Smelt:
Machine-aware Atomic Broadcast Trees for Multicores

Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos, Timothy Roscoe

Systems Group, Department of Computer Science, ETH Zurich

Systems@ ETHzurich

Large number of trees: topologies and send orders

CPU i L3 Cache i socket interconnect N, tree topology

Send order of
messages?

Large number

Number of ' (2n —2)!
cross NUMA n! Cn_1 = 1w
links? w=1

{% topology + message send order

Root of — Maximum
the tree? out degree?

There is no globally optimal tree structure

AMD Interlagos (4 Socket x 4 Cores x 2 Threads)
Execution Time [kCycles]

40
35
30
25
20
15
10

5

0

Cluster topology wins

Ii‘ Al

Barrier Reduction Broadcast

M Binary Tree

Hm Cluster

2PC

Intel Xeon Phi (61 Cores x 1 Thread)
Execution Time [kCycles]

120
100 Binary tree or Fibonacci win
80
60
40
Ty
0

Barrier Reduction Broadcast 2PC

M Sequential MST Fibonacci

ETH:zurich

Smelt: Automatic optimization of

broadcast and reduction trees

Multicore Model Tree Generation

e socket interconnect ™, tree topology
re ceive

tT@C@lU@
| |
|]

Time

Example: Building fast and simple barriers

Barrier Benchmark on Intel Sandy Bridge 4x8x2

Execution Time [kCycles]

45
40
35
30
25
20
15
10

5

7X

Dissemination Parlib MCS

Barrier implementation

Smelt

Dramatic improvement through
automatic optimization of
communication patterns

Broadcasts and reductions are central building blocks for parallel programs

Performance Fault-Tolerance Execution Control
Atomic broadcasts Agreement protocols, Reductions, broadcast,
atomic broadcasts barriers
Replication for data
locality Replication for failure Thread synchronization,
resilience data gathering

e.g. Shoal, Carrefour,
SMMP QOS, FOS e.g. 1Paxos e.g. OpenMP

Multicore hardware is complex

Intel Sandy Bridge 4x8x2

Hierarchical:
thread/cores
caches/memory

dware parallelism

Generate a good tree
topology and schedules COTer_ence
automatically mplexity

b,

Distributed
resources

Smelt is based on peer-to-peer message passing

shared memory page

Thread 1 ' Thread 2

shared memory page

- cache-line sized slot

= Works well for our approach.

= Clear concept: Enables reasoning about send and receive costs

Message-passing on multicores is different

Classical Network Multicore interconnect
Machine4 ' Core 4
Machine 3 Core 3 mi
Machine 2 Core 2 i ;

On multicores send and receive times dominate propagation time

Goal: Minimize total time of the broadcast

Minimizing the total time of a broadcast

" Tproadcast = tiast — Ustart

= Minimize the longest path from the root to the leaves.

- —

teond treceivel (e treceive2

Loath = 2 (tsena T treceive)

We need to know the send and receive cost between any pair of cores

10

Information obtained from hardware discovery

r—r=22 W0V O - 0O H»

1scpu

NUMA distance: abstract value

Doesn’t distinguish between

L2 cache:
L3 cache:

NUMA
NUMA
NUMA
NUMA
NUMA
NUMA
NUMA
NUMA

node®©
nhodel
node?2
node3
hode4
node5
node6
hode7

CPU(s):
CPU(s):
CPU(s):
CPU(s):
CPU(s):
CPU(s):
CPU(s):
CPU(s):

send() and recv()

=B—2>A

6144K
9,4,8,12,16,20,24,28
32,36,40,44,48,52,56,60
2,6,10,14,18,22,26,30
34,38,42,46,50,54,58,62
3,7,11,15,19,23,27,31
35,39,43,47,51,55,59,63
1,5,9,13,17,21,25,29
33,37,41,45,49,53,57,61

$ numactl -hardware
node distances:

106 16 16 22 16
16 10 22 16 16

: 22 16 16 10 1

22 22 16
16 22 1p
22 16 16

5
22
22
16
16
16
10
22
16

6
16
22
16
22
16
22
10
16

AMD Interlagos 4x4x2

22
16
16
22
22
16
16
10

Complement with microbenchmarks: pairwise send and receive

32F
28}
24§
20}
16}
12}
!
4|

Cost of Send Operation [Cycles]
receiving core

min =43
max = 166

48

12 16 20 24 28 32

sending core

360
320
280
240
200
160

1120
180
140

AMD Interlagos 4x4x2

Cost of Receive Operation [cycles]
receiving core

32 360

28 390

24 280

y 200

1160

12 120
3

80

4 s
4 8 12 16 20 24 28 32 —0

sending core

12

Complement with microbenchmarks: pairwise send and receive
AMD Interlagos 4x4x2

- Cost of Send Operation [Cycles] ~ Cost of Receive Operation [cycles]
receiving core receiving core
ST
28| max =166 320 28
é' 't Not symmetric!
16}
N Core 10 > Core 22: 137 + 282 = 419 cycles
oy Core 22 > Core 10: 159 + 351 = 510 cycles
Al

1 28 32

10

sending core

A Q 16 2'(&'4 28 32

sending core

360
320
230
240
200

1160
{120
180
140

13

Smelt

Using Smelt for group communication

Hardware Discovery
Cores
NUMA nodes

Smelt runtime

smelt topology create() {

#include <smelt/smelt.h> Smelt Algorithm

f—t

I

lstopo; /proc/cpu

void main() {

Measurements

smelt _init();
Micro-benchmarks

smelt topology create();

Treeto

pology

smelt_broadcast(msg); P —

Program Multicore Model

15

Smelt’s tree generator heuristics

Remote Cores First Avoid Expensive
Communication

soN.N..E..

Maximize Parallelism No redundancy

16

ETH:zurich

NUMA 3

NUMA 2

NUMA 1

send NUMA 0
receive

Broadcast on
AMD Shanghai 4x4x1

15
14
13
12

11
10

H~ U1 o (00)

S L N W

Simplified
Example

500

1000

1500

2000 Time [Cycles]

17

ETH:zurich

NUMA 3

NUMA 2
Heuristic #1:
Expensive first

send NUMA 0
receive

Broadcast on

AMD Shanghai 4x4x1

15
14
13
12

11
10

S L N W

500

Step 1: Pick the root
Core with the smallest
total send time to any
other core.

Step 2: Start Scheduler
Schedule cores to send
and receive messages

Apply Heuristics
Decide where to send
messages to

1000

1500

Simplified
Example

The tree is good,
But not optimal!

2000 Time [Cycles]

18

ETH:zurich

93

213 229
2 1 A 3 2 3 4 2 5
205 1 69 153 169 9 13 137 193 221
1 1 1 1 3 D 1
121 85 225 161 73 185 217 237 122 145

Smelt Tree for
Intel Xeon Phi using 61 cores

45

Smelt Tree for
Intel Sandy Bridge 4 Sockets x 8 Cores x 2 Threads

19

Evaluation Testbed

Intel

Architecture Cores/ Threads /
Socket Core
i 10

AMD
Architecture Cores/ Threads /

Socket Core
Wiagny Cos 2

2 2 Magny Cours 4 1
m 4 8 2 Barcelona 8 4 1
1 61 4 Shanghai 4 4 1
4 8 2 Interlagos 4 4 2
2 10 2 4 6 1

Full set of results online.

http://machinedb.systems.ethz.ch

20

Smelt produces good trees across architectures

AMD Interlagos (4 Socket x 4 Threads) Intel Xeon Phi (61 Threads)

Execution Time [kCycles] Execution Time [kCycles]
40 120
35

40

20 100
75 Best other - Cluster 80 Best other = Fibonacci/ Binary Tree
10 II

20 60
il >l i
I I II] II I 0 [] i = m B [] I I

15
Barrier Reduction Broadcast Barrier = Reduction Broadcast 2PC

B Binary Tree W Cluster H Sequential MST Fibonacci B Smelt

21

Smelt produces good trees across architectures

slowdown speedup
B 2 . . | | |
0.8 0.9 1.0 1.1 1.2 1.3 1.4

broadcast} 1.I24 1.(I)6 1.£l1 1.57 1.£l3 1.I10 1.I16 1.I15 1.(I)7 1.I22 1.(I)1 -

barrier} 1.12 1.07 130 141 1.09 1.08 1.13 1.03 1.09 1.38 1.02-

2PCt+21.127 109 122 135 1.10 1.13 111 107 117 133 1.01

reductionf 1.18 1.08 1.27 124 101 124 109 1.18 1.53 1.21 -
3 D o O

8 0 d 1 D N 0
M T BT NS b O T s g

LS
\@Oj\ &\ IL\\Q’ v ONENG *\\p@(“ >

Manufacturer Codename Sockets x Cores x Threads 22

Fast broadcast trees are good for reductions in most cases

Additional Cross-NUMA link

Smelt Tree on Intel Bloomfield 2x4x2

Cluster Topology on Intel Bloomfield 2x4x2

23

Smelt provides simple and fast barriers

Barrier Benchmark on Intel Sandy Bridge 4x8x2

Execution Time [kCycles]

45
40
35
30
25
20
15
10

5

0

32 Threads
H Dissemination

64 Threads
W Parlib MSC H Smelt

Barriers based on reduction and broadcast

void smelt barrier(void) {
smelt reduce();
smelt broadcast();

Simple barrier implementation

24

OpenMP: EPCC OpenMP Benchmark Collection AMD Interlagos 4x4x2

Execution Time [us]

25

/* epcc openmp barrier benchmark */ 20
void testbar() { 15

int j; 10
#pragma omp parallel private(j) 5 .
{ 0 =

for (j = @; j < innerreps; j++) {

delay(delaylength); PARALLEL BARRIER
#pragma omp barrier
} Explicit barrier Intel SandyBridge 4x8x2

}

} Implicit barrier at the end of parallel block

60
40
Replaced GOMP barrier with Smelt 20 I I
0 B e

=» Remaining results on the website PARALLEL BARRIER

H GOMP H Smelt

Execution Time [us]

25

Agreement Protocols: 1Paxos

—> aceept -~ broadcast -+ forward 1Paxos Benchmark on AMD Interlagos 4x4x2
P/L leader P Proposer a acceptor @]earner

Execution Time [kCycles]

60
P/L P P P 50
‘) 40
A EIIoe—— 30
N R 20
A n,
DO 1gI|I|IIII
8 12 16 20 24 28
4 clients to generate load Number of Replicas
N replicas executing 1Paxos W Original Broadcast M Smelt Broadcast

26

ETH:zurich

Summary

Broadcasts and reductions are central building blocks

No globally optimal tree topology

Information from hardware discovery is not sufficient

Smelt’s produces good trees

machinedb.systems.ethz.ch

Talk to us at
the first poster
session

reduction| 1.18 1.08 124 109 118 153 121
N 0
R th% 1 *\\‘Mb‘* P *x'“ *Cq,w@'*
RSN N s R AT AR
. b m/libsmel
github.com/libsmelt

27

