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Smelt: 
Machine-aware Atomic Broadcast Trees for Multicores
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Large number of trees: topologies and send orders

Number of 
cross NUMA 

links?

Tree 
Topology?

Root of 
the tree?

Send order of 
messages?

Maximum 
out degree?

Large number of possible trees

topology + message send order
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There is no globally optimal tree structure
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Tree Generation

Time

𝑡𝑠𝑒𝑛𝑑

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑡𝑠𝑒𝑛𝑑

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

Multicore Model

Smelt: Automatic optimization of
broadcast and reduction trees



5

Example: Building fast and simple barriers
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Dramatic improvement through 
automatic optimization of 
communication patterns
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Broadcasts and reductions are central building blocks for parallel programs

Performance

Atomic broadcasts

Replication for data 
locality

e.g. Shoal, Carrefour, 
SMMP OS, FOS

Fault-Tolerance

Agreement protocols, 
atomic broadcasts

Replication for failure 
resilience

e.g. 1Paxos

Execution Control

Reductions, broadcast, 
barriers

Thread synchronization, 
data gathering

e.g. OpenMP
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Multicore hardware is complex

Interconnect / coherence 
protocol complexity

Distributed 
resources

Hardware parallelism

Hierarchical:
thread/cores

caches/memory 

Intel Sandy Bridge 4x8x2

Generate a good tree 
topology and schedules 

automatically



▪ Works well for our approach.

▪ Clear concept:  Enables reasoning about send and receive costs
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Smelt is based on peer-to-peer message passing

cache-line sized slot

Thread 1 Thread 2

shared memory page 

shared memory page 



Core 1
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Time [10ns]

Core 3

Core 4

Machine 1

Machine 2

Machine 3

Machine 4

Classical Network Multicore interconnect
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Message-passing on multicores is different

Time [1us]

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑡𝑠𝑒𝑛𝑑 𝑡𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒

𝑡𝑠𝑒𝑛𝑑

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑡𝑠𝑒𝑛𝑑 𝑡𝑠𝑒𝑛𝑑

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

On multicores send and receive times dominate propagation time

Goal: Minimize total time of the broadcast



▪ 𝑡𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 = 𝑡𝑙𝑎𝑠𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡

▪ Minimize the longest path from the  root to the leaves.
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Minimizing the total time of a broadcast

Root Leaf

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒1 𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒2𝑡𝑠𝑒𝑛𝑑1 𝑡𝑠𝑒𝑛𝑑2

𝑡𝑝𝑎𝑡ℎ = ∑(𝑡𝑠𝑒𝑛𝑑 + 𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒)

We need to know the send and receive cost between any pair of cores
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Information obtained from hardware discovery

$ numactl –hardware
node distances:
node   0   1   2   3   4   5   6   7 
0:  10  16  16  22  16  22  16  22 
1:  16  10  22  16  16  22  22  16 
2:  16  22  10  16  16  16  16  16 
3:  22  16  16  10  16  16  22  22 
4:  16  16  16  16  10  16  16  22 
5:  22  22  16  16  16  10  22  16 
6:  16  22  16  22  16  22  10  16 
7:  22  16  16  22  22  16  16  10 

$ lscpu
CPU(s):                64
Thread(s) per core:    2
Core(s) per socket:    8
Socket(s):             4
NUMA node(s):          8
L1d cache:             16K
L1i cache:             64K
L2 cache:              2048K
L3 cache:              6144K
NUMA node0 CPU(s):     0,4,8,12,16,20,24,28
NUMA node1 CPU(s):     32,36,40,44,48,52,56,60
NUMA node2 CPU(s):     2,6,10,14,18,22,26,30
NUMA node3 CPU(s):     34,38,42,46,50,54,58,62
NUMA node4 CPU(s):     3,7,11,15,19,23,27,31
NUMA node5 CPU(s):     35,39,43,47,51,55,59,63
NUMA node6 CPU(s):     1,5,9,13,17,21,25,29
NUMA node7 CPU(s):     33,37,41,45,49,53,57,61

AMD Interlagos 4x4x2

Doesn’t distinguish between 
send() and recv()

4

2

2

4Symmetric: A→B == B→A

NUMA distance: abstract value
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Complement with microbenchmarks: pairwise send and receive 

Cost of Send Operation [Cycles] Cost of Receive Operation [cycles]

sending core sending core

receiving core receiving core

AMD Interlagos 4x4x2

min = 43  
max = 166

min = 43 
max = 360
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Complement with microbenchmarks: pairwise send and receive 

Cost of Send Operation [Cycles] Cost of Receive Operation [cycles]

sending core sending core

receiving core receiving core

AMD Interlagos 4x4x2

min = 43  
max = 166

min = 43,
max = 360

10

22 137

10

22 282

22

10 159

22

10 351

Not symmetric!

Core 10 → Core 22: 137 + 282 = 419 cycles
Core 22 → Core 10: 159 + 351 = 510 cycles
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Smelt
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Using Smelt for group communication

Multicore ModelProgram

Hardware Discovery
# Cores
# NUMA nodes

lstopo; /proc/cpu

Measurements
Micro-benchmarks

#include <smelt/smelt.h>

void main() {

smelt_init();

smelt_topology_create();

smelt_broadcast(msg);

}

Smelt runtime

smelt_topology_create() {

}

Smelt Algorithm

Tree topology
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Smelt’s tree generator heuristics

Remote Cores First

1

Avoid Expensive 
Communication

No redundancy

r

1

2

3

4

Maximize Parallelism

r

rr
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Expensive first

Broadcast on
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Example
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353Step 1: Pick the root
Core with the smallest 
total send time to any 
other core.

Step 2: Start Scheduler
Schedule cores to send 
and receive messages

Apply Heuristics
Decide where to send 
messages to

The tree is good,
But not optimal!
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Smelt Tree for
Intel Sandy Bridge 4 Sockets x 8 Cores x 2 Threads

Smelt Tree for
Intel Xeon Phi using 61 cores
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Evaluation Testbed

Architecture Sockets Cores / 
Socket

Threads / 
Core

Magny Cours 4 12 1

Barcelona 8 4 1

Shanghai 4 4 1

Interlagos 4 4 2

Istanbul 4 6 1

Architecture Sockets Cores / 
Socket

Threads / 
Core

Ivy Bridge 2 10 2

Nehalem 4 8 2

Knights Corner 1 61 4

Sandy Bridge 4 8 2

Sandy Bridge 2 10 2

Bloomfield 2 4 2

Full set of results online. 

http://machinedb.systems.ethz.ch 

Intel AMD
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Smelt produces good trees across architectures
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Smelt produces good trees across architectures

Manufacturer Codename Sockets x Cores x Threads

slowdown speedup



Cluster Topology on Intel Bloomfield 2x4x2Smelt Tree on Intel Bloomfield 2x4x2
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Fast broadcast trees are good for reductions in most cases

Additional Cross-NUMA link
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Dissemination Parlib MSC Smelt

Barriers based on reduction and broadcast
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Smelt provides simple and fast barriers

Execution Time [kCycles]

Barrier Benchmark on Intel Sandy Bridge 4x8x2

Simple barrier implementation

void smelt_barrier(void) {
smelt_reduce();
smelt_broadcast();

}
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OpenMP: EPCC OpenMP Benchmark Collection

/* epcc openmp barrier benchmark */
void testbar() {

int j;
#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
delay(delaylength);
#pragma omp barrier

}
}

} Implicit barrier at the end of parallel block

Explicit barrier

➔ Remaining results on the website
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Agreement Protocols: 1Paxos
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4 clients to generate load
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1Paxos Benchmark on AMD Interlagos 4x4x2



▪ Broadcasts and reductions are central building blocks

▪ No globally optimal tree topology

▪ Information from hardware discovery is not sufficient

▪ Smelt’s produces good trees 
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Summary
Talk to us at 

the first poster 
session

machinedb.systems.ethz.ch github.com/libsmelt


