United Kingdom) (EuroSys ’21).
Association for Computing Machinery, New York, NY, USA, 395-409.
doi:10.1145/3447786.3456249

[25] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the art of virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (Bolton Landing, NY, USA)
(SOSP °03). Association for Computing Machinery, New York, NY, USA,
164-177. doi:10.1145/945445.945462

[26] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and

Akhilesh Singhania. 2009. The multikernel: a new OS architecture for

scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles (Big Sky, Montana, USA)

(SOSP °09). Association for Computing Machinery, New York, NY, USA,

29-44. doi:10.1145/1629575.1629579

D Elliott Bell and Leonard J LaPadula. 1973. Secure computer systems:

Mathematical foundations. Technical Report.

Matt Bishop. 1981. Hierarchical Take-Grant Protection systems. In Pro-

ceedings of the Eighth ACM Symposium on Operating Systems Principles

(Pacific Grove, California, USA) (SOSP ’81). Association for Computing

Machinery, New York, NY, USA, 109-122. doi:10.1145/800216.806598

Davis Catherman. 2022. Why you should use Apptainer.

https://medium.com/@dcat52/why-you-should-use-apptainer-

21ef1fe7e0bb. [Accessed 10-09-2025].

Liang Cheng, Yang Zhang, and Zhihui Han. 2013. Quantitatively

measure access control mechanisms across different operating systems.

In 2013 IEEE 7th International Conference on Software Security and

Reliability. IEEE, 50-59.

Fernando J. Corbatd, Marjorie Merwin-Daggett, and Robert C. Daley.

1962. An experimental time-sharing system. In Proceedings of the May

1-3, 1962, Spring Joint Computer Conference (San Francisco, California)

(AIEE-IRE ’62 (Spring)). Association for Computing Machinery, New

York, NY, USA, 335-344. doi:10.1145/1460833.1460871

Dorothy E. Denning. 1976. A lattice model of secure information flow.

Commun. ACM 19, 5 (May 1976), 236-243. doi:10.1145/360051.360056

[33] Ben Fiedler, Roman Meier, Jasmin Schult, Daniel Schwyn, and Timothy

Roscoe. 2023. Specifying the de-facto OS of a production SoC. In Pro-

ceedings of the 1st Workshop on Kernel Isolation, Safety and Verification

(Koblenz, Germany) (KISV °23). Association for Computing Machinery,

New York, NY, USA, 18-25. doi:10.1145/3625275.3625400

Ben Fiedler, Daniel Schwyn, Constantin Gierczak-Galle, David Cock,

and Timothy Roscoe. 2023. Putting out the hardware dumpster fire.

In Proceedings of the 19th Workshop on Hot Topics in Operating Sys-

tems (Providence, RI, USA) (HotOS ’23). Association for Computing

Machinery, New York, NY, USA, 46-52. doi:10.1145/3593856.3595903

Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and Cong Wang.

2019. Houdini’s Escape: Breaking the Resource Rein of Linux Control

Groups. In Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security (London, United Kingdom) (CCS ’19).

[27

—

[28

[t

[29

—

(30

—

[31

—

(32

—

(34

=

(35

—

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Agrawal, et al.

Association for Computing Machinery, New York, NY, USA, 1073-1086.
doi:10.1145/3319535.3354227

Xiling Gong, Peter Pi, and Tencent Blade Team. 2019. Exploit-
ing Qualcomm WLAN and Modem Over the Air. Technical Re-
port. https://i.blackhat.com/USA-19/Thursday/us-19-Pi-Exploiting-
Qualcomm-WLAN-And-Modem-Over-The-Air-wp.pdf [Accessed
10-09-2025].

Google Project Zero. 2021. Project Zero: An EPYC Escape: Case-study
of a KVM breakout. https://googleprojectzero.blogspot.com/2021/06/
an-epyc-escape-case-study-of-kvm.html [Accessed 10-09-2025].

G. Scott Graham and Peter J. Denning. 1971. Protection: principles and
practice. In Proceedings of the May 16-18, 1972, Spring Joint Computer
Conference (Atlantic City, New Jersey) (AFIPS '72 (Spring)). Association
for Computing Machinery, New York, NY, USA, 417-429. doi:10.1145/
1478873.1478928

Md Sadun Haq, Thien Duc Nguyen, Ali Saman Tosun, Franziska
Vollmer, Turgay Korkmaz, and Ahmad-Reza Sadeghi. 2024. SoK: A
Comprehensive Analysis and Evaluation of Docker Container Attack
and Defense Mechanisms. In Proceedings of the 2024 IEEE Symposium on
Security and Privacy (S&P’24). IEEE, 4573-4590. doi:10.1109/SP54263.
2024.00268

Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Math-
ias Payer. 2016. Enforcing Least Privilege Memory Views for Multi-
threaded Applications. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’16). Association
for Computing Machinery. doi:10.1145/2976749.2978327

Yuzhuo Jing and Peng Huang. 2022. Operating System Support for
Safe and Efficient Auxiliary Execution. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation
(0OSDI'22). USENIX Association. https://www.usenix.org/conference/
osdi22/presentation/jing

Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic.
2023. Function as a Function. In Proceedings of the 2023 ACM Sym-
posium on Cloud Computing (SoCC ’23). Association for Computing
Machinery, New York, NY, USA, 81-92. doi:10.1145/3620678.3624648
Simon Kuenzer, Vlad-Andrei Biadoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Stefan Teodorescu, Costi Rdducanu, Cristian Banu, Laurent Mathy,
Rézvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft:
Fast, Specialized Unikernels the Easy Way. In Proceedings of the
Sixteenth European Conference on Computer Systems (Online Event,
United Kingdom) (EuroSys °21). Association for Computing Machinery.
doi:10.1145/3447786.3456248

Rakesh Kumar and B Thangaraju. 2020. Performance Analysis Be-
tween RunC and Kata Container Runtime. In Proceedings of the 2020
IEEE International Conference on Electronics, Computing and Communi-
cation Technologies (CONECCT’20). doi:10.1109/CONECCT50063.2020.
9198653

Butler W. Lampson. 1974. Protection. ACM SIGOPS Operating Systems
Review 8, 1 (jan 1974), 18-24. doi:10.1145/775265.775268

Hugo Lefeuvre, Nathan Dautenhahn, David Chisnall, and Pierre Olivier.
2025. SoK: Software Compartmentalization. In Proceedings of the 2025
IEEE Symposium on Security and Privacy (S&P’25). IEEE Computer
Society, Los Alamitos, CA, USA. doi:10.1109/SP61157.2025.00075
Zhi Li, Weijie Liu, XiaoFeng Wang, Bin Yuan, Hongliang Tian, Hai
Jin, and Shoumeng Yan. 2023. Lost along the Way: Understanding
and Mitigating Path-Misresolution Threats to Container Isolation. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (Copenhagen, Denmark) (CCS °23). Asso-
ciation for Computing Machinery, New York, NY, USA, 3063-3077.
doi:10.1145/3576915.3623154

J. Liedtke. 1995. On micro-kernel construction. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles (Copper
Mountain, Colorado, USA) (SOSP ’95). Association for Computing

https://www.cve.org/CVERecord?id=CVE-2019-19332
https://www.cve.org/CVERecord?id=CVE-2019-19332
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-22543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-22543
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43056
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43056
https://doi.org/10.1145/3447786.3456249
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/800216.806598
https://medium.com/@dcat52/why-you-should-use-apptainer-21ef1fe7e0bb
https://medium.com/@dcat52/why-you-should-use-apptainer-21ef1fe7e0bb
https://doi.org/10.1145/1460833.1460871
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/3625275.3625400
https://doi.org/10.1145/3593856.3595903
https://doi.org/10.1145/3319535.3354227
https://i.blackhat.com/USA-19/Thursday/us-19-Pi-Exploiting-Qualcomm-WLAN-And-Modem-Over-The-Air-wp.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Pi-Exploiting-Qualcomm-WLAN-And-Modem-Over-The-Air-wp.pdf
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-kvm.html
https://doi.org/10.1145/1478873.1478928
https://doi.org/10.1145/1478873.1478928
https://doi.org/10.1109/SP54263.2024.00268
https://doi.org/10.1109/SP54263.2024.00268
https://doi.org/10.1145/2976749.2978327
https://www.usenix.org/conference/osdi22/presentation/jing
https://www.usenix.org/conference/osdi22/presentation/jing
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1109/CONECCT50063.2020.9198653
https://doi.org/10.1109/CONECCT50063.2020.9198653
https://doi.org/10.1145/775265.775268
https://doi.org/10.1109/SP61157.2025.00075
https://doi.org/10.1145/3576915.3623154

Comparing Isolation Mechanisms with OSmosis

[49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

[57

—

(58]

(59

—

[60]

(61]

(62]

Machinery, New York, NY, USA, 237-250. doi:10.1145/224056.224075
R.]J. Lipton and L. Snyder. 1977. A Linear Time Algorithm for Deciding
Subject Security. . ACM 24, 3 (July 1977), 455-464. doi:10.1145/322017.
322025

James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In Proceed-
ings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI'16). https://dl.acm.org/doi/10.5555/3026877.
3026882

Congyu Liu, Sishuai Gong, and Pedro Fonseca. 2023. KIT: Testing OS-
Level Virtualization for Functional Interference Bugs. In Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 427-441. doi:10.1145/3575693.3575731

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems
for the Cloud. In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS’13). Association for Computing Machinery, 461-472.
do0i:10.1145/2490301.2451167

Rory McCune. 2016. The Dangers of Docker.sock. https://raesene.
github.io/blog/2016/03/06/The-Dangers-Of-Docker.sock/ [Accessed
10-09-2025].

R. A. Meyer and L. H. Seawright. 1970. A virtual machine time-sharing
system. IBM Systems Journal 9, 3 (Sept. 1970), 199-218. doi:10.1147/s;j.
93.0199

Mark Samuel Miller. 2006. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. Ph. D. Dissertation.
Johns Hopkins University, Baltimore, Maryland, USA.
OscarAkaElvis. 2018. How can I call docker daemon of the host-
machine from a container? https://stackoverflow.com/questions/
48152736/how-can-i-call-docker-daemon-of-the-host-machine-
from-a-container [Accessed 10-09-2025].

Palo Alto Networks. 2024. The State of Cloud-Native Security. https:
//www.paloaltonetworks.com/apps/pan/public/downloadResource?
pagePath=/content/pan/en_US/resources/research/state-of-cloud-
native-security-2024 [Accessed 10-09-2025].

Qualys. 2024. The State of Cloud and SaaS Security Re-
port. https://cdn2.qualys.com/docs/mktg/qualys-state-of-cloud-and-
saas-security-report.pdf [Accessed 10-09-2025].

Alessandro Randazzo and Ilenia Tinnirello. 2019. Kata Containers: An
Emerging Architecture for Enabling MEC Services in Fast and Secure
Way. In 2019 Sixth International Conference on Internet of Things: Sys-
tems, Management and Security (IOTSMS). doi:10.1109/I0TSMS48152.
2019.8939164

RedHat. 2024. Linux Capabilities and Seccomp for Docker.
https://docs.redhat.com/en/documentation/red_hat_enterprise_
linux_atomic_host/7/html/container_security_guide/linux_
capabilities_and_seccomp#linux_capabilities. [Accessed 10-09-2025].
Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai Pandey,
Vasileios P. Kemerlis, Mathias Payer, Adam Bates, Jonathan M. Smith,
Andre DeHon, and Nathan Dautenhahn. 2021. uSCOPE: A Method-
ology for Analyzing Least-Privilege Compartmentalization in Large
Software Artifacts. In Proceedings of the 24th International Symposium
on Research in Attacks, Intrusions and Defenses (San Sebastian, Spain)
(RAID’21). Association for Computing Machinery, New York, NY, USA,
296-311. doi:10.1145/3471621.3471839

J. M. Rushby. 1981. Design and Verification of Secure Systems. In
Proceedings of the 8th ACM Symposium on Operating Systems Principles
(Pacific Grove, California, USA) (SOSP’81). Association for Computing
Machinery, New York, NY, USA, 12-21. doi:10.1145/800216.806586

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

PLOS ’25, October 13-16, 2025, Seoul, Republic of Korea

J.H. Saltzer and M.D. Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975), 1278-1308. doi:10.1109/
PROC.1975.9939

Jerome H. Saltzer and M. Frans Kaashoek. 2009. Principles of Computer
System Design: an Introduction (1st ed.). Morgan Kaufmann.
Pierangela Samarati and Sabrina Capitani de Vimercati. 2001. Access
Control: Policies, Models, and Mechanisms. In Foundations of Security
Analysis and Design, Riccardo Focardi and Roberto Gorrieri (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 137-196.

Vasily A Sartakov, Lluis Vilanova, David Eyers, Takahiro Shinagawa,
and Peter Pietzuch. 2022. CAP-VMs:Capability-Based Isolation and
Sharing in the Cloud. In Proceedings of the 16th USENLX Symposium
on Operating Systems Design and Implementation (OSDI’22). https:
//www.usenix.org/conference/osdi22/presentation/sartakov

Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June
Andronick, and Gerwin Klein. 2011. seL4 enforces integrity. In Proceed-
ings of the 2nd International Conference on Interactive Theorem Proving
(Berg en Dal, The Netherlands) (ITP’11). Springer-Verlag, Berlin, Hei-
delberg, 325-340.

Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay.
2016. Containers and Virtual Machines at Scale: A Comparative Study.
In Proceedings of the 17th International Middleware Conference (Trento,
Ttaly) (Middleware ’16). Association for Computing Machinery, New
York, NY, USA, Article 1, 13 pages. doi:10.1145/2988336.2988337

Rui Shu, Peipei Wang, Sigmund A Gorski III, Benjamin Andow, Adwait
Nadkarni, Luke Deshotels, Jason Gionta, William Enck, and Xiaohui
Gu. 2016. A Study of Security Isolation Techniques. ACM Comput.
Surv. 49, 3, Article 50 (Oct. 2016), 37 pages. doi:10.1145/2988545
Ariel Szekely, Adam Belay, Robert Morris, and M. Frans Kaashoek. 2024.
Unifying serverless and microservice workloads with SigmaOS. In
Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems
Principles (Austin, TX, USA) (SOSP ’24). Association for Computing
Machinery, New York, NY, USA, 385-402. doi:10.1145/3694715.3695947
David W. 2025. Rootless and Standard Docker: A Useful Compar-
ison. https://overcast.blog/rootless-and-standard-docker-a-useful-
comparison-6e07e19ab505. [Accessed 10-09-2025].

Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang, Kangjie Lu, Jietao
Xiao, Tianyu Zhou, Chenggang Qin, Wang Yu, Jianfeng Ma, and Kui
Ren. 2021. Demons in the Shared Kernel: Abstract Resource Attacks
Against OS-level Virtualization. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event,
Republic of Korea) (CCS 21). Association for Computing Machinery,
New York, NY, USA, 764-778. doi:10.1145/3460120.3484744

Yutian Yang, Wenbo Shen, Xun Xie, Kangjie Lu, Mingsen Wang, Tianyu
Zhou, Chenggang Qin, Wang Yu, and Kui Ren. 2022. Making Memory
Account Accountable: Analyzing and Detecting Memory Missing-
account bugs for Container Platforms. In Proceedings of the 38th An-
nual Computer Security Applications Conference (Austin, TX, USA)
(ACSAC ’22). Association for Computing Machinery, New York, NY,
USA, 869-880. doi:10.1145/3564625.3564634

https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/322017.322025
https://doi.org/10.1145/322017.322025
https://dl.acm.org/doi/10.5555/3026877.3026882
https://dl.acm.org/doi/10.5555/3026877.3026882
https://doi.org/10.1145/3575693.3575731
https://doi.org/10.1145/2490301.2451167
https://raesene.github.io/blog/2016/03/06/The-Dangers-Of-Docker.sock/
https://raesene.github.io/blog/2016/03/06/The-Dangers-Of-Docker.sock/
https://doi.org/10.1147/sj.93.0199
https://doi.org/10.1147/sj.93.0199
https://stackoverflow.com/questions/48152736/how-can-i-call-docker-daemon-of-the-host-machine-from-a-container
https://stackoverflow.com/questions/48152736/how-can-i-call-docker-daemon-of-the-host-machine-from-a-container
https://stackoverflow.com/questions/48152736/how-can-i-call-docker-daemon-of-the-host-machine-from-a-container
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/research/state-of-cloud-native-security-2024
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/research/state-of-cloud-native-security-2024
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/research/state-of-cloud-native-security-2024
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/research/state-of-cloud-native-security-2024
https://cdn2.qualys.com/docs/mktg/qualys-state-of-cloud-and-saas-security-report.pdf
https://cdn2.qualys.com/docs/mktg/qualys-state-of-cloud-and-saas-security-report.pdf
https://doi.org/10.1109/IOTSMS48152.2019.8939164
https://doi.org/10.1109/IOTSMS48152.2019.8939164
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp#linux_capabilities
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp#linux_capabilities
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/linux_capabilities_and_seccomp#linux_capabilities
https://doi.org/10.1145/3471621.3471839
https://doi.org/10.1145/800216.806586
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/PROC.1975.9939
https://www.usenix.org/conference/osdi22/presentation/sartakov
https://www.usenix.org/conference/osdi22/presentation/sartakov
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1145/2988545
https://doi.org/10.1145/3694715.3695947
https://overcast.blog/rootless-and-standard-docker-a-useful-comparison-6e07e19ab505
https://overcast.blog/rootless-and-standard-docker-a-useful-comparison-6e07e19ab505
https://doi.org/10.1145/3460120.3484744
https://doi.org/10.1145/3564625.3564634

	Abstract
	1 Introduction
	2 Anatomy of a Usecase
	2.1 Two Perspectives on Isolation
	2.2 Challenges

	3 OSmosis Model
	3.1 Design Goals
	3.2 Model Definition
	3.3 Model Invariants

	4 Applying the Model
	4.1 The OSmosis Query Building Block
	4.2 Identifying PD interactions
	4.3 Trusted Computing Base and Impact Boundary

	5 OSmosis Evaluation
	5.1 Evaluation Scenario Setup
	5.2 How PDs control each other
	5.3 How resources are shared

	6 Related Work
	7 Future Work
	8 Conclusion
	References

