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Abstract

Sparse decision tree optimization has been one of the most fun-
damental problems in AI since its inception and is a challenge
at the core of interpretable machine learning. Sparse decision
tree optimization is computationally hard, and despite steady
effort since the 1960’s, breakthroughs have been made on
the problem only within the past few years, primarily on the
problem of finding optimal sparse decision trees. However,
current state-of-the-art algorithms often require impractical
amounts of computation time and memory to find optimal or
near-optimal trees for some real-world datasets, particularly
those having several continuous-valued features. Given that the
search spaces of these decision tree optimization problems are
massive, can we practically hope to find a sparse decision tree
that competes in accuracy with a black box machine learning
model? We address this problem via smart guessing strategies
that can be applied to any optimal branch-and-bound-based
decision tree algorithm. The guesses come from knowledge
gleaned from black box models. We show that by using these
guesses, we can reduce the run time by multiple orders of
magnitude while providing bounds on how far the resulting
trees can deviate from the black box’s accuracy and expressive
power. Our approach enables guesses about how to bin con-
tinuous features, the size of the tree, and lower bounds on the
error for the optimal decision tree. Our experiments show that
in many cases we can rapidly construct sparse decision trees
that match the accuracy of black box models. To summarize:
when you are having trouble optimizing, just guess.

1 Introduction
Decision trees are one of the leading forms of interpretable
AI models. Since the development of the first decision tree
algorithm (Morgan and Sonquist 1963), a huge number of
algorithms have been proposed to improve both accuracy and
run time. However, major approaches are based on decision
tree induction, using heuristic splitting and pruning (e.g.,
Breiman et al. 1984; Quinlan 1993). Growing a tree in a
greedy way, though fast, leads to suboptimal models with no
indication of how far away the solution is from optimality.
The generated trees are usually much more complicated than
they need to be, hindering interpretability. Optimizing sparse
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decision trees remains one of the most fundamental problems
in machine learning (ML).

Full decision tree optimization is NP-hard (Laurent and
Rivest 1976), leading to challenges in searching for optimal
trees in a reasonable time, even for small datasets. Major
advances have been made recently using either mathemati-
cal programming solvers (e.g., Verwer and Zhang 2019) or
customized branch-and-bound with dynamic programming
(Aglin, Nijssen, and Schaus 2020; Lin et al. 2020; Demirović
et al. 2020), showing us that there is hope. However, these
methods are frequently unable to find the optimal tree within
a reasonable amount of time, or even if they do find the opti-
mal solution, it can take a long time to prove that the tree is
optimal or close-to-optimal.

Ideally, we would like an algorithm that, within a few
minutes, produces a sparse decision tree that is as accurate as
a black box machine learning model. Also, we wish to have a
guarantee that the model will have performance close to that
of the black box. We present a practical way to achieve this
by introducing a set of smart guessing techniques that speed
up sparse decision tree computations for branch-and-bound
methods by orders of magnitude.

The key is to guess in a way that prunes the search space
without eliminating optimal and near-optimal solutions. We
derive those smart guesses from a black box tree-ensemble
reference model whose performance we aim to match. Our
guesses come in three flavors. The first type of guess reduces
the number of thresholds we consider as a possible split on
a continuous feature. Here, we use splits generated by black
box ensembles. The second type of guess concerns the max-
imum depth we might need for an optimal tree, where we
relate the complexity of a tree ensemble to the depth of an
equivalently complex class of individual trees. The third type
of guess uses the accuracy of black box models on subsets
of the data to guess lower bounds on the loss for each sub-
problem we encounter. Our guesses are guaranteed to predict
as well or better than the black box tree-ensemble reference
model: taking the sparsest decision tree that makes the same
predictions as the black box, our method will find this tree, an
equivalently good tree, or an even better one. Together, these
guesses decrease the run time by several orders of magnitude,
allowing fast production of sparse and interpretable trees that
achieve black box predictive performance.
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2 Related work
Our work relates to the field of decision tree optimization
and thinning tree ensembles.

Decision tree optimization. Optimization techniques
have been used for decision trees from the 1990s until the
present (Bennett and Blue 1996; Dobkin et al. 1997; Farhang-
far, Greiner, and Zinkevich 2008; Nijssen and Fromont 2007,
2010). Recently, many works have directly optimized a per-
formance metric (e.g., accuracy) with soft or hard sparsity
constraints on the tree size. Such decision tree optimization
problems can be formulated using mixed integer program-
ming (MIP) (Bertsimas and Dunn 2017; Verwer and Zhang
2019; Vilas Boas et al. 2021; Günlük et al. 2021; Rudin and
Ertekin 2018; Aghaei, Gómez, and Vayanos 2021). Other
approaches use SAT solvers to find optimal decision trees
(Narodytska et al. 2018; Hu et al. 2020), though these tech-
niques require data to be perfectly separable, which is not
typical for machine learning. Carrizosa, Molero-Río, and
Morales (2021) provide an overview of mathematical pro-
gramming for decision trees.

Another branch of decision tree optimization has produced
customized dynamic programming algorithms that incorpo-
rate branch-and-bound techniques. Hu, Rudin, and Seltzer
(2019); Angelino et al. (2018); Chen and Rudin (2018) use an-
alytical bounds combined with bit-vector based computation
to efficiently reduce the search space and construct optimal
sparse decision trees. Lin et al. (2020) extend this work to use
dynamic programming. Aglin, Nijssen, and Schaus (2020)
also use dynamic programming with bounds to find optimal
trees of a given depth. Demirović et al. (2020) additionally
introduce constraints on both depth and number of nodes to
improve the scalability of decision tree optimization.

Our guessing strategies can further improve the scalabil-
ity of all branch-and-bound based optimal decision tree al-
gorithms without fundamentally changing their respective
search strategies. Instead, we reduce time and memory costs
by using a subset of thresholds and tighter lower bounds to
prune the search space.

“Born-again” trees. Breiman and Shang (1996) proposed
to replace a tree ensemble with a newly constructed single
tree. The tree ensemble is used to generate additional observa-
tions that are then used to find the best split for a tree node in
the new tree. Zhou and Hooker (2016) later follow a similar
strategy. Other recent work uses black box models to deter-
mine splitting and stopping criteria for growing a single tree
inductively (Bai et al. 2019) or exploit the class distributions
predicted by an ensemble to determine splitting and stopping
criteria (Van Assche and Blockeel 2007). Vandewiele et al.
(2016) use a genetic approach to construct a large ensemble
and combine models from different subsets of this ensemble
to get a single model with high accuracy.

Another branch of work focuses on the inner structure of
the tree ensemble. Akiba, Kaneda, and Almuallim (1998)
generate if-then rules from each of the ensemble classifiers
and convert the rules into binary vectors. These vectors are
then used as training data for learning a new decision tree.
Recent work following this line of reasoning extracts, ranks,
and prunes conjunctions from the tree ensemble and orga-
nizes the set of conjunctions into a rule set (Sirikulviriya and

Sinthupinyo 2011), an ordered rule list (Deng 2019), or a
single tree (Sagi and Rokach 2020). Hara and Hayashi (2018)
adopt a probabilistic model representation of a tree ensemble
and use Bayesian model selection for tree pruning.

The work of Vidal and Schiffer (2020) produces a decision
tree of minimal complexity that makes identical predictions
to the reference model (a tree ensemble). Such a decision tree
is called a born-again tree ensemble.

We use a reference model for two purposes: to help reduce
the number of possible values one could split on and to de-
termine an accuracy goal for a subset of points. By using a
tree ensemble as our reference model, we can guarantee that
our solution will have a regularized objective that matches or
improves upon that of any born-again tree ensemble.

3 Notation and objectives
We denote the training dataset as {(xi, yi)}Ni=1, where xi
are M -vectors of features, and yi ∈ {0, 1} are labels. Let x
be the N ×M covariate matrix and y be the N -vector of
labels, and let xij denote the j-th feature of xi. We transform
each continuous feature into binary features by creating a
split point at the mean value between every ordered pair
of unique values present in the training data. Let kj be the
number of unique values realized by feature j, then the total
number of features is M̃ =

∑M
j=1(kj − 1). We denote the

binarized covariate matrix as x̃ where x̃i ∈ {0, 1}M̃ are
binary features.

LetL(t, x̃,y) = 1
N

∑N
i=1 1[yi 6= ŷti ] be the loss of the tree

t on the training dataset, given predictions {ŷti}Ni=1 from tree
t. Most optimal decision tree algorithms minimize accuracy
constrained by a depth bound, i.e.,

minimize
t

L(t, x̃,y), s.t. depth(t) ≤ d. (1)

Instead, Hu, Rudin, and Seltzer (2019) and Lin et al. (2020)
define the objective functionR(t, x̃,y) as the combination of
the misclassification loss and a sparsity penalty on the number
of leaves. That is, R(t, x̃,y) = L(t, x̃,y) + λHt, where Ht

is the number of leaves in the tree t and λ is a regularization
parameter. They minimize the objective function, i.e.,

minimize
t

L(t, x̃,y) + λHt. (2)

Ideally, we prefer to solve (2) since we do not know the
optimal depth in advance, and even at a given depth, we
would prefer to minimize the number of leaves. But (1) is
much easier to solve. We discuss details in Section 4.2.

4 Methodology
We present three guessing techniques. The first guesses how
to transform continuous features into binary features, the
second guesses tree depth for sparsity-regularized models,
and the third guesses tighter bounds to allow faster time-to-
completion. We use a boosted decision tree (Freund and
Schapire 1995; Friedman 2001) as our reference model
whose performance we want to match or exceed. We refer to
Appendix A for proofs of all theorems presented.



4.1 Guessing Thresholds via Column Elimination
Since most state-of-the-art optimal decision tree algorithms
require binary inputs, continuous features require prepro-
cessing. We can transform a continuous feature into a set of
binary dummy variables. Call each midpoint between two
consecutive points a split point. Unfortunately, naïvely creat-
ing split points at the mean values between each ordered pair
of unique values present in the training data can dramatically
increase the search space of decision trees (Lin et al. 2020,
Theorem H.1), leading to the possibility of encountering ei-
ther a time or memory limit. Verwer and Zhang (2019) use a
technique called bucketization to reduce the number of thresh-
olds considered: instead of including split points between all
realized values of each continuous feature, bucketization re-
moves split points between realized feature values for which
the labels are identical. This reduces computation, but for
our purposes, it is still too conservative, and will lead to slow
run times. Instead, we use a subset of thresholds from our
reference boosted decision tree model, since we know that
with these thresholds, it is possible to produce a model with
the accuracy we are trying to match. Because computation
of sparse trees has factorial time complexity, each feature we
remove reduces run time substantially.

Column Elimination Algorithm: Our algorithm works
by iteratively pruning features (removing columns) of least
importance until a predefined threshold is reached: 1) Starting
with our reference model, extract all thresholds for all fea-
tures used in all of the trees in the boosting model. 2) Order
them by variable importance (we use Gini importance), and
remove the least important threshold (among all thresholds
and all features). 3) Re-fit the boosted tree with the remain-
ing features. 4) Continue this procedure until the training
performance of the remaining tree drops below a predefined
threshold. (In our experiments, we stop the procedure when
there is any drop in performance at all, but one could use a dif-
ferent threshold such as 1% if desired.) After this procedure,
the remaining data matrix is denoted by x̃reduced

T .
If, during this procedure, we eliminate too many thresholds,

we will not be able to match black box accuracy. Theorem
4.1 bounds the gap between the loss of the black-box tree en-
semble and loss of the optimal tree after threshold guessing.

Let T ′ be the ensemble tree built with (x̃reduced
T ,y). We

consider t′ to be any decision tree that makes the same pre-
dictions as T ′ for every observation in x̃reduced

T . We provide
Figure 8 in the appendix as an illustration of finding a t′ with
the minimum number of leaves for a given ensemble. Note
that Ht′ may be relatively small even if T ′ is a fairly large
ensemble, because the predictions are binary (each leaf pre-
dicts either 0 or 1) and the outcomes tend to vary smoothly
as continuous features change, with not many jumps.
Theorem 4.1. (Guarantee for model on reduced data). De-
fine the following:
• Let T be the ensemble tree built upon (x,y).
• Let T ′ be the ensemble tree built with (x̃reduced

T ,y).
• Let t′ be any decision tree that makes the same predictions

as T ′ for every observation in x̃reduced
T .

• Let t∗ ∈ arg mint L(t, x̃reduced
T ,y) + λHt be an optimal

tree on the reduced dataset.

Then, L(t∗, x̃reduced
T ,y) − L(T,x,y) ≤ λ(Ht′ − Ht∗), or

equivalently, R(t∗, x̃reduced
T ,y) ≤ L(T,x,y) + λHt′ .

That is, for any tree t′ that matches the predictions of T ′
for x̃reduced

T (even the smallest such tree), the difference in loss
between the black box tree ensemble T and the optimal single
tree t∗ (based on x̃reduced

T ) is not worse than the regularization
coefficient times the difference between the sizes of two trees:
t∗ and t′. Equivalently, t∗ will never be worse than t′ in terms
of the regularized objective. If we pick t′ to be a born-again
tree ensemble for T ′ (Vidal and Schiffer 2020) (which we
can do because born-again tree ensembles make the same
predictions as T ′ for all inputs, and therefore make the same
predictions for x̃reduced

T ), we can show that our thresholding
approach guarantees that we will never do worse than the
best born-again tree ensemble for our simplified reference
model, in terms of the regularized objective. If we pick a t′
with the minimal number of leaves, this theorem shows we
even match or beat the simplest tree that can exactly replicate
the reference models’ predictions on the training set.

4.2 Guessing Depth
As discussed in Section 3, there are two different approaches
to producing optimal decision trees: one uses a hard depth
constraint and the other uses a per-leaf penalty. Algorithms
that use only depth constraints tend to run more quickly
but can produce needlessly complicated trees, because they
do not reward trees for being shallower than the maximum
depth. Depth constraints assess trees only by the length of
their longest path, not by any other measure of simplicity,
such as the length of the average path or the number of dif-
ferent decision paths. In contrast, per-leaf penalty algorithms
(Hu, Rudin, and Seltzer 2019; Lin et al. 2020) produce sparse
models, but frequently have longer running times, as they
search a much larger space, because they do not assume they
know the depth of an optimal tree. We show that by adding a
depth constraint (a guess on the maximum depth of an opti-
mal tree) to per-leaf penalty algorithms, such as GOSDT (Lin
et al. 2020), we can achieve per-leaf sparsity regularization at
run times comparable to depth-constrained algorithms, such
as DL8.5 (Aglin, Nijssen, and Schaus 2020). In particular,
we combine (1) and (2) to produce a new objective,

minimize
t

L(t, x̃,y) + λHt s.t. depth(t) ≤ d, (3)

where we aim to choose d such that it reduces the search space
without removing all optimal or near-optimal solutions. Most
papers use depth guesses between 2 and 5 (Aglin, Nijssen,
and Schaus 2020), which we have done in our experiments.
However, Theorem 4.2 provides guidance on other ways to
select a depth constraint to train accurate models quickly.
Also, Theorem A.1 bounds the gap between the objectives of
optimal trees with a relatively smaller depth guess and with
no depth guess. This gap depends on the trade-off between
sparsity and accuracy.

Interestingly, using a large depth constraint is often less
efficient than removing the depth constraint entirely for
GOSDT, because when we use a branch-and-bound approach
with recursion, the ability to re-use solutions of recurring sub-
problems diminishes in the presence of a depth constraint.



Theorem 4.2. (Min depth needed to match complexity of
ensemble). Let B be the base hypothesis class (e.g., decision
stumps or shallow trees) that has VC dimension at least 3
and let K ≥ 3 be the number of weak classifiers (members of
B) combined in an ensemble model. Let Fensemble be the set
of weighted sums of weak classifiers, i.e., T ∈ Fensemble has
T (x) = sign(

∑K
k=1 wkhk(x)), where ∀k,wk ∈ R, hk ∈ B.

Let Fd,tree be the class of single binary decision trees with
depth at most:

d = dlog2 ((K ·VC(B)+K) · (3 ln(K ·VC(B)+K)+2))e .
It is then true that VC(Fd,tree) ≥ VC(Fensemble).

That is, the class of single trees with depth at most d has
complexity at least that of the ensemble. The following results
are special cases of Theorem 4.2:
• Suppose B is the class of decision trees with depth at most

3. To match or exceed the complexity of an ensemble of
K = 10 trees from B with a single tree, it is sufficient to
use trees of depth 11.

• Suppose B is the class of decision trees with depth at most
3. To match or exceed the complexity of an ensemble of
K = 100 trees from B with a single tree, it is sufficient to
use trees of depth 15.

The bound is conservative, so we might choose a smaller
depth than is calculated in the theorem; the theorem provides
an upper bound on the depth we need to consider for matching
the accuracy of the black box.

4.3 Guessing Tighter Lower Bounds
Branch-and-bound approaches to decision tree optimization,
such as GOSDT and DL8.5, are limited by the inefficiency
of their lower bound estimates. To remove a potential feature
split from the search, the algorithm must prove that the best
possible (lowest) objectives on the two resulting subproblems
sum to a value that is worse (larger) than optimal. Calculating
tight enough bounds to do this is often slow, requiring an
algorithm to waste substantial time exploring suboptimal
parts of the search space before it can prove the absence of
an optimal solution in that space.

We use informed guesses to quickly tighten lower bounds.
These guesses are based on a reference model – another
classifier that we believe will misclassify a similar set of
training points to an optimal tree. Let T be such a reference
model and ŷTi be the predictions of that reference model on
training observation i. Define sa as the subset of training
observations that satisfy a boolean assertion a:

sa := {i : a(x̃i) = True, i ∈ {1, ..., N}}
x̃(sa) := {x̃i : i ∈ sa}
y(sa) := {yi : i ∈ sa} .

We can then define our guessed lower bound as the disagree-
ment of the reference and true labels for these observations
(plus a penalty reflecting that at least 1 leaf will be used in
solving this subproblem):

lbguess(sa) :=
1

N

∑
i∈sa

1[yi 6= ŷTi ] + λ. (4)

We use this lower bound to prune the search space. In par-
ticular, we consider a subproblem to be solved if we find
a subtree that achieves an objective less than or equal to
its lbguess (even if we have not proved it is optimal); this is
equivalent to assuming the subproblem is solved when we
match the reference model’s accuracy on that subproblem.
We further let the algorithm omit any part of the space whose
estimated lower bound is large enough to suggest that it does
not contain an optimal solution. That is, for each subproblem,
we use the reference model’s accuracy as a guide for the best
accuracy we hope to obtain.

Thus, we introduce modifications to a general branch-and-
bound decision tree algorithm that allow it to use lower bound
guessing informed by a reference model. We focus here on
approaches to solve (3), noting that (1) and (2) are special
cases of (3). For a subset of observations sa, let ta be the
subtree used to classify those points, and let Hta be the
number of leaves in that subtree. We can then define:

R(ta, x̃(sa),y(sa)) = 1
N

∑
i∈sa 1[yi 6= ŷtai ] + λHta .

For any dataset partition A, where a ∈ A corresponds to the
data handled by a given subtree of t:

R(t, x̃,y) =
∑
a∈AR(ta, x̃(sa),y(sa)).

Given a set of observations sa and a depth constraint d for
which we want to find an optimal tree, consider the partition
of sa resulting from “splitting” on a given boolean feature j
in x̃, i.e., the sets given by:

sa ∩ sj = {i : a(x̃i) ∧ (x̃ij = 1), i ∈ {1, ..., N}}
sa ∩ scj = {i : a(x̃i) ∧ (x̃ij = 0), i ∈ {1, ..., N}} .

Let t∗a∩j,d−1 be the optimal solution to the set of observations
sa ∩ sj with depth constraint d − 1, and let t∗a∩jc,d−1 be
similarly defined for the set of observations sa ∩ scj . To find
the optimal tree given the indices sa and the depth constraint
d, one approach is to find the first split by solving

minimize
j

(
R(t∗a∩j,d−1, x̃(sa ∩ sj),y(sa ∩ sj))

+R(t∗a∩jc,d−1, x̃(sa ∩ scj),y(sa ∩ scj))
)
. (5)

This leads to recursive subproblems representing different
sets of observations and depth constraints. One can solve
for all splits recursively according to the above equation.
Our modification to use lower bound guessing informed by a
reference model applies to all branch-and-bound optimization
techniques that have this structure.

Define majority(sa) as the majority label class in sa,
and let ub(sa) be the objective of a single leaf predicting
majority(sa) for each point in sa:

ub(sa) = 1
N

∑
i∈sa 1[yi 6= majority(sa)] + λ,

where (as usual) λ is a fixed per-leaf penalty for the model.
A recursive branch-and-bound algorithm using lower bound
guessing finds a solution for observations sa with depth con-
straint d with the following modifications to its ordinary
approach (see Appendix G for further details). Note that the
subproblem is identified by (sa, d).



Lower-bound Guessing for Branch-and-Bound Search
1. (Use guess to initialize lower bound.) If ub(sa) ≤
lbguess(sa)+λ or d = 0, we are done with the subproblem.
We consider it solved with objective ub(sa), correspond-
ing to a single leaf predicting majority(sa). Otherwise,
set the current lower bound lbcurr(sa, d) = lbguess(sa) and
go to Step 2.

2. Search the space of possible trees for subproblem (sa, d)
by exploring the possible features on which the subprob-
lem could be split to form two new subproblems, with
depth constraint d − 1, and solving those recursively.
While searching:

(a) (Additional termination condition if we match black
box performance.) If we find a subtree t for subprob-
lem (sa, d) with R(t, x̃(sa),y(sa)) ≤ lbcurrent(sa, d),
we are done with the subproblem. We consider it solved
with objective R(t, x̃(sa),y(sa)), corresponding to
subtree t.

(b) (Modified lower bound update.) At any time, we can
opt to update the lower bound for the subproblem (with
d′ as shorthand for d− 1):

lbspl← min
j∈features

(lbcurr(sa ∩ sj , d′) + lbcurr(sa ∩ scj , d′))

(This corresponds to splitting on the best feature.)

lbcurr(sa, d)←max(lbcurr(sa, d),min(ub(sa), lbspl))

(Here, min(ub(sa), lbspl) is the better of not splitting on
any feature and splitting on the best feature. The max
ensures that our lower bounds never decrease. The lbcurr
term comes from either our initial lower bound guess
or the lower bound we have so far.) If the lower bound
increases to match ub(sa), we are done with the sub-
problem. We consider it solved with objective ub(sa),
corresponding to a single leaf predicting majority(sa).
If the lower bound increases but does not match ub(sa),
we apply Case 2a with the new, increased lbcurr(sa, d).

This approach is provably close to optimal when the ref-
erence model makes errors similar to an optimal tree. Let
sT,incorrect be the set of observations incorrectly classified by
the reference model T , i.e., sT,incorrect = {i|yi 6= ŷTi }.

Let tguess be a tree returned from our lower-bound guessing
algorithm. The following theorem holds:

Theorem 4.3. (Guarantee on guessed model performance).
Let R(tguess, x̃,y) denote the objective of tguess on the full
binarized dataset (x̃,y) for some per-leaf penalty λ (and with
tguess subject to depth constraint d). Then for any decision
tree t that satisfies the same depth constraint d, we have:

R(tguess, x̃,y) ≤ 1

N

|sT,incorrect|+
∑

i∈sT,correct

1[yi 6= ŷti ]


+ λHt.

That is, the objective of the guessing model is no worse than
the union of errors made by the reference model and tree t.

The most significant consequence of this theorem is that
R(tguess, x̃,y)−R(t∗, x̃,y)

≤ 1

N

|sT,incorrect| −
∑

i∈sT,incorrect

1[yi 6= ŷt
∗

i ]


where we selected t∗, an optimal tree for the given λ and
depth constraint, as t, and we subtracted R(t∗, x̃,y) from
both sides. This means that if the data points misclassified by
the black box are a subset of the data points misclassified by
the optimal decision tree, we are guaranteed not to lose any
optimality. However much optimality we lose is a function of
how many data points misclassified by the black box could
have been correctly classified by the optimal tree.

We also prove that adding lower bound guessing after
using threshold guessing does not change the worst case
performance from Theorem 4.1.
Corollary 4.3.1. Let T , T ′ and t′ be defined as in Theo-
rem 4.1. Let tguess be the tree obtained using lower-bound
guessing with T ′ as the reference model, on x̃reduced

T ,y, with
depth constraint matching or exceeding the depth of t′. Then
L(tguess, x̃

reduced
T ,y)−L(T,x,y) ≤ λ(Ht′−Htguess), or equiv-

alently, R(tguess, x̃
reduced
T ,y) ≤ L(T,x,y) + λHt′ .

The difference between this corollary and Theorem 4.1 is
that it uses tguess rather than t∗, without any weakening of
the bound. Because of this corollary, our experimental results
focus on lower bound guessing in combination with threshold
guessing, using the same reference model, rather than using
lower bound guessing on its own.

5 Experiments
Our evaluation addresses the following questions:
1. How accurate are interpretable models with guessing rela-

tive to black box models? (§5.1)
2. How well does each guessing method perform? (§5.2)
3. What happens if guesses are wrong? (§5.3)
4. What do sparse accurate trees look like? (§5.4)

We use seven datasets: one simulated 2D spiral pattern
dataset, the Fair Isaac (FICO) credit risk dataset (FICO et al.
2018) for the Explainable ML Challenge, three recidivism
datasets (COMPAS, Larson et al. 2016, Broward, Wang et al.
2020, Netherlands, Tollenaar and Van der Heijden 2013), and
two coupon datasets (Takeaway and Restaurant), which were
collected on Amazon Mechanical Turk via a survey (Wang
et al. 2017). Table 1 summarizes all the datasets.

Unless stated otherwise, all plots show the median value
across 5 folds with error bars corresponding to the first and
third quartile. We use GBDT as the reference model for guess-
ing and run it using scikit-learn (Pedregosa et al. 2011). We
configure GBDT with default parameters, but select dataset-
specific values for the depth and number of weak classi-
fiers: (n_est,max_depth) = (20, 3) for COMPAS and Spi-
ral, (40, 1) for Broward and FICO, (50, 2) for Takeaway and
Restaurant, and (30, 2) for Netherlands. Appendix C presents
details about our hyper-parameter selection process, and Ap-
pendix B presents the experimental setup and more details
about the datasets.
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Figure 1: Train-time savings from guessing: Training and test accuracy versus run time for GOSDT (blue) and DL8.5 (gold)
on the COMPAS data set with regularization 0.001 and different depth constraints. The black line shows the accuracy of a GBDT
model (100 max-depth 3 weak classifiers). Circles show baseline performance (no guessing), stars show performance with all
three guessing techniques, and marker size indicates the number of leaves. The displayed confidence bands come from 5-fold
cross-validation. DL8.5 requires a depth constraint, so it does not appear in the right-most plots.

Dataset samples features binary features
Spiral 100 2 180

COMPAS 6907 7 134
Broward 1954 38 588

Netherlands 20000 9 53890
FICO 10459 23 1917

Takeaway 2280 21 87
Restaurant 2653 21 87

Table 1: Datasets

5.1 Performance with and without guessing
Our first experiments support our claim that using guessing
strategies enables optimal decision tree algorithms to quickly
find sparse trees whose accuracy is competitive with a GBDT
that was trained using 100 max-depth 3 weak classifiers.

Figure 1 shows training and testing results on the COM-
PAS data set. (Results for the other data sets are in Ap-
pendix C.1.) The difference between the stars and the circles
shows that our guessing strategies dramatically improve both
DL8.5 and GOSDT run times, typically by 1-2 orders of mag-
nitude. Furthermore, the trees we created have test accuracy
that sometimes beats the black box, because the sparsity of
our trees acts as regularization.

Figure 2 shows the accuracy-sparsity tradeoff for differ-
ent decision tree models (with GBDT accuracy indicated by
the black line). The batree results are for the Born-Again tree
ensembles of Vidal and Schiffer (2020). Results for the re-
maining datasets (which are similar) appear in Appendix C.2.
The guessed models are both sparse and accurate, especially
with respect to CART and batree.

We also compare GOSDT with all three guessing strate-

gies to Interpretable AI’s Optimal Decision Trees package, a
proprietary commercial adaptation of Optimal Classification
Tree (OCT) (Bertsimas and Dunn 2017) in Appendix H. The
results show the run time of the two methods is comparable
despite the fact that GOSDT provides guarantees on accuracy
while the adaptation of OCT does not. GOSDT with all three
guesses tends to find sparser trees with comparable accuracy.

5.2 Efficacy of Different Guessing Techniques
Comparing the three graphs in Figure 1 shows how guess-
ing different depths affects run time performance. For the
next three experiments, we fix the maximum depth to 5 and
examine the impact of the other guessing strategies.

Guessing Thresholds: We found that guessing thresholds
has the most dramatic impact, so we quantify that impact first.
We compare the training time and accuracy with and without
threshold guessing for GOSDT and DL8.5 on seven datasets.
We limit run time to 30 minutes and run on a machine with
125GB memory. Experiments that time out are shown with
orange bars with hatches; Experiments that run out of mem-
ory are in gray with hatches. If the experiment timed out, we
analyze the best model found at the time of the timeout; if we
run out of memory, we are unable to obtain a model. Figure
3 shows that the training time after guessing thresholds (blue
bars) is orders of magnitude faster than without thresholds
guessing (orange bars). Orange bars are bounded by the time
limit (1800 seconds) set for the experiments, but in reality,
the training time is much longer. Moreover, threshold guess-
ing leads to little change in both training and test accuracy
(see Appendix C.3).

Guessing Lower Bounds: Next, we add lower-bound
guesses to the threshold guesses to produce Figure 4. The
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BaselinesOurs gosdt+th+lb

gosdt (no depth limit)+th+lb

cart

batree

GBDT

Figure 2: (Sparsity vs. accuracy). DL8.5 and GOSDT use guessed thresholds and guessed lower bounds. CART is trained on
the original dataset with no guess. This figure shows that our guessed trees define a frontier; we achieve the highest accuracy for
almost every level of sparsity. The baseline methods (CART, batree) do not achieve results on the frontier.

gosdt/dl8.5 timeout
Baselines

reference model training time
Ours

gosdt/dl8.5 memory outgosdt+th/dl8.5+th training time

Figure 3: (Value of threshold guessing.) Training time
(logscale) for GOSDT and DL8.5 with depth limit 5. All
baselines (hatched) timed out (orange) or hit the memory
limit (gray). Green parts indicate threshold guessing times.

results are qualitatively similar to those in Figure 3: using
lower bound guesses produces an additional run time bene-
fit. Appendix C.4 shows more results and verifies that using
lower-bound guesses often leads to a solution with the same
training error as without lower-bound guesses or leads to find-
ing a simpler solution with test error that is still comparable
to the solution found without lower-bound guessing.

Value of Depth Constraints: We examine depth con-
straints’ effect on GOSDT in Figure 5. We run GOSDT with-
out a depth constraint, which produces an optimal tree for
each of five folds using per-leaf regularization, and compare
to GOSDT with a depth constraint. Above a certain threshold,
depth constraints do not reduce training accuracy (since the
constraint does not remove all optimal trees from the search
space). Some depth constraints slightly improve test accu-
racy (see depths 4 and 5), since constraining GOSDT to find
shallower trees can prevent or reduce overfitting.

Usually, depth constraints allow GOSDT to run several or-

gosdt+th/dl8.5+th 
training time

BaselinesOurs
gosdt+th+lb/dl8.5+th+lb training time
reference model training time

Figure 4: (Value of lower bound guessing.) Training time
(logscale) for GOSDT and DL8.5 with and without lower-
bound guessing, using depth limit 5 and threshold-guessing.

ders of magnitude faster. For large depth constraints, however,
the run time can be worse than that with no constraints. Using
depth guesses reduces GOSDT’s ability to share information
between subproblems. When the constraint prunes enough
of the search space, the search space reduction dominates; if
the constraint does not prune enough, the inability to share
subproblems dominates.

5.3 When Guesses are Wrong
Although rare in our experiments, it is possible to lose ac-
curacy if the reference model is too simple, i.e., only a few
thresholds are in the reduced dataset or too many samples
are misclassified by the reference model. This happens when
we choose a reference model that has low accuracy to begin
with. Thus, we should check the reference model’s perfor-
mance before using it and improve it before use if necessary.
Appendix D shows that if one uses a poor reference model,
we do lose performance. Appendix C shows that for a wide
range of reasonable configurations, we do not suffer dramatic
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Figure 5: (Value of Depth Constraints.) Performance across
depth constraints (∞ means no constraint) for the COMPAS
dataset with threshold guessing. Regularization 0.001.

performance costs as a result of guessing.

5.4 Trees
We qualitatively compare trees produced with our guessing
technique to several baselines in Figure 6. We observe that
with all three guessing techniques, the resulting trees are
not only more accurate overall, but they are also sparser
than the trees produced by the baselines. Figure 7 shows
example GOSDT trees trained using all three guesses on the
COMPAS dataset. Appendix C.5 shows more output trees
and Appendix F compares decision sets transformed from
our trees and trained by Dash, Gunluk, and Wei (2018) on
the FICO dataset.

Ours Baselines

timeout

timeout

Figure 6: (Tree Visualization). Trees for GOSDT and DL8.5.
Dots indicate the data points and the shaded areas are the
corresponding classification by the tree. GOSDT trees were
trained with and without all three guesses. DL8.5 trees were
trained with and without threshold and lower bound guesses
at depth 5. CART was trained with depth 5 and batree was
trained using random forests with 10 max-depth 3 weak clas-
sifiers as the reference model. Both GOSDT without guesses
and DL8.5 with only depth guesses timed out (middle col-
umn).

6 Conclusions
We introduce smart guessing strategies to find sparse decision
trees that compete in accuracy with a black box machine
learning model while reducing training time by orders of
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(a) GOSDT+th+lb (depth limit 3): training accuracy=0.683, test
accuracy=0.689, #leaves=7 on fold 2.
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(b) GOSDT+th+lb (depth limit 5): training accuracy=0.685, test
accuracy=0.696, # leaves=9 on fold 2.

Figure 7: GOSDT trees on the COMPAS dataset with guessed
thresholds and guessed lower bounds at depth limit 3 and 5.
The reference model was trained using 20 max-depth 3 weak
classifiers. λ = 0.001.

magnitude relative to training a fully optimized tree. Our
guessing strategies can be applied to several existing optimal
decision tree algorithms with only minor modifications. With
these guessing strategies, powerful decision tree algorithms
can be used on much larger datasets.

Code Availability
Implementations of GOSDT and DL8.5 with the guess-
ing strategies discussed in this paper are available
at https://github.com/ubc-systopia/gosdtGuesses and
https://github.com/ubc-systopia/pydl8.5-lbguess.
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