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Large number of trees: topologies and send orders
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There is no globally optimal tree structure
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Smelt: Automatic optimization of

broadcast and reduction trees
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Example: Building fast and simple barriers

Barrier Benchmark on Intel Sandy Bridge 4x8x2
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Dramatic improvement through
automatic optimization of
communication patterns



Broadcasts and reductions are central building blocks for parallel programs

Performance Fault-Tolerance Execution Control
Atomic broadcasts Agreement protocols, Reductions, broadcast,
atomic broadcasts barriers
Replication for data
locality Replication for failure Thread synchronization,
resilience data gathering

e.g. Shoal, Carrefour,
SMMP QOS, FOS e.g. 1Paxos e.g. OpenMP



Multicore hardware is complex

Intel Sandy Bridge 4x8x2
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Smelt is based on peer-to-peer message passing

shared memory page

Thread 1 ' Thread 2

shared memory page

- cache-line sized slot

= Works well for our approach.

= Clear concept: Enables reasoning about send and receive costs



Message-passing on multicores is different

Classical Network Multicore interconnect
Machine4 ' Core 4
Machine 3 Core 3 mi
Machine 2 Core 2 i ;

On multicores send and receive times dominate propagation time

Goal: Minimize total time of the broadcast



Minimizing the total time of a broadcast

" Tproadcast = tiast — Ustart

= Minimize the longest path from the root to the leaves.

- —

teond treceivel (e treceive2

Loath = 2 (tsena T treceive)

We need to know the send and receive cost between any pair of cores
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Information obtained from hardware discovery
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Complement with microbenchmarks: pairwise send and receive
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Complement with microbenchmarks: pairwise send and receive
AMD Interlagos 4x4x2
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Using Smelt for group communication

Hardware Discovery
# Cores
# NUMA nodes

Smelt runtime

smelt topology create() {

#include <smelt/smelt.h> Smelt Algorithm

f—t

I

lstopo; /proc/cpu

void main() {

Measurements

smelt _init();
Micro-benchmarks

smelt topology create();

Treeto

pology

smelt_broadcast(msg); P —

Program Multicore Model
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Smelt’s tree generator heuristics

Remote Cores First Avoid Expensive
Communication

soN.N..E..

Maximize Parallelism No redundancy
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NUMA 3

NUMA 2
Heuristic #1:
Expensive first

send NUMA 0
receive

Broadcast on

AMD Shanghai 4x4x1
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Step 1: Pick the root
Core with the smallest
total send time to any
other core.

Step 2: Start Scheduler
Schedule cores to send
and receive messages

Apply Heuristics
Decide where to send
messages to

1000

1500

Simplified
Example

The tree is good,
But not optimal!
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Smelt Tree for
Intel Xeon Phi using 61 cores

45

Smelt Tree for
Intel Sandy Bridge 4 Sockets x 8 Cores x 2 Threads
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Evaluation Testbed

Intel

Architecture Cores/ Threads /
Socket Core
i 10

AMD
Architecture Cores/ Threads /

Socket Core
Wiagny Cos 2

2 2 Magny Cours 4 1
m 4 8 2 Barcelona 8 4 1
1 61 4 Shanghai 4 4 1
4 8 2 Interlagos 4 4 2
2 10 2 4 6 1

Full set of results online.

http://machinedb.systems.ethz.ch

20



Smelt produces good trees across architectures

AMD Interlagos (4 Socket x 4 Threads) Intel Xeon Phi (61 Threads)
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Smelt produces good trees across architectures

slowdown speedup
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Fast broadcast trees are good for reductions in most cases

Additional Cross-NUMA link

Smelt Tree on Intel Bloomfield 2x4x2

Cluster Topology on Intel Bloomfield 2x4x2

23



Smelt provides simple and fast barriers

Barrier Benchmark on Intel Sandy Bridge 4x8x2
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Barriers based on reduction and broadcast

void smelt barrier(void) {
smelt reduce();
smelt broadcast();

Simple barrier implementation
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OpenMP: EPCC OpenMP Benchmark Collection AMD Interlagos 4x4x2
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/* epcc openmp barrier benchmark */ 20
void testbar() { 15

int j; 10
#pragma omp parallel private(j) 5 .
{ 0 =

for (j = @; j < innerreps; j++) {

delay(delaylength); PARALLEL BARRIER
#pragma omp barrier
} Explicit barrier Intel SandyBridge 4x8x2

}

} Implicit barrier at the end of parallel block

60
40
Replaced GOMP barrier with Smelt 20 I I
0 B e

=» Remaining results on the website PARALLEL BARRIER

H GOMP H Smelt

Execution Time [us]
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Agreement Protocols: 1Paxos

—> aceept -~ broadcast -+ forward 1Paxos Benchmark on AMD Interlagos 4x4x2
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Summary

Broadcasts and reductions are central building blocks

No globally optimal tree topology

Information from hardware discovery is not sufficient

Smelt’s produces good trees

machinedb.systems.ethz.ch

Talk to us at
the first poster
session
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