
PhD Student, Systems Group, Department of Computer Science, ETH Zurich

1

Reto Achermann

Realistic Hardware Abstractions and Least-Privilege Memory Management
in Operating Systems

3

$ whoami

MSc Computer
Science, ETH Zurich

PhD Studies, ETH Zurich. PhD advisor: Timothy Roscoe

Operating Systems Research
- Sound basis for reasoning about correctness
- Runtimes, Languages, Platforms
- Memory abstractions
- Supporting complicated platforms

20202014

Industry Internships

▪ Platform support: Cavium ThunderX /
Xeon Phi co-processor / ARM
FastModels

▪ Drivers: USB Stack / DMA Engines /
Xeon Phi / CPU / IOMMU

▪ Runtimes: OpenMP / libnuma /
message-passing

▪ Extensions to the capability system

▪ Domain Specific Languages

▪ Memory management

▪ Message-passing system

▪ Memory allocation policies

▪ Page-table replication

▪ Kernel modules

4

My Operating Systems Coding Experiences

A deep dissatisfaction about the way operating systems abstract and
represent hardware.

5

Computer Architecture 101

Computer Systems, A Programmer’s Perspective by Randal E. Bryant and David R. O’Hallaron

Operating System Assumptions:
• A single, flat physical address space
• physical address as a unique identifier
• homogeneous views from all

CPUs and devices

Process 0 Process 1

MMU

Main Memory

memory bus
CPU

The OS just runs on a new platform

6

Reality: Hardware Violates the Assumptions Made by Operating Systems

RAM RAM

ROM

SRAM

Private and shared
memory

L4
 P

ER

L4
 C

FG

L4
 W

K
U

P

L3 Interconnect5+ Interconnects

L4
 A

B
E

GPT5

EHCI

SDMA

Devices attached
to different

interconnects

KB

GPIO

6+ heterogeneous
cores A9 A9 DSP M3M3

GFX

Texas Instruments OMAP 4460 SoC,Technical Reference Manual

TexasInstruments OMAP4460, Q4 2011

Firewalls

FW FW FW FW FW FW

FWFW

Next, we
zoom in here

A heterogeneous network of cores,
interconnects, devices and memory.

M3

GPT5

38000/12

7

Ambiguous Physical Addresses and Non-Uniform Views

GPT5

A9

GPT5 Priv GPT5 L3

40138000/12 49038000/12

DSP

01D38000/12 49038000/12

GPT5 Priv GPT5 L3

L3 Interconnect

L4
 A

B
E M3

DSP
A9

I

I

I
I

OMAP 4460 SoC

General Purpose Timer
Like an alarm clock, set a time

and get interrupted in the
future

There are multiple physical addresses for the same device!
0x40138000/12 0x49038000/12 0x01D38000/12 0x00038000/12

Problem: There is no right address.

This contradicts hardware model of operating systems.

8

Complicated Memory Topologies are a Universal Problem

Secure and non-secure
(ARM TrustZone / Intel SGX)

Co-Processors
(Intel Xeon Phi)

Segmentation
(x86 / Power)

Memory Controller
remappings

Intel Single Chip Cloud
Computer

Fabric Attached Memory
(GenZ / The Machine)

Direct Segments

Page Overlays

Platforms are highly diverse.

Address translations are configurable.

Handling each of these as a special case does not scale:
error prone & time consuming.

Bugs and vulnerabilities in systems software:
▪ CVE-2014-3601: Miscalculation of affected pages

▪ CVE-2016-5349: Not enough memory address information provided

▪ CVE-2017-8061: Wrong DMA addresses

▪ CVE-2017-16994: Ignoring holes in huge-pages

▪ CVE-2014-9888: wrong access rights for data pages

▪ CVE-2019-2250: authorization bug allows writing to memory locations

▪ CVE-2018-11994: SMMU misconfiguration allows access to memory

▪ 30% of patches to Linux memory manager are bugfixes

9

Mismatch: Hardware Abstraction in Operating System Real Hardware

This mismatch is a problem – the OS does not seem to get it right

10

My Research Focus

Design and Implementation of
Operating Systems

Domain Specific Languages for
Systems Engineering

Applying Formal Methods to
Operating Systems and Hardware

Specification

My goal:
A sound basis for
reasoning about
reliable operating
system on any
hardware platform.

11

A new model to express
memory addressing on

modern machines
Generate OS code and

hardware configuration

Express changes of the
configuration and the

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management
in Operating Systems

12

A new model to express
memory addressing on

modern machines
Generate OS code and

hardware configuration

Express changes of the
configuration and the

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management
in Operating Systems

13

A More Realistic View of the Platform

Computer Systems, A Programmer’s Perspective by Randal E. Bryant and David R. O’Hallaron

Interconnects:
- Configurable, multi-stage translations
- Configurable Firewalls
- Private access ports

Configurable I/O bus:
- PCI bridge programming
- PCI hot-plug
- I/O MMUs / System MMUs
- Virtualization

Processors
- Core-Local resources
- Cache Hierarchy, operation modes
- Configurable Multi-Stage Translation
- Virtualization

Devices
- Memory access restrictions
- Configurable Translations
- Self-virtualization

… all systems have a distinct look
and feel. The figure does not
realistically represent an actual
system.

The OS
must

correctly
configure

these

The OS needs to be ported:
• Requires engineering effort
• Manual process: source of bugs

(more engineering effort)

▪ Industry Standards: DeviceTrees / UEFI / ACPI / USB / PCI Express
▪ Limited topology information, not available everywhere

▪ Assumptions: a uniform view & unique physical addresses

▪ Memory & Processor Models: ARM’s ASL and Sewell et al.
▪ Model the behavior of instructions and memory requests

▪ Stop at processor boundaries

▪ Verified Operating Systems: seL4, CertiKOS
▪ Proofs based on a linear flat array to physical memory

14

Specification and Modeling Hardware

➔ Insufficient for accurate
hardware representation

➔ Complimentary problem
orthogonal to address
translation

➔ Proofs need an accurate
hardware representation

15

The Address Space Abstraction – A more faithful view of Memory Hardware

▪ Memory management needs an
unambiguous reference to physical
resources.

▪ Address Space (Naming Problem)
▪ Context for resolving addresses

▪ Range of address values e.g. [0, 2b)

▪ Regions of address mappings

▪ Regions of local resources

Local Resource Mapping

ASID 0

0

0x00000000
0x0fffffff

0x00000000
0x0fffffff

0x40000000
0x4fffffff

ASID 1

0 f..f

f..f

Unambiguous
addresses within an

address spaces context

(AdressSpace 0, 0x4000000)

New Address Space:
- Ambiguous addresses
- different interpretation of addresses

[HotOS’15]

16

NUMA Node 0 NUMA Node 1

QPI

Intel Xeon CPU

10 Cores

Intel Xeon CPU

10 Cores

Main Memory Main Memory

Intel Xeon Phi

GDDR
Memory

DMA
Engine 57 Cores

PCI Express
Root Complex

PCI Express
Root Complex

PCI Bridge PCI Bridge

Block Diagram of a heterogeneous,
two-socket server

2x Intel Xeon E5 processor
2x 128GB RAM

Intel Xeon Phi Co-Processor
attached to PCI Express

17

Decomposing a Heterogeneous, Two-Socket Server into Address Spaces

CPU
Core

Local
Resources

CPU
Core

CPU Socket

Local
Resources

CPU
Core

Local
Resources

CPU
Core

Local
Resources

RAM

PCI Root Window

PCI Bridge

Device
Registers

GDDR
Memory

CPU
Core

Local
Resources

Co-Processor Socket

x57

SMPT

IOMMUSystem Interconnect

CPU
Core

CPU
Core

Local
Resources

CPU Socket

Local
Resources

CPU
Core

Local
Resources

CPU
Core

Local
Resources

RAM

Can emit
memory

request to

The address space model preserves
the machine topology in detail.

This is important for unambiguously
naming resources of a system.

Gives an intuition on
address decoding.

▪ Formalization of the model in Isabelle/HOL
[Decoding Net, MARS’17 / ITP’18]

▪ Well-defined semantics of address resolution
termination proofs, …

▪ Verification of algorithms on top of the model

▪ Capture the current, static state of the system

18

Applying Formal Methods to the Address Space Model

Sound foundation to
express address translation

of real hardware
(e.g. TLB models)

19

“What is reachable from a core and at which address?”

CPU
Core

“Local Address Space”

Core Local
Resources

DRAM

DRAM GDDR

Device
Registers

Core Local
Resources

Core Local
Resources

Core Local
Resources

Core Local
Resources

Unreachable
Resources

Proof of view-equivalence

Normal Form

VE

Algorithms produce provably to the
correct values. Fewer bugs in the OS.

20

Using the Correct Output to write Platform Specific OS Code

CPU
Core

“Local Address Space”

Core Local
Resources

DRAM

DRAM GDDR

Device
Registers

Normal Form

0x0000 0000
0x0fff ffff

0x8000 0000
0x8fff ffff

Operating
System

platform.c
platform.h
Memory map,
data structures, …

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

New Platform
Repeat the Process

21

Many new SoC-Platforms are released every year

System-on-a-Chip Platform Vendors
Actions Semiconductor, Advanced Micro Devices (AMD), Advanced Semiconductor
Engineering (ASE), Aeroflex Gaisler, Agate Logic, Alchip, Allwinner Technology,
Altera, Amkor Technology, Amlogic, Analog Devices, Anyka, Apple Inc.,
Applied Micro Circuits Corporation (AMCC), ARM Holdings, ASIX Electronics,
Atheros, Atmel, Axis Communications, Broadcom, Cambridge Silicon Radio,
Cavium Networks, CEVA, Inc., Cirrus Logic, Conexant, Core Logic, Coronis
(Wavenis Technology), Cortina Systems, CPU Tech, Cypress Semiconductor,
FameG (Fulhua Microelectronics Corp.), Freescale Semiconductor, Frontier Silicon Ltd,
Fujifilm, HiSilicon, Horizon Semiconductors, Imagination Technologies, Infineon
Technologies, Innova Card, Intel Corporation, InvenSense, Lattice Semiconductor,
Leadcore Technology, LSI Corporation, Marvell Technology Group, MediaTek,

Maxim Integrated Products, Milkymist, MIPS Technologies, Mistletoe Technologies,
MosChip Semiconductor Technology, MStar Semiconductor, Naksha Technologies,
Nokia, NuCORE Technology, Nufront, NVIDIA, NXP Semiconductors (formerly
Philips Semiconductors), ORSoC, OpenRISC System On Chip, Open-Silicon, Palmchip
Corporation, PMC-Sierra, Qualcomm Snapdragon, Qualcomm Krait, Qualcomm

Scorpion, Redpine Signals, Renesas, Rockchip, Ruselectronics, Samsung Exynos,
Sequence Design, Sharp, Sigma Designs, SigmaTel, Silicon Integrated Systems,
Silicon Motion, Skyworks Solutions, Socionext, Solomon Systech, SoC Technology,
SolidRun, Spreadtrum, STATS ChipPAC, STMicroelectronics, ST-Ericsson,
Sunplus Technology, System-On-Chip Technologies, System to ASIC, Telechips,
Tensilica, Teridian Semiconductor, Texas Instruments, TLSI, Transmeta,
TranSwitch, Vimicro, Virage Logic, WonderMedia, Xilinx, Zoran Corporation,
RDA Microelectronics

SoC Released 2018
Apple
A12, S4, W3

Samsung
Exynos 9 Series, Exynos 7 Octa, Exynos 5 Hexa

QualComm
SDM439, SDM429, SDM632, SDM670, SDM710,
SDM845, QCC5120

HiSilicon
Kirin 710, Kirin 980, Kunpeng 920

MediaTek
Helio A22 , MT6750S, Helio P18, MT6755S, Helio
P22, MT6762, Helio P60, MT6771, Helio P70

Each platform is different.
Operating system needs to be adapted every time.
Manual porting:

- introduces more bugs…
- time effort

22

A new model to express
memory addressing on

modern machines
Generate OS code and

hardware configuration

Express changes of the
configuration and the

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management
in Operating Systems

Domain Specific Language for
Hardware Descriptions

23

Automatic Generation of OS Code From the Model

Machine readable
description of the
platform

Vendor supplied data
(e.g. Hardware Manual)

Generation of
correct low-level
OS code

Executable representation
of the model

Operating
System

Operating
System

Sockeye

Sockeye

24

Toolchain

Sockeye Compiler

Compile time

Sockeye
hardware

description

Prolog facts
(Executable Model) OS Service

Runtime
Memory
allocator

Queries

PCI
configuration

OS Service
Standalone

Configuration
ConfigurationOS Code,

Header Files…

service on top of sysfs

System Knowledge Base

25

Use Case Example: Correct-by-Construction Page-Table Generation

Flatten the decoding net using
view-preserving operations

Specify the observing core

Topology as generated
by Sockeye

Page-Table Binary

Generate page-tables based on
the flattened representation

Page Table Receipt
Architecture = [ARMv8]
Mappings = [

DRAM0 @ 0x8000000,
DevRegs @ 0x10000000

]

ARMv7,
ARMv8,
x86_64,
K1OM

26

Validation: Custom Simulation Platforms for ARM FastModels

Sockeye description of
the platform topology

Generated OS Code
Page-Tables, …

Platform Description
File (LISA)

Barrelfish Platform Image

FastModel Simulator
Executable

FastModels Compiler

gcc run

Sockeye

27

A new model to express
memory addressing on

modern machines
Generate OS code and

hardware configuration

Express changes of the
configuration and the

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management
in Operating Systems

Semantics of dynamic
configuration of the
translate function

Rights and authority
required to change the

translate function

28

Dynamic Configuration of the Decoding Net

Principle of Least Privilege

Linux:
mmap() syscall
Kernel has all the rights

What happens if we apply the
least privilege principle?

29

Fine-Grained Decomposition of Rights and Operations

V

R
Physical
Resource

Physical
Address Space

Virtual
Address Space

Core Grant Right
-

The right to give
someone access
to the resource

Map Right
-

The right to change
how an address
space translates

Object

Subject

ModifyMap(V,R)

Virtual
Region

30

Expressing Fine-Grained Authority in a System

Objects
Subjects

DRAM
Region

Core Address
Space

…

…

Process Grant Map

…

The access control matrix defines what
address space configurations and transitions are valid.

31

Dynamic Address Space Configuration

Node
Node

Node
Node

Node
Node

Node

Address Space

configuration

configuration space

Node
Node

Node
NodeNode

Node
Node

Node

Address Space

configuration

configuration space

Node

ModifyMap()

Node: static
representation
in the formal

model

Valid configurations:
hardware features &
access control matrix

Node
Node

Node
NodeNode

Node
Node

Node

Address Space

configuration

configuration space

Node
Missing authority

to reach this
configuration

ModifyMap()

✓ Identification of all relevant objects and subjects and their relationship

▪ Development of an executable specification for rapid prototyping

▪ Executable specification as a guide for a OS implementation

- Barrelfish with Multiple Address Spaces + Least-Privilege

- Access control with Capabilities as a natural match for least privilege
- Support for heterogeneous platforms

32

From the Static Model to a Dynamic Implementation in Three Steps
[Submitted to ASPLOS20]

33

A new model to express
memory addressing on

modern machines
Generate OS code and

hardware configuration

Express changes of the
configuration and the

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management
in Operating Systems

Multiple address spaces & least-privilege access contro.

What’s the cost of implementing this in an operating system?

1) What is the cost of memory management operations?

2) What is the overhead for dynamic address space configuration following
the least-privilege principle?

34

Evaluation

35

Evaluation of virtual memory management operations
Appel/Li Benchmark

Match the performance of Linux despite implementation
following least-privilege and explicit address spaces

0

2

4

6

8

10

12

1 Page 512 Pages Trap Only

Linux

Barrelfish/MAS
Library

Barrelfish/MAS
Direct Invoke

Latency
kcycles/(page|trap)

protect-trap-unprotect

Amortization of trap
overhead & locating

the page table

Efficient traps + low-
overhead capability

invocation

Low user-level
library overhead

36

The Cost of Dynamic Reconfiguration with Least-Privilege

Task: Setup a shared buffer between
the host CPU and the co-processor

1) Invoke model to obtain
- memory resources to allocate
- list of address spaces to configure

2) Allocation & mapping of memory

3) Configuration of address translation
Two-Socket server with
Xeon Phi Co-Processor

37

The Cost of Dynamic Reconfiguration with Least-Privilege

0

500

1000

1500

Linux Remote
Map

Local Map

Map IOMMU

Map SMPT

Query Model

Allocate & Map

Runtime
[Kcycles]

< 10% overhead for additional mappings and model queries

6MB memory
Baseline: mmap()

of 6MB anonymous
memory on Linux

Model evaluation for
allocation & configuration

Performing the SMPT
mapping

IOMMU mapping using direct
capability invocations

RPC to IOMMU
service

38

A new model to express
memory addressing on

modern machines
Generate OS code and

hardware configuration

Express changes of the
configuration and the

required authority

Efficient Implementation in an Operating System

Realistic Hardware Abstractions and Least-Privilege Memory Management
in Operating Systems

Dynamic Caches

39

Future Directions

Performance
Characteristics

Memory Access & Type
Properties

Vision
Apply the same approach to other areas of the operating system to obtain correct
and reliable system software running on any platform.

Combining OS design & implementation with programming languages, code
synthesis and Formal Methods.

40

Timothy Roscoe Lukas Humbel Nora Hossle David Cock Daniel Schwyn

Simon Gerber Kornilios Kourtis Dejan Milojicic Stefan Kaestle Tim Harris

Gerd Zellweger Roni Haecki Moritz Hoffmann Sabela Ramos Jayneel Gandhi

Izzat El Hajj Alexander Merritt Contributors to the Barrelfish Operating System

Thanks to my collaborators

• R. Achermann, N. Hossle, L. Humbel, D. Schwyn, D. Cock, T. Roscoe. A Least-Privilege Memory Protection Model for Modern Hardware.
(ArXiv / in submission to ASPLOS’20)

• L. Azriel, L. Humbel, R. Achermann, A. Richardson, M. Hoffmann, A. Mendelson, T. Roscoe, RN. Watson, P. Faraboschi, D. Milojicic D.
Memory-side protection with a capability enforcement co-processor. (TACO).

• R. Achermann, L. Humbel, D. Cock, T. Roscoe. Physical addressing on real hardware in Isabelle/HOL. (ITP’18).
• L. Humbel, R. Achermann, D. Cock, T. Roscoe. Towards Correct-by-Construction Interrupt Routing on Real Hardware. (PLOS’17).
• R. Achermann, C. Dalton, P. Faraboschi, M. Hoffmann, D. Milojicic, G. Ndu, A. Richardson, T. Roscoe, A. L. Shaw; R. N. M. Watson.

Separating Translation from Protection in Address Spaces with Dynamic Remapping. (HOTOS'XVI).
• R. Achermann, L. Humbel, D. Cock and T. Roscoe. Formalizing Memory Accesses and Interrupts. (MARS 2017).
• S. Kaestle, R. Achermann, R. Haecki, M. Hoffmann, S. Ramos, and T. Roscoe. Machine-Aware Atomic Broadcast Trees for Multicores. (OSDI'16).
• I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann, W. Hwu, K. Schwan, T. Roscoe, P. Faraboschi.

SpaceJMP: Programming with Multiple Virtual Address Spaces. (ASPLOS XXI).
• S. Kaestle, R. Achermann, T. Roscoe, T. Harris. Shoal: Smart Allocation and Replication of Memory For Parallel Programs (ATC’15)
• S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, T. Roscoe, D. Milojicic. Not Your Parents' Physical Address Space. (HotOS XV).

List of Publications

