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Model based system configuration and tasteful hardware



▪ Operating systems wrongly assume a single, uniform address space

▪ DeviceTrees fail to express important details of the hardware configuration

▪ Programming devices imposes a lot of constraints on resource 
management (memory regions, interrupts, …)

Tasteful hardware – or the pursuit of happiness for a systems programmer

Ideally, we like to accurately express hardware 
configuration and then generate a configuration for it. 
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Tasteful hardware – or the textbook abstraction
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Problem: 
over simplified, not accurate and simply wrong
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Reality: The devil is in the details
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Your mobile phone… 5-10 years ago!

Takeaway: There are many details
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There is NO uniform view of the system
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OS and DeviceTrees assume there is a single address space

It’s impossible to construct one



▪ Experience from the Barrelfish operating system: 
dealing with this complexity every day. 
▪ PCI programming, devices and device drivers, 

▪ Heterogeneity, new architectures, interconnects and platforms

▪ Resource management: memory allocation, interrupt vectors, …

▪ We don’t want to make the same wrong/imprecise assumptions

▪ Provide a sound hardware description to facilitate system software 
verification
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We need an accurate representation of hardware

Barrelfish.org



▪ Write correct systems code, and do this fast
Memory management, device drivers, support for new platforms and architectures

▪ Make accurate statements about hardware platforms
At which address can a core/device access memory, what are the access constraints

▪ Generate system configuration and synthesize configuration algorithms
Page tables, DMA bus addresses
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System programmer’s wishes



1. Formal model to accurately represent memory and interrupts subsystems

2. Generate configuration based on the model specification

3. Model refinement example using MIPS R4600 TLB
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Outline



1. A formal model for memory accesses and interrupts
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▪ Close to hardware: capture as much details as possible

▪ Represent the interactions between the components
signal path of a memory access / interrupt

▪ Enable different views/observers of the system
e.g. cores / devices see the system differently
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Design goals of the formal model
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Interaction of hardware components on the OMAP4460
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▪ The model is a decoding net, a directed graph

▪ Hardware components  nodes
Address spaces, translation units, devices, 
interrupt controllers, interconnects, …

▪ Formally: assignment of identifiers to nodes
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Modelling memory accesses and interrupts as a decoding net
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▪ Nodes have two properties: 
▪ Accept: set of addresses this node responds to

▪ Translate: map input address at node to a name

▪ Name is a qualified address at a node: 𝑛𝑎𝑚𝑒 = (ℕ,ℕ)
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Modelling memory accesses and interrupts as a decoding net
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A possible decoding net for the OMAP 4460
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Modelling the access to byte 0x0 of DRAM from an A9 core

L3 Interconnect

DRAM

2

Resolve a name
(node, address)

Resolve: (0, 0x4001000)

VA9:0

PA9:0

3

Each node has a label

0

1

(1, 0x8000000)

(3, 0x0)

(2, 0x8000000)

0x8000000
0xbffffff

0x8000000
0xbffffff

0x4001000
0x4001fff

Accept 0x0

0x0000000
0x4000000

Model of one particular, static 
configuration state



View Equivalence
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▪ Express the hardware configuration as a decoding net model

▪ View equivalence preserving transformations for a fixed observer

▪ Formally proven using Isabelle/HOL 

▪ Memory access – Interrupt duality:
The model is also applicable to the Interrupt subsystem
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Summary



2. Sockeye: Generate Hardware Configurations 

Daniel Schwyn, Master’s Thesis
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▪ At boot, the kernel needs to know about memory, devices, cores etc.
➔ Devices trees assumes a uniform view

▪ Our formal model accurately describes hardware
➔ generate hardware configuration based on the model (e.g. page tables)
➔ use description for runtime decisions (e.g. memory allocation)

▪ Sockeye: a domain specific language to describe the hardware configuration
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Application of the model in the context of SoC and hardware discovery
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Sockeye: a DSL for describing hardware

Models for x86 desktop & servers,
Xeon Phi, InfiniBand Cluster,
Intel’s Single Chip Cloud Computer

Sockeye Code

Sockeye: DSL + prolog queries



▪ Observation: resource allocation and hardware configuration can be 
expressed as a constrained satisfaction problem. 
e.g. PCI programming, DMA, …

▪ Barrelfish’s approach: SKB = Prolog engine + constraint solver

▪ Information about the system is stored as Prolog facts in the SKB

▪ Prolog queries express allocation policies and configuration constraints
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Background: Barrelfish’s System Knowledge Base
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Sockeye Compiler: Generate the decoding net model

Sockeye Compiler

Prolog facts

omap44xx.soc

net('SRAM',node(memory,[block(16'0,16'3fffffff)],[],'@none')).
net('BOOT_ROM',node(memory,[block(16'0,16'bfff)],[],'@none')).
net('L3_OCM_RAM',node(memory,[block(16'0,16'dfff)],[],'@none')).
net('SDRAM',node(memory,[block(16'0,16'3fffffff)],[],'@none')).

Sockeye compiler converts the description into 
the decoding net model expressed as Prolog facts
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Application: Generation of kernel page tables

kernelPageTable = pageTableWith {
cpu = "CORTEXA9",
mainMemory = "SDRAM",
devices = [ "UART3", "SCU“]

},

Prolog facts 
generated by Sockeye

Kernel page 
table generator

union arm_l1_entry l1_table[ARM_L1_MAX_ENTRIES]
__attribute__((aligned(ARM_L1_ALIGN), section(".boot.tables"))) =

{
[L1_TABLE_INDEX(0x7FE00000)] = L1_DEVICE_ENTRY(0x7FE00000),
[L1_TABLE_INDEX(0x7FF00000)] = L1_DEVICE_ENTRY(0x7FF00000), …
[L1_TABLE_INDEX(0x80000000)] = L1_MEMORY_ENTRY(0x80000000),
[L1_TABLE_INDEX(0x80100000)] = L1_MEMORY_ENTRY(0x80100000), …

}



DMA bus address allocation is required to satisfy various constraints

A good fit for the SKB:

▪ The decoding net model can resolve all reachable memory regions from 
the DMA device

▪ Express the constraints as a prolog query to get usable memory regions
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Application: Memory allocation



▪ Describe hardware configuration in the Sockeye DSL

▪ Obtain a Prolog representation of the decoding net model

▪ Generate hardware configuration

▪ Using Barrelfish’s SKB to perform DMA bus address allocation
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Summary: Configuration generation



3. Case Study with the MIPS R4600 TLB
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▪ Software loaded TLB: explicit management of the TLB entries
→ we don’t need to worry about hardware page table walker

▪ We want to express the MIPS R4600 TLB in the decoding net model

▪ Main Question: Can we refine the abstract decoding net node to a 
dynamic TLB node?  
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MIPS R4600 TLB Case study
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MIPS R4600 TLB entry format at a glance



▪ Formal specification of 
the four TLB operations  
with pre and post 
conditions

▪ Proofs on operations 
e.g. commutativity of 
updates, …
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Modelling the MIPS R4600 TLB in Isabelle/HOL



▪ Defined an lifting function from MIPS TLB to decoding net node.

▪ Formal proof in Isabelle/HOL that an entry update of a well-formed MIPS 
TLB is reflected at the map function of the decoding net node
e.g. write entry e to index i:
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Refinement of the decoding net

TLB TLB’

node node’

tlb’ = tlbwr i e tlb

convert convert

node’= update_map olde e node



“The R4600/R4700 does not provide any detection or shutdown mechanism for multiple 
matches in the TLB. There is no damage possible from this condition. The result is 
undefined for this condition.  Software is expected never to allow this to occur”

-- MIPS R4600 Manual

We say a TLB is valid, if all it’s entries are well formed and there is at most one 
entry that matches a particular VPN
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Invariant for the MIPS R4600 TLB

An address must never match two entries at the same time. 



“The contents of all registers in the CPU are undefined when this [reset] 
exception occurs, except for the following register fields: […]”

-- MIPS R4600 Manual

▪ Therefore: at reset, the TLB entries are undefined and considered random.

▪ TLB is enabled at boot time, cannot be enabled 

▪ Theorem ∃𝑡. 𝑇𝐿𝐵_𝑖𝑛_𝑟𝑒𝑠𝑒𝑡 𝑡 ∧ ¬ 𝑇𝐿𝐵𝑉𝑎𝑙𝑖𝑑 𝑡
A proof that there exists a TLB in reset which is invalid at the same time
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The Invariant cannot be satisfied!



▪ Formal model of the MIPS R4600 TLB in Isabelle/HOL

▪ Refinement: from the decoding net node to detailed real hardware

▪ Invariant cannot be satisfied: 
At reset, the TLB is in an undefined (random) state and may contain two 
matching entries
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Summary: MIPS TLB Case study

github.com/BarrelfishOS
(soon)
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Summary Barrelfish.org

Sockeye Compiler

Configuration

Refinement at the example
of a software loaded TLB
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Future work: towards verified configuration

System (re-)configuration

𝐶𝑖 𝐶𝑖+1

▪ Synthesize configuration procedures with 
transitions between configurations without 
violation of invariants

▪ Modularization of Sockeye

▪ Distinguish read and write accesses as they do 
not have the same semantics, read-only

Distinction of Read/Write 
accesses


