
Reto Achermann, Lukas Humbel, Daniel Schwyn, David Cock and Timothy Roscoe

Systems Group, Department of Computer Science, ETH Zurich

1

Model based system configuration and tasteful hardware

▪ Operating systems wrongly assume a single, uniform address space

▪ DeviceTrees fail to express important details of the hardware configuration

▪ Programming devices imposes a lot of constraints on resource
management (memory regions, interrupts, …)

Tasteful hardware – or the pursuit of happiness for a systems programmer

Ideally, we like to accurately express hardware
configuration and then generate a configuration for it.

0 4G2G 3G1G

Physical Address Space

3

Tasteful hardware – or the textbook abstraction

Virtual Address Space

0 4G

ARM A9 Core 0

DRAM

Virtual Address Space

0 4G

ARM A9 Core 1

MMU MMU

Ti OMAP 4460 SoC

SDMA Device

Problem:
over simplified, not accurate and simply wrong

4

Reality: The devil is in the details

RAM RAM

ROM

SRAM

Private and shared
memory

L4
 P

ER

L4
 C

FG

L4
 W

K
U

P

L3 Interconnect
5+ Interconnects

L4
 A

B
E

GPT5

EHCI

SDMA

Devices attached
to different

interconnects

KB

GPIO

6+ heterogeneous
cores A9 A9 DSP M3M3

GFX

Complex interrupt
subsystem

II I
I

I I

I

I

I
OMAP 4460 SoC,
Technical Reference Manual

Next we
zoom in here

Your mobile phone… 5-10 years ago!

Takeaway: There are many details

M3

GPT5

0x38000/12

5

There is NO uniform view of the system

GPT5

A9

GPT5 Priv GPT5 L3

40138000/12 49038000/12

DSP

01D38000/12 49038000/12

GPT5 Priv GPT5 L3

L3 Interconnect

L4
 A

B
E M3

DSP
A9

I

I

I
I

OMAP 4460 SoC

OS and DeviceTrees assume there is a single address space

It’s impossible to construct one

▪ Experience from the Barrelfish operating system:
dealing with this complexity every day.
▪ PCI programming, devices and device drivers,

▪ Heterogeneity, new architectures, interconnects and platforms

▪ Resource management: memory allocation, interrupt vectors, …

▪ We don’t want to make the same wrong/imprecise assumptions

▪ Provide a sound hardware description to facilitate system software
verification

6

We need an accurate representation of hardware

Barrelfish.org

▪ Write correct systems code, and do this fast
Memory management, device drivers, support for new platforms and architectures

▪ Make accurate statements about hardware platforms
At which address can a core/device access memory, what are the access constraints

▪ Generate system configuration and synthesize configuration algorithms
Page tables, DMA bus addresses

7

System programmer’s wishes

1. Formal model to accurately represent memory and interrupts subsystems

2. Generate configuration based on the model specification

3. Model refinement example using MIPS R4600 TLB

8

Outline

1. A formal model for memory accesses and interrupts

9

map

accept

accept

Node

Node

▪ Close to hardware: capture as much details as possible

▪ Represent the interactions between the components
signal path of a memory access / interrupt

▪ Enable different views/observers of the system
e.g. cores / devices see the system differently

10

Design goals of the formal model

11

Interaction of hardware components on the OMAP4460

L4 PWR

L4 CFG

L4 WKUP

L3 Interconnect

A9:0

M3:0 M3:0DSPGPT5

EHCI

SDMA

GFX

DRAM0 DRAM1

SRAM

A9:1 L4 ABE

GPIO

GPIO

M3:RAM

Observation: hardware components
have well defined input and output
ports.

➔ Directed graph

▪ The model is a decoding net, a directed graph

▪ Hardware components  nodes
Address spaces, translation units, devices,
interrupt controllers, interconnects, …

▪ Formally: assignment of identifiers to nodes

12

Modelling memory accesses and interrupts as a decoding net

𝑛𝑒𝑡: ℕ → 𝑛𝑜𝑑𝑒

map

accept

accept

Node

Node

▪ Nodes have two properties:
▪ Accept: set of addresses this node responds to

▪ Translate: map input address at node to a name

▪ Name is a qualified address at a node: 𝑛𝑎𝑚𝑒 = (ℕ,ℕ)

13

Modelling memory accesses and interrupts as a decoding net

map

accept

accept

Node

Node
node:

𝑎𝑐𝑐𝑒𝑝𝑡 ∷ 𝑛𝑜𝑑𝑒 → ℕ
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 ∷ 𝑛𝑜𝑑𝑒 → ℕ → {𝑛𝑎𝑚𝑒}

14

A possible decoding net for the OMAP 4460

L4 PWR

L4 CFG

L4 WKUP

L3 Interconnect

A9:0

M3:0 M3:0DSPGPT5

EHCI

SDMA

GFX

DRAM0 DRAM1

SRAM

A9:1 L4 ABE

GPIO

GPIO

M3:RAM

Showing possible accesses
from one node to another

How does the Cortex A9:0
Access byte 0x0 of DRAM?

15

Modelling the access to byte 0x0 of DRAM from an A9 core

L3 Interconnect

DRAM

2

Resolve a name
(node, address)

Resolve: (0, 0x4001000)

VA9:0

PA9:0

3

Each node has a label

0

1

(1, 0x8000000)

(3, 0x0)

(2, 0x8000000)

0x8000000
0xbffffff

0x8000000
0xbffffff

0x4001000
0x4001fff

Accept 0x0

0x0000000
0x4000000

Model of one particular, static
configuration state

View Equivalence

Resolve: (0, 0x4001000)

L3 Interconnect 2

VA9:0

PA9:0

(1, 0x8000000)

(3, 0x0)

(2, 0x8000000)

0x8000000
0xbffffff

0x8000000
0xbffffff

0x4001000
0x4001fff

DRAM

Accept 0x0

0x0000000
0x4000000

Resolve: (0’, 0x4001000)

T1
0x4001000
0x4001fff

(3, 0x0)

0’1

0

For ONE observer the flattened representation is equivalent to
the textbook abstraction

▪ Express the hardware configuration as a decoding net model

▪ View equivalence preserving transformations for a fixed observer

▪ Formally proven using Isabelle/HOL

▪ Memory access – Interrupt duality:
The model is also applicable to the Interrupt subsystem

17

Summary

2. Sockeye: Generate Hardware Configurations

Daniel Schwyn, Master’s Thesis

18

▪ At boot, the kernel needs to know about memory, devices, cores etc.
➔ Devices trees assumes a uniform view

▪ Our formal model accurately describes hardware
➔ generate hardware configuration based on the model (e.g. page tables)
➔ use description for runtime decisions (e.g. memory allocation)

▪ Sockeye: a domain specific language to describe the hardware configuration

19

Application of the model in the context of SoC and hardware discovery

20

Sockeye: a DSL for describing hardware

Models for x86 desktop & servers,
Xeon Phi, InfiniBand Cluster,
Intel’s Single Chip Cloud Computer

Sockeye Code

Sockeye: DSL + prolog queries

▪ Observation: resource allocation and hardware configuration can be
expressed as a constrained satisfaction problem.
e.g. PCI programming, DMA, …

▪ Barrelfish’s approach: SKB = Prolog engine + constraint solver

▪ Information about the system is stored as Prolog facts in the SKB

▪ Prolog queries express allocation policies and configuration constraints

21

Background: Barrelfish’s System Knowledge Base

22

Sockeye Compiler: Generate the decoding net model

Sockeye Compiler

Prolog facts

omap44xx.soc

net('SRAM',node(memory,[block(16'0,16'3fffffff)],[],'@none')).
net('BOOT_ROM',node(memory,[block(16'0,16'bfff)],[],'@none')).
net('L3_OCM_RAM',node(memory,[block(16'0,16'dfff)],[],'@none')).
net('SDRAM',node(memory,[block(16'0,16'3fffffff)],[],'@none')).

Sockeye compiler converts the description into
the decoding net model expressed as Prolog facts

23

Sockeye Runtime Environment

Sockeye Compiler

Compile time

Sockeye
hardware

description

Prolog facts Prolog +
constraint solver

Runtime

System Knowledge Base

Memory
allocator

Queries

PCI
configuration

Prolog +
constraint solver

Configuration
Configuration

Configuration

24

Application: Generation of kernel page tables

kernelPageTable = pageTableWith {
cpu = "CORTEXA9",
mainMemory = "SDRAM",
devices = ["UART3", "SCU“]

},

Prolog facts
generated by Sockeye

Kernel page
table generator

union arm_l1_entry l1_table[ARM_L1_MAX_ENTRIES]
__attribute__((aligned(ARM_L1_ALIGN), section(".boot.tables"))) =

{
[L1_TABLE_INDEX(0x7FE00000)] = L1_DEVICE_ENTRY(0x7FE00000),
[L1_TABLE_INDEX(0x7FF00000)] = L1_DEVICE_ENTRY(0x7FF00000), …
[L1_TABLE_INDEX(0x80000000)] = L1_MEMORY_ENTRY(0x80000000),
[L1_TABLE_INDEX(0x80100000)] = L1_MEMORY_ENTRY(0x80100000), …

}

DMA bus address allocation is required to satisfy various constraints

A good fit for the SKB:

▪ The decoding net model can resolve all reachable memory regions from
the DMA device

▪ Express the constraints as a prolog query to get usable memory regions

25

Application: Memory allocation

▪ Describe hardware configuration in the Sockeye DSL

▪ Obtain a Prolog representation of the decoding net model

▪ Generate hardware configuration

▪ Using Barrelfish’s SKB to perform DMA bus address allocation

26

Summary: Configuration generation

3. Case Study with the MIPS R4600 TLB

27

▪ Software loaded TLB: explicit management of the TLB entries
→ we don’t need to worry about hardware page table walker

▪ We want to express the MIPS R4600 TLB in the decoding net model

▪ Main Question: Can we refine the abstract decoding net node to a
dynamic TLB node?

28

MIPS R4600 TLB Case study

29

MIPS R4600 TLB entry format at a glance

▪ Formal specification of
the four TLB operations
with pre and post
conditions

▪ Proofs on operations
e.g. commutativity of
updates, …

30

Modelling the MIPS R4600 TLB in Isabelle/HOL

▪ Defined an lifting function from MIPS TLB to decoding net node.

▪ Formal proof in Isabelle/HOL that an entry update of a well-formed MIPS
TLB is reflected at the map function of the decoding net node
e.g. write entry e to index i:

31

Refinement of the decoding net

TLB TLB’

node node’

tlb’ = tlbwr i e tlb

convert convert

node’= update_map olde e node

“The R4600/R4700 does not provide any detection or shutdown mechanism for multiple
matches in the TLB. There is no damage possible from this condition. The result is
undefined for this condition. Software is expected never to allow this to occur”

-- MIPS R4600 Manual

We say a TLB is valid, if all it’s entries are well formed and there is at most one
entry that matches a particular VPN

32

Invariant for the MIPS R4600 TLB

An address must never match two entries at the same time.

“The contents of all registers in the CPU are undefined when this [reset]
exception occurs, except for the following register fields: […]”

-- MIPS R4600 Manual

▪ Therefore: at reset, the TLB entries are undefined and considered random.

▪ TLB is enabled at boot time, cannot be enabled

▪ Theorem ∃𝑡. 𝑇𝐿𝐵_𝑖𝑛_𝑟𝑒𝑠𝑒𝑡 𝑡 ∧ ¬ 𝑇𝐿𝐵𝑉𝑎𝑙𝑖𝑑 𝑡
A proof that there exists a TLB in reset which is invalid at the same time

33

The Invariant cannot be satisfied!

▪ Formal model of the MIPS R4600 TLB in Isabelle/HOL

▪ Refinement: from the decoding net node to detailed real hardware

▪ Invariant cannot be satisfied:
At reset, the TLB is in an undefined (random) state and may contain two
matching entries

34

Summary: MIPS TLB Case study

github.com/BarrelfishOS
(soon)

35

Summary Barrelfish.org

Sockeye Compiler

Configuration

Refinement at the example
of a software loaded TLB

36

Future work: towards verified configuration

System (re-)configuration

𝐶𝑖 𝐶𝑖+1

▪ Synthesize configuration procedures with
transitions between configurations without
violation of invariants

▪ Modularization of Sockeye

▪ Distinguish read and write accesses as they do
not have the same semantics, read-only

Distinction of Read/Write
accesses

