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▪ Platform support: Cavium ThunderX / 
Xeon Phi co-processor / ARM 
FastModels

▪ Drivers: USB Stack / DMA Engines / 
Xeon Phi / CPU / IOMMU 

▪ Runtimes: OpenMP / libnuma / 
message-passing

▪ Extensions to the capability system

▪ Domain Specific Languages

▪ Memory management 

▪ Message-passing system

▪ Memory allocation policies

▪ Page-table replication

▪ Kernel modules
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My Operating Systems Coding Experiences

A deep dissatisfaction about the way operating systems abstract and 
represent hardware.
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Computer Architecture 101

Computer Systems, A Programmer’s Perspective by Randal E. Bryant and David R. O’Hallaron

Operating System Assumptions:
• A single, flat physical address space
• physical address as a unique identifier
• homogeneous views from all 

CPUs and devices

Process 0 Process 1

MMU

Main Memory

memory bus
CPU

The OS just runs on a new platform
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Reality: Hardware Violates the Assumptions Made by Operating Systems

RAM RAM

ROM

SRAM

Private and shared 
memory

L4
 P

ER

L4
 C

FG

L4
 W
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U

P

L3 Interconnect5+ Interconnects

L4
 A

B
E

GPT5

EHCI

SDMA

Devices attached 
to different 

interconnects

KB

GPIO

6+ heterogeneous 
cores A9 A9 DSP M3M3

GFX

Texas Instruments OMAP 4460 SoC,Technical Reference Manual

TexasInstruments OMAP4460, Q4 2011

Firewalls

FW FW FW FW FW FW

FWFW

Next, we 
zoom in here

A heterogeneous network of cores, 
interconnects, devices and memory.
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Ambiguous Physical Addresses and Non-Uniform Views

GPT5

A9

GPT5 Priv GPT5 L3

40138000/12 49038000/12

DSP

01D38000/12 49038000/12

GPT5 Priv GPT5 L3

L3 Interconnect

L4
 A

B
E M3

DSP
A9

I

I

I
I

OMAP 4460 SoC

General Purpose Timer
Like an alarm clock, set a time 

and get interrupted in the 
future

There are multiple physical addresses for the same device!
0x40138000/12  0x49038000/12  0x01D38000/12  0x00038000/12

Problem: There is no right address.

This contradicts hardware model of operating systems. 
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Complicated Memory Topologies are a Universal Problem

Secure and non-secure
(ARM TrustZone / Intel SGX)

Co-Processors
(Intel Xeon Phi)

Segmentation
(x86 / Power)

Memory Controller 
remappings

Intel Single Chip Cloud 
Computer

Fabric Attached Memory
(GenZ / The Machine)

Direct Segments

Page Overlays

Platforms are highly diverse. 

Address translations are configurable.

Handling each of these as a special case does not scale:
error prone & time consuming.



Bugs and vulnerabilities in systems software: 
▪ CVE-2014-3601:  Miscalculation of affected pages

▪ CVE-2016-5349:  Not enough memory address information provided

▪ CVE-2017-8061:  Wrong DMA addresses

▪ CVE-2017-16994: Ignoring holes in huge-pages

▪ CVE-2014-9888:  wrong access rights for data pages

▪ CVE-2019-2250:  authorization bug allows writing to memory locations

▪ CVE-2018-11994: SMMU misconfiguration allows access to memory

▪ 30% of patches to Linux memory manager are bugfixes
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Mismatch: Hardware Abstraction in Operating System Real Hardware

This mismatch is a problem – the OS does not seem to get it right
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My Research Focus

Design and Implementation of 
Operating Systems

Domain Specific Languages for 
Systems Engineering

Applying Formal Methods to 
Operating Systems and Hardware 

Specification

My goal:
A sound basis for 
reasoning about 
reliable operating 
system on any 
hardware platform.
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A new model to express 
memory addressing on 

modern machines
Generate OS code and 

hardware configuration

Express changes of the 
configuration and the 

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management 
in Operating Systems
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A More Realistic View of the Platform

Computer Systems, A Programmer’s Perspective by Randal E. Bryant and David R. O’Hallaron

Interconnects:
- Configurable, multi-stage translations
- Configurable Firewalls
- Private access ports

Configurable I/O bus:
- PCI bridge programming
- PCI hot-plug
- I/O MMUs / System MMUs
- Virtualization

Processors
- Core-Local resources
- Cache Hierarchy, operation modes
- Configurable Multi-Stage Translation
- Virtualization

Devices
- Memory access restrictions
- Configurable Translations
- Self-virtualization

… all systems have a distinct look 
and feel. The figure does not 
realistically represent an actual 
system. 

The OS 
must 

correctly 
configure

these 

The OS needs to be ported:
• Requires engineering effort
• Manual process: source of bugs 

(more engineering effort)



▪ Industry Standards: DeviceTrees / UEFI / ACPI / USB / PCI Express
▪ Limited topology information,  not available everywhere

▪ Assumptions: a uniform view & unique physical addresses

▪ Memory & Processor Models: ARM’s ASL and Sewell et al. 
▪ Model the behavior of instructions and memory requests 

▪ Stop at processor boundaries

▪ Verified Operating Systems: seL4, CertiKOS
▪ Proofs based on a linear flat array to physical memory
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Specification and Modeling Hardware

➔ Insufficient for accurate 
hardware representation

➔ Complimentary problem 
orthogonal to address 
translation

➔ Proofs need an accurate 
hardware representation
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The Address Space Abstraction – A more faithful view of Memory Hardware

▪ Memory management needs an 
unambiguous reference to physical 
resources. 

▪ Address Space (Naming Problem)
▪ Context for resolving addresses

▪ Range of address values e.g. [0, 2b)

▪ Regions of address mappings

▪ Regions of local resources

Local Resource Mapping

ASID 0

0

0x00000000
0x0fffffff

0x00000000
0x0fffffff

0x40000000
0x4fffffff

ASID 1

0 f..f

f..f

Unambiguous 
addresses within an 

address spaces context

(AdressSpace 0, 0x4000000)

New Address Space:
- Ambiguous addresses 
- different interpretation of addresses

[HotOS’15]
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NUMA Node 0 NUMA Node 1

QPI

Intel Xeon CPU

10 Cores

Intel Xeon CPU

10 Cores

Main Memory Main Memory

Intel Xeon Phi

GDDR 
Memory

DMA 
Engine 57 Cores

PCI Express 
Root Complex

PCI Express 
Root Complex

PCI Bridge PCI Bridge

Block Diagram of a heterogeneous, 
two-socket server

2x Intel Xeon E5 processor
2x 128GB RAM

Intel Xeon Phi Co-Processor
attached to PCI Express
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Decomposing a Heterogeneous, Two-Socket Server into Address Spaces

CPU 
Core

Local
Resources

CPU 
Core

CPU Socket

Local
Resources

CPU 
Core

Local
Resources

CPU 
Core

Local
Resources

RAM

PCI Root Window

PCI Bridge

Device 
Registers

GDDR 
Memory

CPU 
Core

Local
Resources

Co-Processor Socket

x57

SMPT

IOMMUSystem Interconnect

CPU 
Core

CPU 
Core

Local
Resources

CPU Socket

Local
Resources

CPU 
Core

Local
Resources

CPU 
Core

Local
Resources

RAM

Can emit 
memory 

request to

The address space model preserves 
the machine topology in detail.

This is important for unambiguously   
naming resources of a system.

Gives an intuition on 
address decoding.



▪ Formalization of the model in Isabelle/HOL  
[Decoding Net, MARS’17 / ITP’18]

▪ Well-defined semantics of address resolution
termination proofs, …

▪ Verification of algorithms on top of the model

▪ Capture the current, static state of the system
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Applying Formal Methods to the Address Space Model

Sound foundation to 
express address translation 

of real hardware
(e.g. TLB models)
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“What is reachable from a core and at which address?”

CPU 
Core

“Local Address Space”

Core Local
Resources

DRAM

DRAM GDDR

Device 
Registers

Core Local
Resources

Core Local
Resources

Core Local
Resources

Core Local
Resources

Unreachable 
Resources

Proof of view-equivalence

Normal Form

VE

Algorithms produce provably to the 
correct values. Fewer bugs in the OS.
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Using the Correct Output to write Platform Specific OS Code

CPU 
Core

“Local Address Space”

Core Local
Resources

DRAM

DRAM GDDR

Device 
Registers

Normal Form

0x0000 0000
0x0fff ffff

0x8000 0000
0x8fff ffff

Operating 
System

platform.c
platform.h
Memory map, 
data structures, …

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

New Platform 
Repeat the Process
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Many new SoC-Platforms are released every year

System-on-a-Chip Platform Vendors
Actions Semiconductor,     Advanced Micro Devices (AMD),     Advanced Semiconductor 
Engineering (ASE),     Aeroflex Gaisler,     Agate Logic,     Alchip,     Allwinner Technology,     
Altera,     Amkor Technology,     Amlogic,     Analog Devices,     Anyka,     Apple Inc.,     
Applied Micro Circuits Corporation (AMCC),     ARM Holdings,     ASIX Electronics,     
Atheros,     Atmel,     Axis Communications,     Broadcom,     Cambridge Silicon Radio,     
Cavium Networks,     CEVA, Inc.,     Cirrus Logic,     Conexant,     Core Logic,     Coronis
(Wavenis Technology),     Cortina Systems,     CPU Tech,     Cypress Semiconductor,     
FameG (Fulhua Microelectronics Corp.),     Freescale Semiconductor,     Frontier Silicon Ltd,     
Fujifilm,     HiSilicon,     Horizon Semiconductors,     Imagination Technologies,     Infineon 
Technologies,     Innova Card,     Intel Corporation,     InvenSense,     Lattice Semiconductor,     
Leadcore Technology,     LSI Corporation,     Marvell Technology Group,     MediaTek,     

Maxim Integrated Products,     Milkymist,     MIPS Technologies,     Mistletoe Technologies,     
MosChip Semiconductor Technology,     MStar Semiconductor,     Naksha Technologies,     
Nokia,     NuCORE Technology,     Nufront,     NVIDIA,     NXP Semiconductors (formerly 
Philips Semiconductors),     ORSoC, OpenRISC System On Chip,     Open-Silicon,     Palmchip
Corporation,     PMC-Sierra,     Qualcomm Snapdragon,     Qualcomm Krait,     Qualcomm 

Scorpion,     Redpine Signals,     Renesas,     Rockchip,     Ruselectronics,     Samsung Exynos,     
Sequence Design,     Sharp,     Sigma Designs,     SigmaTel,     Silicon Integrated Systems,     
Silicon Motion,     Skyworks Solutions,     Socionext,     Solomon Systech,     SoC Technology,     
SolidRun,     Spreadtrum,     STATS ChipPAC,     STMicroelectronics,     ST-Ericsson,     
Sunplus Technology,     System-On-Chip Technologies,     System to ASIC,     Telechips,     
Tensilica,     Teridian Semiconductor,     Texas Instruments,     TLSI,     Transmeta,     
TranSwitch,     Vimicro,     Virage Logic,     WonderMedia,     Xilinx,     Zoran Corporation,     
RDA Microelectronics

SoC Released 2018
Apple
A12, S4, W3

Samsung
Exynos 9 Series, Exynos 7 Octa, Exynos 5 Hexa

QualComm
SDM439, SDM429, SDM632, SDM670, SDM710, 
SDM845, QCC5120

HiSilicon
Kirin 710, Kirin 980, Kunpeng 920

MediaTek
Helio A22 , MT6750S, Helio P18, MT6755S, Helio
P22, MT6762, Helio P60, MT6771, Helio P70

Each platform is different. 
Operating system needs to be adapted every time. 
Manual porting: 

- introduces more bugs…
- time effort
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A new model to express 
memory addressing on 

modern machines
Generate OS code and 

hardware configuration

Express changes of the 
configuration and the 

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management 
in Operating Systems



Domain Specific Language for 
Hardware Descriptions
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Automatic Generation of OS Code From the Model 

Machine readable 
description of the 
platform

Vendor supplied data
(e.g. Hardware Manual)

Generation of
correct low-level
OS code

Executable representation 
of the model

Operating 
System

Operating 
System

Sockeye

Sockeye
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Toolchain

Sockeye Compiler

Compile time

Sockeye 
hardware  

description

Prolog facts
(Executable Model) OS Service

Runtime
Memory 
allocator

Queries

PCI 
configuration

OS Service 
Standalone

Configuration
ConfigurationOS Code, 

Header Files…

service on top of sysfs

System Knowledge Base
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Use Case Example: Correct-by-Construction Page-Table Generation

Flatten the decoding net using 
view-preserving operations

Specify the observing core

Topology as generated 
by Sockeye

Page-Table Binary

Generate page-tables based on 
the flattened representation

Page Table Receipt
Architecture = [ARMv8]
Mappings = [

DRAM0 @ 0x8000000,
DevRegs @ 0x10000000

]

ARMv7, 
ARMv8, 
x86_64,
K1OM
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Validation: Custom Simulation Platforms for ARM FastModels

Sockeye description of 
the platform topology

Generated OS Code
Page-Tables, …

Platform Description
File (LISA)

Barrelfish Platform Image

FastModel Simulator
Executable

FastModels Compiler

gcc run

Sockeye
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A new model to express 
memory addressing on 

modern machines
Generate OS code and 

hardware configuration

Express changes of the 
configuration and the 

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management 
in Operating Systems



Semantics of dynamic
configuration of the 
translate function

Rights and authority 
required to change the 

translate function
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Dynamic Configuration of the Decoding Net

Principle of Least Privilege



Linux:
mmap() syscall
Kernel has all the rights

What happens if we apply the 
least privilege principle?
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Fine-Grained Decomposition of Rights and Operations

V

R
Physical 
Resource

Physical 
Address Space

Virtual 
Address Space

Core Grant Right
-

The right to give 
someone access 
to the resource

Map Right
-

The right to change 
how an address 
space translates

Object

Subject

ModifyMap(V,R)

Virtual 
Region
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Expressing Fine-Grained Authority in a System

Objects
Subjects 

DRAM 
Region

Core Address 
Space

…

…

Process Grant Map

…

The access control matrix defines what 
address space configurations and transitions are valid.
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Dynamic Address Space Configuration

Node
Node

Node
Node

Node
Node

Node

Address Space

configuration

configuration space

Node
Node

Node
NodeNode

Node
Node

Node

Address Space

configuration

configuration space

Node

ModifyMap()

Node: static
representation 
in the formal 

model

Valid configurations:
hardware features & 
access control matrix

Node
Node

Node
NodeNode

Node
Node

Node

Address Space

configuration

configuration space

Node
Missing authority 

to reach this 
configuration

ModifyMap()



✓ Identification of all relevant objects and subjects and their relationship

▪ Development of an executable specification for rapid prototyping

▪ Executable specification as a guide for a OS implementation

- Barrelfish with Multiple Address Spaces + Least-Privilege

- Access control with Capabilities as a natural match for least privilege 
- Support for heterogeneous platforms
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From the Static Model to a Dynamic Implementation in Three Steps
[Submitted to ASPLOS20]
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A new model to express 
memory addressing on 

modern machines
Generate OS code and 

hardware configuration

Express changes of the 
configuration and the 

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management 
in Operating Systems



Multiple address spaces & least-privilege access contro.

What’s the cost of implementing this in an operating system?

1) What is the cost of memory management operations?

2) What is the overhead for dynamic address space configuration following 
the least-privilege principle?

34

Evaluation
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Evaluation of virtual memory management operations 
Appel/Li Benchmark

Match the performance of Linux despite implementation 
following least-privilege and explicit address spaces

0

2

4

6

8

10

12

1 Page 512 Pages Trap Only

Linux

Barrelfish/MAS
Library

Barrelfish/MAS
Direct Invoke

Latency
kcycles/(page|trap)

protect-trap-unprotect

Amortization of trap 
overhead & locating 

the page table

Efficient traps + low-
overhead capability 

invocation

Low user-level  
library overhead
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The Cost of Dynamic Reconfiguration with Least-Privilege 

Task: Setup a shared buffer between 
the host CPU and the co-processor

1) Invoke model to obtain
- memory resources to allocate
- list of address spaces to configure

2) Allocation & mapping of memory

3) Configuration of address translation
Two-Socket server with 
Xeon Phi Co-Processor
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The Cost of Dynamic Reconfiguration with Least-Privilege

0

500

1000

1500

Linux Remote
Map

Local Map

Map IOMMU

Map SMPT

Query Model

Allocate & Map

Runtime
[Kcycles]

< 10% overhead for additional mappings and model queries

6MB memory
Baseline: mmap() 

of 6MB anonymous 
memory on Linux

Model evaluation for 
allocation & configuration 

Performing the SMPT 
mapping

IOMMU mapping using direct 
capability invocations

RPC to IOMMU 
service
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A new model to express 
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Dynamic Caches
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Future Directions

Performance 
Characteristics

Memory Access & Type 
Properties

Vision
Apply the same approach to other areas of the operating system to obtain correct 
and reliable system software running on any platform. 

Combining OS design & implementation with programming languages, code 
synthesis and Formal Methods. 
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