.
3

Reto Achermann

Memory Topology Models and Their Application in Operating Systems

Data 61, February 25, 2020

Systems@ ETHzurich

Virtual Memory Abstraction

SVirtuaI
: Address
:Spaces

Physical
: Address
:Space

Process O

Process 1

MMU

Processor

memory bus

Main Memory

Computer Architecture 101 - All Platforms are Similar

Figure 1.4
Hardware organization
of a typical system. CPU:
Central Processing Unit,
ALU: Arithmetic/Logic
Unit, PC: Program counter,
USB: Universal Serial Bus.

Assumptions:

* A single, flat physical address space

* Physical address = resource identifier

* Physical address means the same for
all CPUs and devices

CPU

Register file

_pc |

|ALU

Bus interface

Physical Address Space

stem bus

I/0
bridge

I/O bus

USB Graphics
controller adapter
ouse Keyboard Display

Memory bus

| Main
~ | memory

= U=

Expansnon slots for

Disk
controller

other devices such
as network adapters

A

v

hello executable
stored on disk

systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Q
=
5]

o <

o QO

Y ©

Qo =
a ©

n L
\L\

g ©

E o

€O

© >
to ©

o O

S

o

Q- =

<< ©
S 4

v

g S

Q

S

v o

>,
U

| R —

Q ©
o+

5 2

Q w©

E o

o >
O O

Reality: Same Resource, Multiple (Local) Physical Addresses
Simplified Block Dlagram of Texaslnstruments OMAP4460, Q4 2011

6+ heterogeneous — n .; — S "'1___:..;';%:'__1“__,
subsysten e Faos | | 1T Patnrr . Ciortese-M3 subsystem | ~ :_T__I_ : :

cores A9 A9 MM

| s2omeras 1 | HE-MME |

ROM GFX 'SDMA- '

Private and shared
memory

Devices attached — --——---»-‘1~—

17 ahn

to different { ,; _ E
interconnects G]| B G RTe ¥
' Pl IR o [g

| 5+ Interconnects |

fo- NK DLIRERES

Firewalls RAM RAIM [SRAIM (= Hesmmmms i

————————————

To yumantation
o, msamct T e Il !
HE-MMC 2 1Al e
- | I
bas a | = Dewice Come Comtrol medule |

- 1
1 - Mg IGR [pon 1) |

[Texas Instruments OMAP 4460 SoC, Technical Reference Manual] | Do Wb Cot s .

Reality: Same Resource, Multiple (Local) Physical Addresses
Simplified Block Diagram _c_)_f TexasInstruments OMAP4460, Q4 2011

6+ heterogeneous E — Y I W L sl T

The (local) physical address :
- has different meaning / interpretation.
- is not a stable concept.

- Not suitable as a unique identifier.

[Texas Instruments OMAP 4460 SoC, Technical Reference Manual]

Complicated Memory Topologies are Ubiquitous

Secure and non-secure

(ARM TrustZone / Intel

Security

] Banked

L IRegisters
GiC

:;u! :2!7

Source Addruss Ducoder Source Adiruss Dacoder
[J [J

Memory Controller

remappings

I_H_IUE
—T— 1
== i e —]
(o] fosl [owr] [oom] fed [=
e e e e e e [1
I I N O | [1T | I [—
Co-Processors Segmentation

(x86 / Power)

SGX) (Intel Xeon Phi)

| I || i : H i i H
(o [Eeper] | o] o] | By

\‘l T == | == |
R | (] . —

Intel Single Chip Cloud Fabric Attached Memory
Computer (GenZ / The Machine)

| Direct Segment

]

Page Overlays

Direct Segments [

4 in Memory
DRAM | ace

Platforms are highly diverse.

Address translations are
configurable.

System software needs to
correctly handle all of these...

System Software Struggles with Correct Hardware Configuration

Wrong Addresses

Misconfigurations

= CVE-2013-4329:
= CVE-

= CVE
= CVE
= CVE
= CVE
= CVE
= CVE
= CVE
= CVE
= CVE
= CVE
= CVE
= CVE
= CVE

Using DMA before the IOMMU is setup properly
2014-9932: Improper address range calculationin TrustZone

CVE-2016-5349

Main

Operating
System

Address = 9x40000

write

Secure
Execution

Environment

User-virtual ?
Kernel-virtual?
Local physical?
SEE physical?

= Trusting co-processor requests, and GPU exploits bypassing protection, cross SoC attacks, ...

My Research Focus

/ Design and Implementation of
<) Operating Systems
My goal: Specify the

software-visible ; .
. £ hard Domain Specific Languages for
semantics of hardware Systems Engineering

to provide a sound basis
for system software.

Applying Formal Methods to
Operating Systems and Hardware

Specification

Research Questions

* How can system software accurately represent and reason about the
complex memory topology as it is seen by software?

= How can the accurate representation be efficiently implemented in an
operating system and what is the resulting overhead?

Talk Outline

* How can system software accurately represent and reason about the
complex memory topology as it is seen by software?

=>» The Decoding Net - A Formal Model for Memory Addressing g—l

= How can the accurate representation be efficiently implemented in an
operating system and what is the resulting overhead?

=» Operating System Support for Dynamic Decoding Networks

10

Talk Outline

* How can system software accurately represent and reason about the
complex memory topology as it is seen by software?

=>» The Decoding Net - A Formal Model for Memory Addressing g—l

= How can the accurate representation be efficiently implemented in an
operating system and what is the resulting overhead?

=» Operating System Support for Dynamic Decoding Networks

Specifying and Modeling Hardware and Memory Topology

= |ndustry Standards: DeviceTrees / UEFI / ACPI / USB / PCI Express

=>» Insufficient for accurate hardware representation with well-defined semantics

= Memory & Processor Models: ARM’s ASL, VAMP, and Sewell et al.

=» Focusing on the processor core. Complimentary problem to address routing.

= Verified Operating Systems: selL4, CertiKOS

=>» Proofs need an accurate platform abstraction. A customer of my work.

Decoding Net

12

Explicit Address Spaces — A More Accurate Representation

Decoding Net

Address is always resolved
within a specified context

(ASID 0, 0x4000000)

= Memory management requires
unambiguous references to resources.

=> explicit context for addresses Local Resource l [Mapping]
(Naming Problem) N ~N/
ASID 0 0Xx00000000 0x40000000
OxOFFFEELf OXATFEFEFS
0 F..f
= Address Space —
) OXx00000000
= Context for resolving addresses ASID 1) o offfffef
0 .. f
= Set of address values e.g. range [0, 2°)

= Regions mappings or local resources

13

Example: Accessing DRAM from a Cortex A9 core on the OMAP

A9 Physical (11 @XSQQQQGG)
Ox8000000 31:[
Oxbffffff

(2, O0x8000000)
L3 Interconnect
| 2

Decoding Net

Resolve: (0, 0x4001000)
A9 Virtual -
Erj@meeleee :
Ox4001fff e? Write down the address spaces as

seen from software:

L3 translates [0x8000000-0xbffffff] to
— DRAM at 0x0

DRAM local [0x00000000-0x3fffffff]

This gives an intuition of

£ (3, 0x0)
0x0000000
Ox3fEFFff) =

the address decoding

Modelling Memory Accesses as a Decoding Net

Decoding Net

NodeO

= Directed graph: node <= address space m

translate

= Name: qualified address Node 1 E

= Nodes have two properties:
= Accept: local resources name :: (N, N)
= Translate: mapped resources

node ::
3) accept :: {N}
translate :: N = {name}

DecodingNet.thy

net :: N — node

15

Example: View-Preserving Transformations

Fix an observer

u Dll
| definition "a9phys 0= empty_ spec
= Dll

= .| definition "13_interconnect=empty_spec (

T
HE-MMC 1
HE-MMC 2
D&S

[Texas Instruments OMAP 4460 SoC, Technical Reﬁermwa‘ﬁgl

Dll

definition "ram = empty_spec (

?' definition "sys = [(3,ram), (2, |13_interconnect),

OMAP.thy

map_blocks := [block_map (blockn 0x4001000 0x4001fff) 1 0x80000000]

definition "a9virt_ 0= empty_spec (

map_blocks := [direct_map (blockn 0x80000000 OxBFFFFFFF) 2]

map_blocks := [block_map (blockn 0x80000000 OxBFFFFFFF) 3 0x00000000]

acc_blocks := [blockn 0x00000000 Ox3FFFFFFF],
DII

(1, a9phys_0), (0,a9virt_0)]"

definition "OMAP44xx_Net = mk_net sys"

Example: View-Preserving Transformations
(O) Fixed observer Decoding Net

J . ; M3 Core 0

wwwwwww

| B8 1 I S Virtual Address Space Virtual Address Space

1 T >

Physical Address Space [EGIAY, . Local RAM I Local ROM
26

e 1G 4G

Ti OMAP 4460 SoC

For ONE observer the flattened representation is equivalent.

Ox4000000 @ YRAWVI

Accept Ox0

Can The Decoding Net Represent Real Hardware?

Decoding Net
Case Study: Software-Loaded Translation Lookaside Buffer (TLB)
rss bl Vitual ddressing Definition of an operational model of
191 190 189 gg168 167 14111240139136 135 ; 128 the IVIIPS R4600 TLB.
256-bi TLB | R 0 VPN2 G| 0 ASID
iﬂi;lﬁi?iﬁsmg < mz - 94 93 ! o 70 69 as? 86 65 64
| 0 PFN ¢ [o|Mo
v & SR software-loaded:
— — explicit control on TLB updates
E) L] [} L]
‘o@ 48 entry-pairs, multiple page sizes,
Q%Q #| MIPS_R4600_TLB.thy address space identifiers, ...

18

Results of the Translation Lookaside Buffer Model

Refinement:

update node()

tlb_to_node tlb_to_node

>
write entry()

The Decoding Net captures the

state of a real TLB hardware as seen
by software.

Decoding Net

Equivalence:

Address translation defined by an
in-memory data structure.

Talk Outline

* How can system software accurately represent and reason about the
complex memory topology as it is seen by software?

=>» The Decoding Net - A Formal Model for Memory Addressing g—l

= How can the accurate representation be efficiently implemented in an
operating system and what is the resulting overhead?

=» Operating System Support for Dynamic Decoding Networks

20

From the Static Decoding Net Model to an OS Implementation

OS Support

Dynamic Address Spaces
Authorization Model

Executable Specification

Operating System Implementation

- Barrelfish/MAS: extension to Barrelfish
. - Support for heterogeneous platforms

21

Background: Policy-Mechanism Separation in Barrelfish

C o - A OS Support

 Address space layout and
memory allocation decisions

* Represents the kernel state
Capability system * Tracking of resources & access
control

Capability = unforgeable token of authority

Mechanism

22

Barrelfish/MAS Architecture

OS Support

Input to the model state

= Memory topology

mechanisms , , representation
< Policy Runtime

. . .
> Static Platform (OS Service) AIIoc.at|on .a nd N

S Description configuration policies
(e

Discovery

Address Space Aware

[|
Capability System Address Space

configuration

Mechanism

Initial configuration
page tables / memory

OS Code Generation maps / ...

23

From Platform Description to Operating System Code

e

White Paper

l Sockeye

Intel® Xeon Phi™ Coprocessor
DEVELOPER'S QUICK START GUIDE

Version 1.5

Machine readable
description of the
platform

Vendor supplied data
(e.g. Hardware manual,
XML files, ...)

Domain Specific Language for

Sockeye Hardware Descriptions

module KNC 225e {

memory (© bits 40) GDDR
GDDR accepts [(0x000000000 to Ox3ffffffff)]

memory (@ bits 12) LAPIC[@ to 227]
LAPIC[*] accepts [(*)]

memory (© bits 16) MMIO
MMIO accepts [(*)]

memory (© bits 40) KNC_SOCKET

KNC_SOCKET maps [
(0x0000000000 to Ox3ffffffff) to GDDR at (*);
(0x08007DP0OV bits 16) to MMIO at (*)

]

memory (© bits 40) K1OM CORE[© to 227]
K10M_CORE[*] maps [

(0xfee00PP0 bits 12) to LAPIC at (*)
]

K10M_CORE[*] overlays KNC_SOCKET } 24

From Platform Description to Operating System Code

OS Support

— T

White Paper Sm + a
Intel* Xeon Phi™ Coprocessor e — y - -
: : - Memory topology
Vendor supplied data Machine readable - Algorithms (Allocation, ..}
(e.g. Hardware manual, description of the 8 o
XML files, ...) platform

25

From Platform Description to Operating System Code

Policy Runtime
(OS Service)

OS Support

Compute the view @r g - ﬁ

from the observing
core [0] Bl

[“Local Address Space”] \

core 0 S
Lo) (Seiour)
X
BEH & € —
Page Table Spec [Cg

Page Table Address Translations Architecture = [ARMV
9 Mappings =
m Generate page-tables based on DRAMO @ 0x8000000,
: .) DevRegs @ 0x10000000
Devices List ~ Memory Map the flattened representation a’
/ 26

From Platform Description to Operating System Code

— T .8
— e
Policy Runtime
(OS Service)

\/

coren

corel

coreQ

HH &

Page Table Address Translations

1

Devices List Memory Map

N

OS Support

Customized operating
system image built for a
specific platform.

27

Barrelfish/MAS Architecture

OS Support

* Creation of the initial
Solicy Runtime set of capabilities.
- Static Platform (OS Service)
% Description * Uses generated
R memory maps and
= translation functions.
C
S Address Space Aware
O oo
s CapabiliivSisien * Address space checks
Initialzo%rguration in the capability
page tables / memory .
OS Code Generation maps/ ... operations.

29

Evaluation

3 77

Bl
Can Barrelfish/MAS handle What is the overhead for
complex memory dynamic address space

topologies ? configuration?

30

Validation: Barrelfish/MAS Handles Complex Topologies ‘ 3

run

Sockeye description of 09

the platform topology

Barrelfish/MAS
» Generated OS Code arrelfish/
Platform Image

» Page-Tables, ...

Sockeye

Update topology description X = -
P , XD 6',1; : =
:_":= > :_-: arm fastmodels mraaen

T

-

simulator compiler

Platform Description arm hardware
annnnn annnnn File (LISA) Simulator

Task: Setup a shared buffer between
the host CPU and the co-processor.

Buffer size: 8 MiB

1) Model Query:
- address space to allocate memory
- list of address spaces to configure

----------------------‘

12) Allocation & mapping of memory 0

3) Configuration of address translation Two-Socket server with

Xeon Phi Co-Processor

32

The Cost of Dynamic Address Space Reconfiguration

|IOMMU update (6k)

5.9% overhead for runtime
qguery and address space

SMPT update (13k)

untime 3500 configuration
Keycles]
3000 _
2500 | Map IOMMU
1500 B Query Model
1000 Allocate, Map & Clear
500 Allocate & Map
0 : Memset

Barrelfish/MAS Barrelfish Linux MMAP
mmap (MAP_POPULATE)

yuffer Size: 8 MiB 33

Summary

NodeO

Node 1

Decoding Net

Accurate representation of
the memory subsystem of
a platform.

Barrelfish/MAS

OS Implementation
Address space aware
capability system and
OS code generation

3500
3000
2500
2000
1500
1000

500

m Map IOMMU

Map SMPT

H Query Model
Allocate & Map

Memset
Linux MMAP Barrelfish Barrelfish/MAS

Efficient Implementation
Detailed memory topology
model, at low overhead.

34

e
|~ 1 g o oh S

o o O
Performance and memory Multiple, distrusting Reconfiguration steps and
type properties reference monitors code generation

Gl e

—] — N — PN
— A, \/ m)~m)- 5=
Dynamic caches, clocks, Verification of the Hardware / Software

and power executable model co-design

Future Directions

35

Future Directions: Memory Access Characteristics

Observation: Not all memory is equal

= Persistent / volatile memory / high-bandwidth memory / DRAM /...

Different access characteristics
= |atencies / bandwidth / coherency

“Smart Memories” with data processing capabilities

libnuma++ Extend the model with characteristics and integrate this in

memory allocation policies

36

Future Directions: Verification of the Runtime Model

= Current state:

1 Isabelle/HOL
4%, Specification _

Prolog Implementation

. Open: Is the Prolog representation correct?
IsabelleFlatten()

" Proof Framework for
Prolog programs.

PrologParse()

PrologParse()

PrologFlatten.

38

Decoding Net / Sockeye for selL4?

= Well-defined description of target platform
= Correct-by-construction initial state

= Reasoning about
= multi-level translation schemes
= Memory accesses from devices / co-processors/ ...

39

www.retoachermann.ch

ETHzurich
Thanks to my collaborators
Timothy Roscoe Lukas Humbel Nora Hossle David Cock Daniel Schwyn
Simon Gerber Kornilios Kourtis Dejan Milojicic Stefan Kaestle Tim Harris
Gerd Zellweger Roni Haecki Moritz Hoffmann Sabela Ramos Jayneel Gandhi
|zzat El Hajj Alexander Merritt Ashish Panwar Many contributorsto the Barrelfish OS

List of Related Publications

* R. Achermann, A. Panwar, J. Gandhi, A. Bhattacharjee, T. Roscoe.
Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines (ASPLOS20)
» R. Achermann, N. Hossle, L. Humbel, D. Schwyn, D. Cock, T. Roscoe. A Least-Privilege Memory Protection Model for Modern Hardware. (ArXiv)
» L. Azriel, L. Humbel, R. Achermann, A. Richardson, M. Hoffmann, A. Mendelson, T. Roscoe, RN. Watson, P. Faraboschi, D. Milojicic D.
Memory-side protection with a capability enforcement co-processor. (TACO).
» R. Achermann, L. Humbel, D. Cock, T. Roscoe. Physical addressing on real hardware in Isabelle/HOL. (ITP’18).
» L. Humbel, R. Achermann, D. Cock, T. Roscoe. Towards Correct-by-Construction Interrupt Routing on Real Hardware. (PLOS’17).
» R. Achermann, C. Dalton, P. Faraboschi, M. Hoffmann, D. Milojicic, G. Ndu, A. Richardson, T. Roscoe, A. L. Shaw; R. N. M. Watson.
Separating Translation from Protection in Address Spaces with Dynamic Remapping. (HOTOS'XVI).
* R. Achermann, L. Humbel, D. Cock and T. Roscoe. Formalizing Memory Accesses and Interrupts. (MARS 2017).
» S. Kaestle, R. Achermann, R. Haecki, M. Hoffmann, S. Ramos, and T. Roscoe. Machine-Aware Atomic Broadcast Trees for Multicores. (OSDI'16).
» |. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann, W. Hwu, K. Schwan, T. Roscoe, P. Faraboschi.
SpaceJMP: Programming with Multiple Virtual Address Spaces. (ASPLOS XXI).
» S. Kaestle, R. Achermann, T. Roscoe, T. Harris. Shoal: Smart Allocation and Replication of Memory For Parallel Programs (ATC’15)
» S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, T. Roscoe, D. Milojicic. Not Your Parents' Physical Address Space. (HotOS XV). 40

Summary

NodeO

Node 1

Decoding Net

Accurate representation of
the memory subsystem of
a platform.

Barrelfish/MAS

OS Implementation
Address space aware
capability system and
OS code generation

3500
3000
2500
2000
1500
1000

500

m Map IOMMU

Map SMPT

H Query Model
Allocate & Map

Memset
Linux MMAP Barrelfish Barrelfish/MAS

Efficient Implementation
Detailed memory topology
model, at low overhead.

41

