
Data 61, February 25, 2020

1

Reto Achermann

Memory Topology Models and Their Application in Operating Systems

2

Virtual Memory Abstraction

Process 0 Process 1

MMU

Main Memory

memory bus

Processor

Virtual
Address
Spaces

Physical
Address
Space

Platform

3

Computer Architecture 101 - All Platforms are Similar

C
o

m
p

u
te

r
Sy

st
em

s,
 A

 P
ro

gr
am

m
er

’s
 P

er
sp

ec
ti

ve

b
y

R
an

d
al

 E
. B

ry
an

t
an

d
 D

av
id

 R
. O

’H
a

lla
ro

n

Assumptions:

• A single, flat physical address space

• Physical address = resource identifier

• Physical address means the same for
all CPUs and devices

Physical Address Space

4

Reality: Same Resource, Multiple (Local) Physical Addresses

RAM RAM

ROM

SRAM

Private and shared
memory

L4
 P

ER

L4
 C

FG

L4
 W

K
U

P

L3 Interconnect

5+ Interconnects
L4

 A
B

E

GPT5

EHCI

SDMA

Devices attached
to different

interconnects

KB

GPIO

6+ heterogeneous
cores A9 A9 DSP M3M3

GFX

[Texas Instruments OMAP 4460 SoC, Technical Reference Manual]

Simplified Block Diagram of TexasInstruments OMAP4460, Q4 2011

Firewalls

FW FW FW FW FW FW

FWFW

5

Reality: Same Resource, Multiple (Local) Physical Addresses

RAM RAM

ROM

SRAM

Private and shared
memory

L4
 P

ER

L4
 C

FG

L4
 W

K
U

P

L3 Interconnect

5+ Interconnects
L4

 A
B

E

GPT5

EHCI

SDMA

Devices attached
to different

interconnects

KB

GPIO

6+ heterogeneous
cores A9 A9 DSP M3M3

GFX

[Texas Instruments OMAP 4460 SoC, Technical Reference Manual]

Simplified Block Diagram of TexasInstruments OMAP4460, Q4 2011

Firewalls

FW FW FW FW FW FW

FWFW

The (local) physical address :

- has different meaning / interpretation.

- is not a stable concept.

- Not suitable as a unique identifier.

6

Complicated Memory Topologies are Ubiquitous

Secure and non-secure
(ARM TrustZone / Intel SGX)

Co-Processors
(Intel Xeon Phi)

Segmentation
(x86 / Power)

Memory Controller
remappings

Intel Single Chip Cloud
Computer

Fabric Attached Memory
(GenZ / The Machine)

Direct Segments Page Overlays

Platforms are highly diverse.

Address translations are
configurable.

System software needs to
correctly handle all of these...

▪ CVE-2013-4329: Using DMA before the IOMMU is setup properly

▪ CVE-2014-9932: Improper address range calculation in TrustZone

▪ CVE-2016-5349: Not enough memory address information provided to co-processor

▪ CVE-2017-8061: Wrong DMA addresses

▪ CVE-2017-12188: Not properly translate guest virtual to guest physical addresses

▪ CVE-2019-15099: Wrong DMA address in descriptor

▪ CVE-2018-11994: SMMU misconfiguration allows access to memory

▪ CVE-2014-0972: IOMMU registers not write-protected

▪ CVE-2011-1898: Using DMA transfers to write to interrupt registers

▪ CVE-2019-19579: Possible DMA to host memory from Xen guest

▪ CVE-1999-1166: Potential map of kernel memory to user-space

▪ CVE-2019-2250: Authorization bug allows writing to memory locations

▪ CVE-2014-3601: Miscalculation of memory pages during mapping failure

▪ CVE-2014-8369: Due to bug in fix of CVE-2014-3601

▪ CVE-2017-16994: Ignoring holes in huge-pages

▪ Trusting co-processor requests, and GPU exploits bypassing protection, cross SoC attacks, … 7

System Software Struggles with Correct Hardware Configuration

CVE-2016-5349

Main
Operating

System

Secure
Execution

Environment

Address = 0x40000

write

User-virtual ?
Kernel-virtual?
Local physical?
SEE physical?

W
ro

n
g

A
d

d
re

ss
es

M
is

co
n

fi
gu

ra
ti

o
ns

8

My Research Focus

Design and Implementation of
Operating Systems

Domain Specific Languages for
Systems Engineering

Applying Formal Methods to
Operating Systems and Hardware

Specification

My goal: Specify the
software-visible
semantics of hardware
to provide a sound basis
for system software.

▪ How can system software accurately represent and reason about the
complex memory topology as it is seen by software?

▪ How can the accurate representation be efficiently implemented in an
operating system and what is the resulting overhead?

9

Research Questions

▪ How can system software accurately represent and reason about the
complex memory topology as it is seen by software?

▪ How can the accurate representation be efficiently implemented in an
operating system and what is the resulting overhead?

10

Talk Outline

➔ The Decoding Net - A Formal Model for Memory Addressing

➔ Operating System Support for Dynamic Decoding Networks

▪ How can system software accurately represent and reason about the
complex memory topology as it is seen by software?

▪ How can the accurate representation be efficiently implemented in an
operating system and what is the resulting overhead?

11

Talk Outline

➔ The Decoding Net - A Formal Model for Memory Addressing

➔ Operating System Support for Dynamic Decoding Networks

▪ Industry Standards: DeviceTrees / UEFI / ACPI / USB / PCI Express

▪ Memory & Processor Models: ARM’s ASL, VAMP, and Sewell et al.

▪ Verified Operating Systems: seL4, CertiKOS

12

Specifying and Modeling Hardware and Memory Topology

➔ Insufficient for accurate hardware representation with well-defined semantics

➔ Focusing on the processor core. Complimentary problem to address routing.

➔ Proofs need an accurate platform abstraction. A customer of my work.

Decoding Net

13

Explicit Address Spaces – A More Accurate Representation

▪ Memory management requires
unambiguous references to resources.
➔ explicit context for addresses

(Naming Problem)

▪ Address Space
▪ Context for resolving addresses

▪ Set of address values e.g. range [0, 2b)

▪ Regions mappings or local resources

Local Resource Mapping

ASID 0

0

0x00000000
0x0fffffff

0x00000000
0x0fffffff

0x40000000
0x4fffffff

ASID 1

0 f..f

f..f

(ASID 0, 0x4000000)

Address is always resolved
within a specified context

Decoding Net

14

Example: Accessing DRAM from a Cortex A9 core on the OMAP

2

Resolve: (0, 0x4001000)

3

0

1

(1, 0x8000000)

(3, 0x0)

(2, 0x8000000)

0x8000000
0xbffffff

0x8000000
0xbffffff

0x4001000
0x4001fff

0x0000000
0x3ffffff

A9 Virtual

A9 Physical

L3 Interconnect

DRAM
This gives an intuition of

the address decoding

Write down the address spaces as
seen from software:

L3 translates [0x8000000-0xbffffff] to
DRAM at 0x0

DRAM local [0x00000000-0x3fffffff]

Decoding Net

▪ Directed graph: node ↔ address space

▪ Name: qualified address

▪ Nodes have two properties:
▪ Accept: local resources

▪ Translate: mapped resources

15

Modelling Memory Accesses as a Decoding Net

translate

accept

accept

Node 0

Node 1

node ::
𝑎𝑐𝑐𝑒𝑝𝑡 ∷ ℕ

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 ∷ ℕ → {𝑛𝑎𝑚𝑒}

net :: ℕ → 𝑛𝑜𝑑𝑒
DecodingNet.thy

name :: ℕ,ℕ

Decoding Net

Example: View-Preserving Transformations

RAM RAM

ROM

SRAM L4
 P

ER

L4
 C

FG

L4
 W

K
U

P

L3 Interconnect

L4
 A

B
E

GPT5

EHCI

SDMA

KB

GPIO

A9 A9 DSP M3M3
GFX

[Texas Instruments OMAP 4460 SoC, Technical Reference Manual]

FW FW FW FW FW FW

FWFW

Decoding Net

Fix an observer
definition "a9virt_0 = empty_spec ⦇

map_blocks := [block_map (blockn 0x4001000 0x4001fff) 1 0x80000000]
⦈"

definition "a9phys_0 = empty_spec ⦇
map_blocks := [direct_map (blockn 0x80000000 0xBFFFFFFF) 2]
⦈"

definition "l3_interconnect = empty_spec ⦇
map_blocks := [block_map (blockn 0x80000000 0xBFFFFFFF) 3 0x00000000]
⦈"

definition "ram = empty_spec ⦇
acc_blocks := [blockn 0x00000000 0x3FFFFFFF],
⦈"

definition "sys = [(3,ram), (2, l3_interconnect),
(1, a9phys_0), (0,a9virt_0)]"

definition "OMAP44xx_Net = mk_net sys" 16

OMAP.thy

Example: View-Preserving Transformations

Resolve: (0, 0x4001000)

L3 Interconnect 2

VA9:0

PA9:0

(1, 0x8000000)

(3, 0x0)

(2, 0x8000000)

0x8000000
0xbffffff

0x8000000
0xbffffff

0x4001000
0x4001fff

DRAM

Accept 0x0

0x0000000
0x4000000

Resolve: (0’, 0x4001000)

T1
0x4001000
0x4001fff

(3, 0x0)

0’1

0

Flatten

For ONE observer the flattened representation is equivalent.

Fixed observer Decoding Net

18

Can The Decoding Net Represent Real Hardware?

[M
IP

S
R

46
00

 M
an

u
al

] Definition of an operational model of
the MIPS R4600 TLB.

software-loaded:
explicit control on TLB updates

48 entry-pairs, multiple page sizes,
address space identifiers, …

Case Study: Software-Loaded Translation Lookaside Buffer (TLB)

MIPS_R4600_TLB.thy

Decoding Net

Refinement:
Operational TLB model - Decoding Net

19

Results of the Translation Lookaside Buffer Model

Node Node’

TLB’TLB

tlb_to_nodetlb_to_node

update_node()

write_entry()

TLB

Pa
ge

 t
ab

le

TLB

Pa
ge

 t
ab

le

R

Address translation defined by an
in-memory data structure.

Equivalence:
Page Table + Fault Handler = Large TLB

The Decoding Net captures the
state of a real TLB hardware as seen

by software.

Decoding Net

▪ How can system software accurately represent and reason about the
complex memory topology as it is seen by software?

▪ How can the accurate representation be efficiently implemented in an
operating system and what is the resulting overhead?

20

Talk Outline

➔ The Decoding Net - A Formal Model for Memory Addressing

➔ Operating System Support for Dynamic Decoding Networks

Operating System Implementation

Executable Specification

Authorization Model

Dynamic Address Spaces

21

From the Static Decoding Net Model to an OS Implementation

- Barrelfish/MAS: extension to Barrelfish
- Support for heterogeneous platforms

OS Support

22

Background: Policy-Mechanism Separation in Barrelfish
Po

lic
y

M
ec

h
an

is
m

Capability system

User-level libraries

• Address space layout and
memory allocation decisions

• Self-paging functionality

• Represents the kernel state

• Tracking of resources & access
control

• Safely expose page table
construction to user space

Invocation interface

Capability = unforgeable token of authority

OS Support

▪ Memory topology
representation

▪ Allocation and
configuration policies

23

Barrelfish/MAS Architecture

Policy Runtime
(OS Service)

Address Space Aware
Capability System

Input to the model state

Discovery
mechanisms

Static Platform
Description

Initial configuration
page tables / memory

maps / …OS Code Generation

▪ Address space
configuration

Po
lic

y
M

ec
h

an
is

m

OS Support

Domain Specific Language for
Hardware Descriptions

From Platform Description to Operating System Code

Machine readable
description of the
platform

Vendor supplied data
(e.g. Hardware manual,

XML files, …)

Sockeye

Sockeye

OS Supportmodule KNC_225e {
memory (0 bits 40) GDDR
GDDR accepts [(0x000000000 to 0x3ffffffff)]

memory (0 bits 12) LAPIC[0 to 227]
LAPIC[*] accepts [(*)]

memory (0 bits 16) MMIO
MMIO accepts [(*)]

memory (0 bits 40) KNC_SOCKET
KNC_SOCKET maps [
(0x0000000000 to 0x3ffffffff) to GDDR at (*);
(0x08007D0000 bits 16) to MMIO at (*)

]

memory (0 bits 40) K1OM_CORE[0 to 227]
K1OM_CORE[*] maps [
(0xfee00000 bits 12) to LAPIC at (*)

]

K1OM_CORE[*] overlays KNC_SOCKET } 24

25

From Platform Description to Operating System Code

Sockeye

Sockeye

- Memory topology
- Algorithms (Allocation, …)

Machine readable
description of the
platform

Vendor supplied data
(e.g. Hardware manual,

XML files, …)

Sockeye

OS Support

26

From Platform Description to Operating System Code

Sockeye

Compute the view
from the observing
core [0]

Generate page-tables based on
the flattened representation

Page Table Spec [Core 0]
Architecture = [ARMv8]
Mappings = [

DRAM0 @ 0x8000000,
DevRegs @ 0x10000000

]

Policy Runtime
(OS Service)

Page Table

Devices List Memory Map

Address Translations

core 0 ARMv7,
ARMv8,
x86_64,
K1OM

OS Support

core n

core 1

core 0

27

From Platform Description to Operating System Code

Customized operating
system image built for a
specific platform.

Policy Runtime
(OS Service)

Sockeye

Page Table

Devices List Memory Map

Address Translations

OS Support

▪ Memory topology
representation

▪ Allocation and
configuration policies

28

Barrelfish/MAS Architecture

Policy Runtime
(OS Service)

Address Space Aware
Capability System

Input to the model state

Discovery
mechanisms

Static Platform
Description

Initial configuration
page tables / memory

maps / …OS Code Generation

▪ Authority

▪ Address space
configuration

Po
lic

y
M

ec
h

an
is

m

•Creation of the initial
set of capabilities.

•Uses generated
memory maps and
translation functions.

•Address space checks
in the capability
operations.

OS Support

Evaluation

29

30

Evaluation

Can Barrelfish/MAS handle
complex memory

topologies ?

What is the overhead for
dynamic address space

configuration?

31

Validation: Barrelfish/MAS Handles Complex Topologies

Sockeye description of
the platform topology

Generated OS Code
Page-Tables, …

Platform Description
File (LISA)

Barrelfish/MAS
Platform Image

arm hardware
simulator

arm fastmodels
simulator compiler

gcc run

Sockeye

Update topology description

32

The Cost of Dynamic Address Space Reconfiguration

Task: Setup a shared buffer between
the host CPU and the co-processor.

Buffer size: 8 MiB

1) Model Query:
- address space to allocate memory
- list of address spaces to configure

Two-Socket server with
Xeon Phi Co-Processor

3) Configuration of address translation

2) Allocation & mapping of memory

Policy Runtime
(OS Service)

33

The Cost of Dynamic Address Space Reconfiguration

0

500

1000

1500

2000

2500

3000

3500

Barrelfish/MAS Barrelfish Linux MMAP

Map IOMMU

Map SMPT

Query Model

Allocate, Map & Clear

Allocate & Map

Memset

Runtime
[Kcycles]

5.9% overhead for runtime
query and address space

configuration

IOMMU update (6k)
SMPT update (13k)

Buffer Size: 8 MiB

mmap(MAP_POPULATE)

34

Summary

translate

accept

accept

Node 0

Node 1

Decoding Net
Accurate representation of
the memory subsystem of
a platform.

Efficient Implementation
Detailed memory topology
model, at low overhead.

Barrelfish/MAS

OS Implementation
Address space aware
capability system and
OS code generation

Dynamic caches, clocks,
and power

Future Directions

35

Performance and memory
type properties

Multiple, distrusting
reference monitors

Verification of the
executable model

Reconfiguration steps and
code generation

Hardware / Software
co-design

▪ Observation: Not all memory is equal
▪ Persistent / volatile memory / high-bandwidth memory / DRAM /…

▪ Different access characteristics
▪ latencies / bandwidth / coherency

▪ “Smart Memories” with data processing capabilities

▪ libnuma++ Extend the model with characteristics and integrate this in
memory allocation policies

36

Future Directions: Memory Access Characteristics

▪ Current state:

▪ Open: Is the Prolog representation correct?

▪ Proof Framework for
Prolog programs.

38

Future Directions: Verification of the Runtime Model

IS IS’

PS’PS

PrologParse()PrologParse()

IsabelleFlatten()

PrologFlatten.

Isabelle/HOL
Specification

Prolog Implementation

▪ Well-defined description of target platform

▪ Correct-by-construction initial state

▪ Reasoning about
▪ multi-level translation schemes

▪ Memory accesses from devices / co-processors / …

39

Decoding Net / Sockeye for seL4?

40

Timothy Roscoe Lukas Humbel Nora Hossle David Cock Daniel Schwyn

Simon Gerber Kornilios Kourtis Dejan Milojicic Stefan Kaestle Tim Harris

Gerd Zellweger Roni Haecki Moritz Hoffmann Sabela Ramos Jayneel Gandhi

Izzat El Hajj Alexander Merritt Ashish Panwar Many contributors to the Barrelfish OS …

Thanks to my collaborators

• R. Achermann, A. Panwar, J. Gandhi, A. Bhattacharjee, T. Roscoe.
Mitosis: Transparently Self-Replicating Page-Tables for Large-Memory Machines (ASPLOS20)

• R. Achermann, N. Hossle, L. Humbel, D. Schwyn, D. Cock, T. Roscoe. A Least-Privilege Memory Protection Model for Modern Hardware. (ArXiv)
• L. Azriel, L. Humbel, R. Achermann, A. Richardson, M. Hoffmann, A. Mendelson, T. Roscoe, RN. Watson, P. Faraboschi, D. Milojicic D.

Memory-side protection with a capability enforcement co-processor. (TACO).
• R. Achermann, L. Humbel, D. Cock, T. Roscoe. Physical addressing on real hardware in Isabelle/HOL. (ITP’18).
• L. Humbel, R. Achermann, D. Cock, T. Roscoe. Towards Correct-by-Construction Interrupt Routing on Real Hardware. (PLOS’17).
• R. Achermann, C. Dalton, P. Faraboschi, M. Hoffmann, D. Milojicic, G. Ndu, A. Richardson, T. Roscoe, A. L. Shaw; R. N. M. Watson.

Separating Translation from Protection in Address Spaces with Dynamic Remapping . (HOTOS'XVI).
• R. Achermann, L. Humbel, D. Cock and T. Roscoe. Formalizing Memory Accesses and Interrupts. (MARS 2017).
• S. Kaestle, R. Achermann, R. Haecki, M. Hoffmann, S. Ramos, and T. Roscoe. Machine-Aware Atomic Broadcast Trees for Multicores. (OSDI'16).
• I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann, W. Hwu, K. Schwan, T. Roscoe, P. Faraboschi.

SpaceJMP: Programming with Multiple Virtual Address Spaces. (ASPLOS XXI).
• S. Kaestle, R. Achermann, T. Roscoe, T. Harris. Shoal: Smart Allocation and Replication of Memory For Parallel Programs (ATC’15)
• S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, T. Roscoe, D. Milojicic. Not Your Parents' Physical Address Space. (HotOS XV).

List of Related Publications

www.retoachermann.ch

41

Summary

translate

accept

accept

Node 0

Node 1

Decoding Net
Accurate representation of
the memory subsystem of
a platform.

Efficient Implementation
Detailed memory topology
model, at low overhead.

Barrelfish/MAS

OS Implementation
Address space aware
capability system and
OS code generation

