
Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos, Timothy Roscoe

Systems Group, Department of Computer Science, ETH Zurich

1

Smelt:
Machine-aware Atomic Broadcast Trees for Multicores

2

Large number of trees: topologies and send orders

Number of
cross NUMA

links?

Tree
Topology?

Root of
the tree?

Send order of
messages?

Maximum
out degree?

Large number of possible trees

topology + message send order

0

5

10

15

20

25

30

35

40

Barrier Reduction Broadcast 2PC

Binary Tree Cluster Sequential MST Fibonacci

3

There is no globally optimal tree structure

0

20

40

60

80

100

120

Barrier Reduction Broadcast 2PC

Cluster topology wins Binary tree or Fibonacci win

AMD Interlagos (4 Socket x 4 Cores x 2 Threads) Intel Xeon Phi (61 Cores x 1 Thread)

Execution Time [kCycles] Execution Time [kCycles]

4

Tree Generation

Time

𝑡𝑠𝑒𝑛𝑑

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑡𝑠𝑒𝑛𝑑

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

Multicore Model

Smelt: Automatic optimization of
broadcast and reduction trees

5

Example: Building fast and simple barriers

0

5

10

15

20

25

30

35

40

45

Barrier implementation

Dramatic improvement through
automatic optimization of
communication patterns

Barrier Benchmark on Intel Sandy Bridge 4x8x2
Execution Time [kCycles]

Dissemination Parlib MCS Smelt

7x

3x

6

Broadcasts and reductions are central building blocks for parallel programs

Performance

Atomic broadcasts

Replication for data
locality

e.g. Shoal, Carrefour,
SMMP OS, FOS

Fault-Tolerance

Agreement protocols,
atomic broadcasts

Replication for failure
resilience

e.g. 1Paxos

Execution Control

Reductions, broadcast,
barriers

Thread synchronization,
data gathering

e.g. OpenMP

7

Multicore hardware is complex

Interconnect / coherence
protocol complexity

Distributed
resources

Hardware parallelism

Hierarchical:
thread/cores

caches/memory

Intel Sandy Bridge 4x8x2

Generate a good tree
topology and schedules

automatically

▪ Works well for our approach.

▪ Clear concept: Enables reasoning about send and receive costs

8

Smelt is based on peer-to-peer message passing

cache-line sized slot

Thread 1 Thread 2

shared memory page

shared memory page

Core 1

Core 2

Time [10ns]

Core 3

Core 4

Machine 1

Machine 2

Machine 3

Machine 4

Classical Network Multicore interconnect

9

Message-passing on multicores is different

Time [1us]

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑡𝑠𝑒𝑛𝑑 𝑡𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒

𝑡𝑠𝑒𝑛𝑑

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑡𝑠𝑒𝑛𝑑 𝑡𝑠𝑒𝑛𝑑

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒

On multicores send and receive times dominate propagation time

Goal: Minimize total time of the broadcast

▪ 𝑡𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 = 𝑡𝑙𝑎𝑠𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡

▪ Minimize the longest path from the root to the leaves.

10

Minimizing the total time of a broadcast

Root Leaf

𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒1 𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒2𝑡𝑠𝑒𝑛𝑑1 𝑡𝑠𝑒𝑛𝑑2

𝑡𝑝𝑎𝑡ℎ = ∑(𝑡𝑠𝑒𝑛𝑑 + 𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒)

We need to know the send and receive cost between any pair of cores

11

Information obtained from hardware discovery

$ numactl –hardware
node distances:
node 0 1 2 3 4 5 6 7
0: 10 16 16 22 16 22 16 22
1: 16 10 22 16 16 22 22 16
2: 16 22 10 16 16 16 16 16
3: 22 16 16 10 16 16 22 22
4: 16 16 16 16 10 16 16 22
5: 22 22 16 16 16 10 22 16
6: 16 22 16 22 16 22 10 16
7: 22 16 16 22 22 16 16 10

$ lscpu
CPU(s): 64
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 4
NUMA node(s): 8
L1d cache: 16K
L1i cache: 64K
L2 cache: 2048K
L3 cache: 6144K
NUMA node0 CPU(s): 0,4,8,12,16,20,24,28
NUMA node1 CPU(s): 32,36,40,44,48,52,56,60
NUMA node2 CPU(s): 2,6,10,14,18,22,26,30
NUMA node3 CPU(s): 34,38,42,46,50,54,58,62
NUMA node4 CPU(s): 3,7,11,15,19,23,27,31
NUMA node5 CPU(s): 35,39,43,47,51,55,59,63
NUMA node6 CPU(s): 1,5,9,13,17,21,25,29
NUMA node7 CPU(s): 33,37,41,45,49,53,57,61

AMD Interlagos 4x4x2

Doesn’t distinguish between
send() and recv()

4

2

2

4Symmetric: A→B == B→A

NUMA distance: abstract value

12

Complement with microbenchmarks: pairwise send and receive

Cost of Send Operation [Cycles] Cost of Receive Operation [cycles]

sending core sending core

receiving core receiving core

AMD Interlagos 4x4x2

min = 43
max = 166

min = 43
max = 360

13

Complement with microbenchmarks: pairwise send and receive

Cost of Send Operation [Cycles] Cost of Receive Operation [cycles]

sending core sending core

receiving core receiving core

AMD Interlagos 4x4x2

min = 43
max = 166

min = 43,
max = 360

10

22 137

10

22 282

22

10 159

22

10 351

Not symmetric!

Core 10 → Core 22: 137 + 282 = 419 cycles
Core 22 → Core 10: 159 + 351 = 510 cycles

14

Smelt

15

Using Smelt for group communication

Multicore ModelProgram

Hardware Discovery
Cores
NUMA nodes

lstopo; /proc/cpu

Measurements
Micro-benchmarks

#include <smelt/smelt.h>

void main() {

smelt_init();

smelt_topology_create();

smelt_broadcast(msg);

}

Smelt runtime

smelt_topology_create() {

}

Smelt Algorithm

Tree topology

16

Smelt’s tree generator heuristics

Remote Cores First

1

Avoid Expensive
Communication

No redundancy

r

1

2

3

4

Maximize Parallelism

r

rr

17

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

NUMA 3

NUMA 2

NUMA 1

NUMA 0

500 1000 1500 20000

Broadcast on
AMD Shanghai 4x4x1

send
receive

Simplified
Example

Time [Cycles]

18

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

NUMA 3

NUMA 2

NUMA 1

NUMA 0

500 1000 1500 20000

207 199 198 184

186564

450

455

Heuristic #1:
Expensive first

Broadcast on
AMD Shanghai 4x4x1

send
receive

Simplified
Example

Time [Cycles]

184 183 183

186 183 183

188 188 187

187187188455

357

357

356

352

350

350

354

350

350

357

355

353Step 1: Pick the root
Core with the smallest
total send time to any
other core.

Step 2: Start Scheduler
Schedule cores to send
and receive messages

Apply Heuristics
Decide where to send
messages to

The tree is good,
But not optimal!

19

Smelt Tree for
Intel Sandy Bridge 4 Sockets x 8 Cores x 2 Threads

Smelt Tree for
Intel Xeon Phi using 61 cores

20

Evaluation Testbed

Architecture Sockets Cores /
Socket

Threads /
Core

Magny Cours 4 12 1

Barcelona 8 4 1

Shanghai 4 4 1

Interlagos 4 4 2

Istanbul 4 6 1

Architecture Sockets Cores /
Socket

Threads /
Core

Ivy Bridge 2 10 2

Nehalem 4 8 2

Knights Corner 1 61 4

Sandy Bridge 4 8 2

Sandy Bridge 2 10 2

Bloomfield 2 4 2

Full set of results online.

http://machinedb.systems.ethz.ch

Intel AMD

0

5

10

15

20

25

30

35

40

Barrier Reduction Broadcast 2PC

Binary Tree Cluster Sequential MST Fibonacci Smelt

21

Smelt produces good trees across architectures

0

20

40

60

80

100

120

Barrier Reduction Broadcast 2PC

AMD Interlagos (4 Socket x 4 Threads) Intel Xeon Phi (61 Threads)
Execution Time [kCycles] Execution Time [kCycles]

Best other = Cluster Best other = Fibonacci / Binary Tree

22

Smelt produces good trees across architectures

Manufacturer Codename Sockets x Cores x Threads

slowdown speedup

Cluster Topology on Intel Bloomfield 2x4x2Smelt Tree on Intel Bloomfield 2x4x2

23

Fast broadcast trees are good for reductions in most cases

Additional Cross-NUMA link

0
5

10
15
20
25
30
35
40
45

32 Threads 64 Threads
Dissemination Parlib MSC Smelt

Barriers based on reduction and broadcast

24

Smelt provides simple and fast barriers

Execution Time [kCycles]

Barrier Benchmark on Intel Sandy Bridge 4x8x2

Simple barrier implementation

void smelt_barrier(void) {
smelt_reduce();
smelt_broadcast();

}

25

OpenMP: EPCC OpenMP Benchmark Collection

/* epcc openmp barrier benchmark */
void testbar() {

int j;
#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++) {
delay(delaylength);
#pragma omp barrier

}
}

} Implicit barrier at the end of parallel block

Explicit barrier

➔ Remaining results on the website

0

5

10

15

20

25

PARALLEL BARRIER

AMD Interlagos 4x4x2

0

20

40

60

PARALLEL BARRIER

Intel SandyBridge 4x8x2

GOMP Smelt

Execution Time [us]

Execution Time [us]

Replaced GOMP barrier with Smelt

26

Agreement Protocols: 1Paxos

0

10

20

30

40

50

60

8 12 16 20 24 28

Number of Replicas

Original Broadcast Smelt Broadcast

4 clients to generate load
N replicas executing 1Paxos

Execution Time [kCycles]

1Paxos Benchmark on AMD Interlagos 4x4x2

▪ Broadcasts and reductions are central building blocks

▪ No globally optimal tree topology

▪ Information from hardware discovery is not sufficient

▪ Smelt’s produces good trees

27

Summary
Talk to us at

the first poster
session

machinedb.systems.ethz.ch github.com/libsmelt

