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Abstract

Operating systems manage and configure a machine’s physical resources
such as memory and translation hardware. This task is mission critical:
the operating system must always correctly configure memory address
translations and unambiguously name the physical resources of a system.
However, operating systems today use abstractions and assumptions which
unfaithfully represent the actual topology of the hardware they are man-
aging. This mismatch leads to bugs and security vulnerabilities in system
software. This is a problem.

This dissertation presents a new abstraction model to faithfully represent
the memory subsystem of a hardware platform as seen by software. The
core abstraction of the new model is the address space, which defines the
context for address decoding. An address space either translates addresses
or terminates address resolution within its context. The Decoding Net
formally specifies the semantics of address decoding behavior of address
spaces in the Isabelle/HOL theorem prover. This provides a sound basis
for reasoning about the current hardware configuration of a platform.

Address spaces are inherently dynamic in two ways: i) new devices are
discovered, powered on or off, or hot-plugged introducing new address
spaces in the system, and ii) a memory allocation request requires an
update of the translation configuration of an address space. Changing the
configuration of an address space is a privileged operation and requires a
certain authority. This is expressed as an extension to the Decoding Net
with a layer adding a notion of configurability and fine-grained authority
following the principle of least-privilege.

Guided by an executable specification of the dynamic Decoding Net model,
the implementation in Barrelfish/MAS is driven following the principle
of least-privilege. The resulting implementation demonstrates that it is
possible to implement the detailed address space model and least-privilege
memory management in an operating system efficiently and with little
overhead and matching performance to the Linux operating system.
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Zusammenfassung

Betriebssysteme verwalten und konfigurieren die physikalischen Ressour-
cen wie Hauptspeicher und Adressierungsiibersetzungshardware einer Re-
chenmaschine. Dieser Arbeitsschritt ist missionskritisch: das Betriebs-
system muss die Hardware stets korrekt konfigurieren wie auch die phy-
sikalischen Ressourcen des Systems eindeutig benennen konnen. Die
Betriebssysteme von heute benutzen jedoch Abstraktionen und Annahmen
welche gerade die eigentliche Topologie der verwalteten Hardware inak-
kurat représentieren. Diese Diskrepanz fiihrt zu verschiedensten Defekten
und Sicherheitsliicken in System Software. Dies ist ein Problem.

Diese Dissertation présentiert einen neues Abstraktionsmodell welches die
Hardwarekonfiguration einer Rechenmaschine, wie sie von der Software
gesehen wird, akkurat représentiert. Die Zentrale Abstraktion dieses neuen
Modells ist der Adressraum, welcher einen Kontext fiir Adressdekodierung
definiert. Ein Adressraum iibersetzt oder schliesst die Adressauflosung fiir
eine Adresse innerhalb seines Kontextes ab. Die Semantik der Adressauf-
16sung und der Adressrdume ist dann formalisiert im “Decoding Net”, eine
Spezifikation der Adressraumabstraktion in Isabelle/HOL. Dies bildet eine
wohldefinierte Grundlage, um iiber die gegenwirtige Hardwarekonfigura-
tion einer Plattform zu argumentieren.

Die Adressrdume sind von Natur aus dynamisch in zwei Arten: i) das
Auffinden, Anschliessen oder Entfernen von neuen Hardwarekomponenten
verdndert die Anzahl der Adressrdume im System, und ii) die Konfiguration
dieser Adressraume kann verdndert werden. Diese privilegierte Aktion
bendtigt die entsprechenden Befugnisse. Das “Decoding Net” Modell wird
erweitert mit einer Auffassung von Konfigurierbarkeit und detailgenauen
Befugnissen im Sinne von Prinzip des minimalen Rechts.

Gelenkt von einer ausfiihrbaren Spezifikation des dynamischen “Decoding
Net” Modells wird die Implementierung in Barrelfish/MAS durchgefiihrt
unter dem Prinzip des minimalen Rechts. Die resultierende Implementie-
rung zeigt, dass es moglich ist das detaillierte Adressraummodell und eine
Speicherverwaltung mit minimalen Rechten effizient in einem Betriebssys-
tem zu realisieren.
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Introduction

This dissertation applies formal methods to the design and implementa-
tion of memory management and authorization components in operating
systems. It uses a formal model to capture the complexity of memory
addressing on modern hardware and adopts the principle of least-privilege
to configure address translation hardware.

The principal goals of the formal model and its application in the context
of system software are the following:

1. Provide an accurate representation of the memory subsystem of
any hardware platform as seen by system software including non-
uniform and heterogeneous translations and memories.

2. Establish a sound foundation to unambiguously name memory re-
sources and to formally reason about address resolution.
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3. Enable the implementation of system software components to cor-
rectly manage memory resources and configure translation hard-
ware.

4. Define and identify the semantics of address space configuration
and the required authority to do so.

5. Apply the principle of least-privilege to the task of address space
configuration.

The remainder of this chapter sets the stage for the work presented in
this thesis by providing the motivational aspects followed by the problem
statement and the contributions of this dissertation to systems research.
Finally, an overview of the structure of the thesis is presented.

1.1 Motivation

While application processes generally run in user space and in their own
virtual address space, it is the task of system software (e.g. the operating
system kernel) to provide this illusion of a uniform, linear address space
to the application. Likewise, the kernel also runs in its own, linear
address space separated from user space processes. To uphold this illusion,
system software needs to correctly program the relevant translation units
(e.g. the processor’s memory management unit (MMU)). This in turn,
requires system software to know the corresponding address a memory
resource (e.g. DRAM or memory mapped device registers) appears on the
processor’s system bus.

The actual location of memory resources and devices, especially under
which address they appear, depends on the current hardware configuration
of the platform at hand where the configuration refers to the hardware
components, their interconnection and state. Two platforms can have a
very different configuration, especially for system-on-a-chip (SoC) archi-
tectures. Worse, the observed address ranges differ between two distinct
cores, most prominently between the CPU and a direct memory access
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(DMA) capable device. This inherent heterogeneity, not only between two
different platforms but also within a single platform, makes the design and
implementation of system software tedious and error prone: writing to the
wrong device register or accessing the wrong memory location can lead to
data corruption, unexpected behavior, or security vulnerabilities.

While one may argue that the platform configuration information is passed
to the operating system through UEFI [UEF17], ACPI tables [UEF15],
those services are in fact other instances of system software and there-
fore need to know the locations of the resources present on the platform.
DeviceTrees [dev17] on the other hand are a file format than a topology
description and are incapable of expressing complex address typologies.

Moreover, UEFI services may not be present at all. A machine can be
booted in legacy mode, or there is simply no UEFI available for that
platform. Tiano Core [Tial9], for instance, is compiled for a specific
platform including all information about memory and devices compiled
into the UEFI image.

In summary, the hardware representation is, in some sense, too abstract
which hides important details such as the actual topology, interconnect
configurations, and locations of hardware firewalls. Moreover, this can be
misleading. For instance, a resource access can have different characteris-
tics from where it is accessed from (processor, device, accelerators, etc.),
and this resource may actually have different addresses it appears.

The misleading abstractions need to be replaced with a more accurate
representation, which reveals enough details of the underlying hardware
with its configuration and characteristics to give system software a chance
to actually handle and configure hardware correctly.

Therefore, system software needs to be written with an accurate description
of the platform at hand, including the memory topology, addresses and
sizes of memory resource and devices as seen from a particular core. Yet,
the platform architecture diagrams presented in recent textbooks about
operating systems (an example is shown in Figure 1.1) completely ignore
the possibility of heterogeneity and different observed address ranges
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Figure 1.4 CPU
Hardware organization

of a typical system. CPU:
Central Processing Unit, p
ALU: Arithmetic/Logic
Unit, PC: Program counter, System bus Memory bus
USB: Universal Serial Bus.

Heglster file

I/O Main
brld memory

111

Expansion slots for
other devices such

Bus interface

usB Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display C

hello executable
w stored on disk

systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Figure 1.1: System Architecture as presented in Computer Systems, A
Programmer’s Perspective by Randal E. Bryant and David R.
O’Hallaron [BO15].
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between two distinct cores. Hence, the diagrams shown are oversimplified
and inaccurate, one may even say plain wrong.

Another aspect why an accurate representation of the hardware platform is
system software verification. Correctness is a central property for system
software and one way to guarantee correct operational behavior is through
verification (e.g. sel4 [Kle+09] or CertiKOS [Gu+16]). While these
projects prove or certify correct operational semantics with respect to an
execution model, the proofs are based on an abstract machine representation,
which is again greatly simplified and does not accurately represent the
complexity and heterogeneity of a real system.

Instead of applying heuristics and using vague assumptions to configure
translation units and abstract hardware as seen by software, this dissertation
presents a sound and well-founded formal model to express the hardware
configuration of computing platforms as a network of address spaces. This
provides system software with enough details about the hardware to enable
system software to correctly manage and configure the resources of a
hardware platform.

1.2 Problem Statement

This dissertation investigates the following research questions and problems
from the angle of systems software.

Multiple-Physical Address Spaces This thesis makes the case that the
presence of a single, globally uniform physical address space has always
been an illusion, and promotes the address space as a first-class abstraction
to express the configuration of a platform. Processor cores and DMA-
capable devices have different views of the platform: within a single
address space, memory resources can appear at different addresses, they
can be aliased or the same address refers to a different resource in two
distinct address spaces. There is no longer the (unique) physical address
of a memory resource. It is rather a question of what the set of addresses is
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this memory resource appears at, and in which address spaces, or whether
the same address in two address spaces really refer to the same resource.
Getting this wrong leads to correctness problems, e.g. because of the
misinterpretation of the address, software accesses the wrong underlying
resource, which results in data corruption or information leakage.

Platforms as a Network of Address Spaces This dissertation argues
that the configuration of a platform can be expressed as a network of address
spaces which can be overlapping, isolated or intersecting in arbitrary ways.
The connections between address spaces can be fixed or configurable.
These aspects are hidden in the current hardware abstraction model. The
dissertation explores a variety of platform architectures of different types
and sizes. It further shows the applicability of a network of address
spaces to express the configuration of the various platforms. This reveals
important details of the underlying hardware and its characteristics to
system software.

Decoding Net Model of Address Spaces The thesis shows that the
network of address spaces can be formally specified as a decoding network.
The Decoding Net is a directed graph of nodes corresponding to address
spaces of a platform, while edges are mappings of addresses between two
address spaces. This dissertation demonstrates that this formal specification
is capable of accurately expressing inherently complex and heterogeneous
platforms and execution modes of processors. Moreover, it is possible to
define transformations on the Decoding Net without changing the view
from within a particular address space. Lastly, the abstract Decoding Net
can be refined to express existing hardware devices such as translation
lookaside bufters (TLBs), memory management units, memory controllers
and lookup tables.

Authorization and Configurable Decoding Nets The Decoding Net
model captures a snapshot of the system configuration. This thesis further
shows how the Decoding Net model can be extended with a notion of
configuration and authorization using a least privilege approach. The
central question is “who can configure this translation hardware and what
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rights does one need to have to do so?’. The dissertation addresses
this question by applying a fine-grained decomposition of the address
translation configuration process into subjects, objects and the necessary
authority on top of the Decoding Net model.

A Fast Implementation of the Authorization Model The thesis demon-
strates that it is possible to efficiently implement the fine-grained autho-
rization model following the principle of least-privilege plus the detailed
address space model in an operating system. To do so, the thesis presents
an operating system architecture that separates low-level protection prim-
itives from high-level policy mechanisms to manage memory resources
and configure address translation units.

1.3 Structure of the Dissertation

Chapter 2 provides background information on the definitions used
for addresses and address spaces in hardware manuals, and a survey of
real and proposed hardware translation schemes. It then presents the
current abstractions used by operating systems and highlights the problems
that arise with respect to the presented address translation schemes and
platforms.

Chapter 3 surveys work related to memory management and abstractions
used in operating systems, runtimes for scheduling and memory allocation
policies, and models of processor and the semantics of memory accesses.

Chapter 4 presents the address space model to capture the complexity
of the memory topology of any platform. Moreover, it defines the De-
coding Net, a formalization of the address space model in Isabelle/HOL
which rigorously specifies the semantics of address decoding, and defines
correct transformation algorithms on top of the model. This is joint work
with David Cock (who significantly helped with formalizing the address
space model), Lukas Humbel, Gerd Zellweger, Kornilios Kourtis, Timothy
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Roscoe, and Dejan Milojicic and it appeared in related publications [Ach14;
Ger+15; Ach+17b; Ach+18].

Chapter 5 extends the decoding net model of Chapter 4 to add support
for dynamic address spaces in both their translation configuration and
the total number thereof. The chapter further presents a fine-grained
authorization model for configuration changes. This is based on joint
work with Nora Hossle (who implemented the executable specification),
Lukas Humbel, Daniel Schwyn, David Cock and Timothy Roscoe in Least-
Privilege Memory Protection Model for Modern hardware [Ach+19a]
and [Hos19].

Chapter 6 describes the needed mechanisms for an efficient implemen-
tation of the address space model of Chapter 5 in operating system soft-
ware. The chapter presents Barrelfish/MAS, an extension to the Barrelfish
research operating system that implements the address space model fol-
lowing the principle of least-privilege for translation configuration. This
is based on joint work with Nora Hossle, Lukas Humbel (who contributed
significantly to the runtime representation), Daniel Schwyn, David Cock
and Timothy Roscoe in Least-Privilege Memory Protection Model for
Modern hardware [ Ach+19a].

Chapter 7 evaluates the implementation of Barrelfish/MAS in the context
of memory management, least-privilege address translation configuration,
scaling and bookkeeping overheads. This is based on joint work with
Nora Hossle, Lukas Humbel, Daniel Schwyn, David Cock and Timothy
Roscoe in Least-Privilege Memory Protection Model for Modern hard-
ware [Ach+19a].

Chapter 8 draws the conclusions of this dissertation and presents future
directions of the address space memory model and its applications in
system software.
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Problem Statement

This chapter makes the case for a new model for representing and in-
terpreting physical addresses in a machine for the purposes of memory
management and memory subsystem configuration. Secondly, it presents a
survey of some of the many violations of these assumptions in past, current,
and proposed future hardware. Moreover, it points to the challenges this
creates for effective management of physical memory as a resource in
systems software.

2.1 Motivation

To this day, hardware designers have come up with many memory address
translation schemes among which page-based virtual memory [Den70]

11
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and virtualization [PG74; Int19a] being one of the most ubiquitous. Each
address translation scheme has different features, translation granularity,
and means of configuration. The common denominator of those translation
mechanisms is that system software is responsible for correctly configure
them. Failing to do so leads to severe problems such as algorithms
producing the wrong results, data corruptions, information leakage, crashes
and security vulnerabilities.

The objective of this chapter is to demonstrate the existing mismatch be-
tween the hardware abstractions and assumption about the memory system
used in operating systems today on the one hand, and the architecture
and configuration of real hardware as it is seen by software running on
the platform on the other hand. This mismatch is a problem. It has
lead to various security vulnerabilities and bugs in system software (Sec-
tion 2.4.2) e.g. 33% of code-changes to the Linux memory manager are
bug fixes [HQS16].

The chapter is structured as follows:

1. Section 2.2 presents a survey of real and proposed memory address
translation hardware components including their translation and
configuration mechanisms.

2. Section 2.3 describes the “single global physical abstraction”.

3. Section 2.4 shows the problems that arise with the abstractions
currently used by operating system and actual memory subsystem
of the hardware platforms presented in the survey.

4. Section 2.5 analyzes the implications of this mismatch for operating
system design and implementation.

2.2 Survey of Memory Address Translation

With virtual memory [Den70] and virtualization in general [PG74], pro-
cessing units, processor cores or DMA-capable devices, only ever deal
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with an opaque handle (the virtual address) to the physical resources it
accesses. This is one of the corner stones of computing, providing isolation
and protection between two tasks running on the same machine.

Processes and even operating systems in virtual machines are given the
impression of being the only task or operating system running on the
machine providing the illusion of having exclusive access to all resources,
sometimes even more resources than exist in reality (e.g. demand pag-
ing [Fot61]). This illusion, however, does not stop at the physical machine
level: in memory-centric computing [Far+15; Bre+19] there is more mem-
ory available than the machine can ever issue addresses for. Therefore,
only a configurable subset can be accessed at the same time.

In summary, there are multiple types of addresses (the most prominent of
which are virtual and physical addresses), and hardware translates them
using different translation schemes configured by system software.

The remainder of this section analyses the terminology of memory ad-
dresses used in technical reference manuals (Section 2.2.1) and then
presents a survey of memory translation mechanisms, either present in
existing, real hardware (Section 2.2.2), or proposed as part of conference
submissions or white papers (Section 2.2.3). This provides an overview of
the complexity of memory translation schemes.

2.2.1 Address Spaces and Address Definitions

In technical reference or software developer’s manuals, hardware vendors
describe the features of their products and how to use them. To avoid con-
fusion, the manuals include a section or table about the used terminology.
The purpose of this section is to compare the definitions and terminologies
of different kinds of address and address spaces found in those documents.
The address type and its context are important to precisely refer to a re-
source in the system e.g. a device virtual address might be different to a
guest virtual address.
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Intel AMD ARM IBM Power
physical physical physical / intermediate real
linear virtual = linear - virtual
virtual virtual = linear virtual -
logical logical - effective
effective effective -
host physical host physical host real
- system physical -
guest physical ~ guest physical intermediate physical guest real
guest virtual guest virtual virtual fully qualified
DMA - -
I/O virtual - virtual -
- device virtual virtual effective

Table 2.1: Summary of Different Address Terminologies Found in Hardware Manuals.

local memory
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Table 2.1 summarizes the address types. A row corresponds to set of terms
used by different vendors referring to similar concepts.

Intel Terminology The Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual [Int19a] and the Intel Virtualization Technology for Directed
I/O Architecture Specification [Int19b] describe multiple memory models
and address types. Memory attached to a processor bus is referred to as
physical memory and each byte of it assigned a unique physical address.
The physical address space is then a range of addresses from zero to 2> — 1
where b is the maximum supported address width. Itanium [Int10a] further
introduced multiple virtual address space regions where the combination
of them formed a large 85-bit global address space.

Physical memory is generally not accessed directly. The processor has
three different memory models: flat, segmented, and real-address mode.
The memory model defines how a logical address (segment selector +
effective address) used by the processor is converted into a linear address
(See Section 2.2.2.1 for an illustration).

The linear address is then translated to a physical address either through
a one-to-one mapping or through a page-based translation mechanism
(paging). Paging effectively virtualizes physical memory. Depending on
its configuration, the linear address corresponds to the physical address
(one-to-one mapping), or to the virtual address (with paging). An address
is in its canonical form if the topmost (63 — b) bits are either all zero or all
ones, with b being the number of bits implemented by hardware.

Virtualization partitions the machine and adds another layer of address
types. The physical address above is now referred to host physical address
and is defined as:

“Physical address used by hardware to access memory and
memory-mapped resources.” — Intel 64 and IA-32 Architec-
tures Software Developer’s Manual [Int19a]

System Software running inside a partition or virtual machine sees guest
physical addresses and applications use guest virtual addresses. The
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manual speaks about the view of physical memory in this context. Addresses
used by software on the host processor are virtual addresses. Devices
operate on DMA addresses which may refer to either a host/guest physical
or virtual address, or an I/O virtual address.

AMD Terminology AMD uses almost identical terminology to Intel.
The AMDG64 Architecture Programmer’s Manual [AMD19] makes an
explicit association between virtual and linear addresses and the virtual
address is translated into physical addresses through paging. Similarly,
the logical address is then formed by a segment selector and an effective
address.

The AMD I/O Virtualization Technology IOMMU) Specification [AMD16]
further defines a device virtual address, which is either a guest physical or

a host / system physical address. The manual states that the host physical

address is “in most systems identical with the System Physical Address”.
The local memory address is the device local physical address used to

access device private resources, which may or may not be mapped into the

system physical address space.

Arm Terminology The Architecture Reference Manual for ARMvS8-
A [ARM19a] describes the virtual memory system architecture for the
32-bit and 64-bit operating modes. It defines the virtual address as an
address which is used in an instruction. Similar to the x86 canonical
address, virtual addresses have the top bits either all ones or all zeroes.

The virtual address gets translated to an intermediate physical address
which is the output address of the stage-one translation and the input
address of the stage-two translation. The intermediate address then gets
translated to a physical address, which corresponds to “a location in a
physical memory map.” If there is just a single stage translation, then the
intermediate address is identical to the physical address.

The Arm architecture further defines two address spaces that exist in
parallel: secure and non-secure. This distinction provides a mechanism
to isolate certain resources and devices from unprivileged accesses or
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interference. For instance, only software running in the secure world
may access resources within the secure address space. Processors or
devices make memory accesses either secure or non-secure [ARMO9].
This implies:

“Secure 0x8000 and Non-secure 0x8000 are, technically
speaking, different physical addresses” — ARMvS-A Address
Translation [ARM17]

There are no special terms for System MMU [ARM16] (the Arm IOMMU
equivalent). The same translation regimes as for processor cores are used.

IBM Power Terminology On the IBM POWERY platform [IBM18;
IBM17], threads use 64-bit effective addresses which are comprised of an
effective segment identifier and offset to access different storage objects.
The address is a fully qualified address if it also includes the effective
logical partition identifier which uniquely identifies the processing thread.

The (process-local) effective address is translated to a 68-bit operating
system global virtual address. The process addressing context, a segment
descriptor defines this translation. The effective segment ID is converted
into a virtual segment ID. Together with the offset, this virtual segment ID
forms the virtual address. Lastly, the page-based translation mechanism
converts the virtual address to a 56-bit real address. With virtualization
enabled, a partition-scoped page table translates guest real addresses to
host real addresses.

Conclusion Hardware vendors use similar terminology to refer to differ-
ent address types (Table 2.1). Yet, there are subtle differences especially
when referring to addresses a device is using. From the analyzed architec-
tures, IBM Power diverges the most. The difference between virtual and
linear addresses are vague, sometimes they are equivalent. Arm explic-
itly acknowledges the existence of multiple address spaces and AMD the
presence of device private resources which may not be accessible from the
main processor cores.
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2.2.2 Translation Schemes in Real Hardware

Processors, interconnects and memory controller use different addressing
modes requiring addresses of different types to be converted between one
another. This section presents a survey of different translation schemes
which various vendors have implemented in production hardware.

2.2.2.1 Segmentation

In segmentation-based memory systems [RK68] such as on x86 [AMD19;
Int19a] or Power [IBM 18], software accesses memory through segments
that have a defined fixed or configurable size, protection attributes and map
contiguously onto a linear address space. The remainder of this section
focuses on the x86 architecture as an example of segmentation.

Logical Address ISegment Selector IOf-fset (Effective Address) I

§ 8191
© x
R
g E
K} Segment T
o Descriptor [Base Address —
[l
0 I Linear Address

Global Descriptor Table Local Descriptor Table

Figure 2.1: Logical to Linear Address Translation Using Segmentation on
the x86 Architecture [Int19a].

Figure 2.1 illustrates the conversion of a logical address to a linear address
using segments on the x86 architecture. The logical address consists of
a segment selector and an offset into the segment (or effective address),
combined using the colon as visualization.

Logical Address = Segment Selector : Effective Address
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The segment selector indicates whether to use the global or local descriptor
table and specifies the segment descriptor by an index into the table. The
descriptor tables are stored in memory. The segment descriptor stores the
base and limit of the segment. The linear address is then calculated by
adding the offset (effective address) to the segment’s base address.

Linear Address = Segment Base Address + Effective Address

There are six segment registers available on the x86 architecture to speed
up the translation process by storing an entry of the descriptor table. Their
name indicate their historic usage: CS (Code Segment), SS (Stack Segment)
and four data segments DS, ES, FS, GS. Their use depends on the processor
mode and the segmentation model. Segments can have an intended use
e.g. code, data and stack. Data can be accessed explicitly by stating the
segment e.g. DS:0x1000 or implicitly e.g. through an instruction fetch or
stack operations. The x86 architecture offers three segmentation models.

Basic and Protected Flat Models The basic flat model is arguably
“the simplest memory model” [Int19a] which effectively enables access
to a contiguous, linear address space by hiding segmentation as much as
possible. There are two segment descriptors required, one for code and one
for data segments as illustrated in Figure 2.2. Both descriptors are set up to
map the entire linear address space including regions which are not backed
by physical resources like RAM or memory-mapped device registers. The
processor can therefore access and execute from every memory location
including modification of its own code.

The protected flat model sets the base and limits of the segment descriptors
to match the actual physical resources present in the machine. Accesses to
non-existing memory resources are now caught by the segment limits and
trigger a general protection fault.

Multi-Segment Model The basic models above do not enforce separa-

tion of code, stack and other data structures. The multi-segment model
enables the use of all six segments. Each process has its own descriptor
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OxFFFFFFFF
Code Segment Descriptor Code
Base Address: 0x00000000
Limit: OxFFFFFFFF
Access Control / Permissions
Not Present
DS
Base Address: 0x00000000
Limit: OxFFFFFFFF
Access Control / Permissions
Data Segment Descriptor Data and
Stack
0x00000000
Segment Linear Address Space
Registers (Physical Memory)
(a) Basic Flat Model.
OxFFFFFFFF
Code Segment Descriptor Code
Base Address: 0xC0000000F——
Limit: OxFFFFFFFF
Access Control / Permissions
Not Present
Base Address: 0x00000000 |
Limit: Ox7FFFFFFF MMIO
Access Control / Permissions
Data Segment Descriptor Data and
Stack
0x00000000
Segment Linear Address Space
Registers (Physical Memory)

(b) Protected Flat Model.

Figure 2.2: Segmentation with the Basic and Protected Flat Model on the
x86 Architecture [Int19a].
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OxFFFFFFFF

Base Address: 0x00000000j—| Code

Limit: OxFFFFFFFF,

Access Control / Permissions

Base Address: 0x20000000

Limit: 0x2FFFFFFF LR

Access Control / Permissions

: MMIO

Base Address: 0x40000000

Limit: Ox5FFFFFFF, Stack

Access Control / Permissions

Base Address: 0x00000000

Limit: OxlFFFFFFF:'_l Data

Access Control / Permissions 0x00000000
Segment Segment Descriptor Table Linear Address Space
Registers (Physical Memory)

Figure 2.3: Segmentation with the Multi Segment Model on the x86 Ar-
chitecture [Int19a].

table and uses different segments for code, stack and data which have
different access protections e.g. a process cannot modify its own code.
Figure 2.3 illustrates the use of multiple segments and how they are mapped
onto the linear address space.

Segmentation with Paging Segmentation can be used with and with-
out a page-based translation mechanism. With paging, this results in a
two-stage translation mechanism where a logical address is first converted
into a linear address using segmentation. The linear address space is then
split up into pages which map onto the physical address space. Each
page translates a contiguous block of addresses. This translation is de-
fined by an in-memory data structure (more about page-based translation
schemes in Section 2.2.2.2). Figure 2.4 illustrates the combined translation
mechanism with segmentation and paging.

64-bit Operation Mode During initialization, system software enables
the 64-bit operation mode (AMD64 [AMD19; Int19a]) which mostly, but
not completely, disables segmentation: limit checks in all segments are
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disabled and the processor ignores segment bases for CS, DS, ES and SS
and hard-wires them to zero. This results in a flat, 64-bit linear address
space where the linear address is equal to the effective address.

The two exceptions are the FS and GS segment registers, which can still
hold a value other than zero as base address. Software can use those two
additional registers to hold pointers to local data structures, for instance.

2.2.2.2 Page-based Translation Mechanism

Page-based translation mechanisms, or paging for short, are widely used
e.g. on x86 platforms [Int19a; AMD19], IBM Power [[BM 18], ARMv7 and
ARMvS8 [ARM19a; ARM17] including virtualization, IOMMU s [Int19b;
AMDI16], and SMMUs [ARMI16]. The next two paragraphs illustrate
paging in the native and virtualized environments.

Paging Using paging, the virtual (or linear) address space is divided into
naturally aligned pages of equal size, e.g. 4 KiB on x86. Depending on the
architecture and processor, larger page sizes may be supported (e.g. 2 MiB

Logical Address Linear Address
0x10:0x4000 0x20000000 0x7A000000
Limit
Segment |- 0x20000000
Descriptor]
Base
Descriptor T
Table Page Tables
Translation Base
Linear Address Space Register Physical Address Space
| || |
! Segmentation ” Paging '

Figure 2.4: Segmentation with Paging on the x86 Architecture [Int19a].
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large and 1 GiB huge pages on x86), Some other architectures like Intel
Itanium [Int10a], Arm [ARM17] or MIPS R4600 [ITD95] support more
page-sizes, including the size of the page tables themselves.

The translation is defined by an in-memory data structure called the page
table which defines a mapping from virtual pages to physical frames. The
page tables themselves operate on physical addresses. Each entry in the
page table defines the target address, permissions, access characteristics
and caching properties of a page of memory. Page-table entries may not
always be strictly independent e.g. super sections on ARMv7 [ARM19a].
The page table is a multi-level radix tree where each level translates a
portion of the linear address space.

Figure 2.5 shows the translation of a linear address into a physical address
using a multi-level page table for 4 KiB and 2 MiB pages. Translation
starts at the translation base register (cr3 on x86), which serves as the
base address of the top-level page table. Parts of the linear address define
the indices into the different tables. For each level of the page table, the
entry at the extracted index defines the base address of the next table. This
process is repeated until the last level is reached. The frame base address
of the entry is then added to the page offset to obtain the physical address.
Using multi-level page tables, large and huge pages can be implemented
by stopping the page-table walk early as shown in Figure 2.5b.

Virtualization using Nested-Paging A virtual machine [PG74; Gol73],
emulates a computer system with a defined configuration (CPUs, memory,
devices) on top of a physical machine. Virtual machines allow running
multiple operating systems on the same server. Using special hardware
extensions (e.g. in the processor [Uhl+05]), memory accesses in virtual
machines are translated twice. From guest virtual to guest physical to host
physical addresses, or virtual-intermediate-physical using ARM terminol-
ogy for two-stage translations (Recall Section 2.2.1). Each translation stage
itself is defined by a page-table structure. The first stage is managed by the
guest operating system, and the second stage by the hypervisor or virtual
machine monitor using “extended page tables (EPT)”.
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Linear Address

Unused | LO Index L1 Index L2 Index L3 Index [Virtual Page Offset
63 4847 3938 3029 2120 1211 0

L]
S
[TTape (" 1aple)
(PDIR)

Translation | L1 Table .
Base Register| L0 Table (PDPT) Physical Address
(PML4)

(a) Linear to Physical Address Translation with 4 KiB Page Size.

Linear Address

Unused | LO Index L1 Index L2 Index Virtual Page Offset
63 4847 3938 3029 2120 0

]

;j** Tigaple P

Translation | -

Base Register]| L0 Table (PDPT) Physical Address
(PML4

)
(b) Linear to Physical Address Translation with 2 MiB Large Page Size.

Figure 2.5: Illustration of a Linear to Physical Address Translation Using
a Multi-Level Page Table [Int19a].
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Guest Physical to Host Physical

Register
(Guest)

Memory
Frame

[Translation
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L,

Figure 2.6: Illustration of a Two-Stage Guest-Virtual to Host-Physical

Translation with Nested Paging on the x86 Architec-

ture [Int19a].
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The guest page tables contain guest physical addresses. Therefore, for each
translation step the EPT needs to be walked to obtain the physical address
of the next page table.

2.2.2.3 Translation Lookaside Buffers (TLB)

Translating addresses using a full page-table walk results in up to four
memory accesses in the native case and up to 24 memory accesses using
nested paging. Recall,page tables operate on physical addresses them-
selves [Int19a; ARM17; AMD19], and hence those memory accesses are
physical addresses and do not need to be translated. Consequently, translat-
ing an address using a multi-level page table is expensive [Bas+13]. TLBs
cache successfully translated addresses to reduce the number of page-table
walks required. Consequently, a TLB holds a subset of the translations
defined by the page table. Section 4.6 will present an operational model
of a software-loaded TLB.

In the event software issues an address which is not present in the TLB,
a page-fault exception is triggered. Either the operating system (in the
case of a software-loaded TLB), or a hardware page-table walker reads the
page table and updates the cache with the new translation. This results in
additional memory accesses to translate a linear to a physical address.

TLBs are a cache, which the operating system needs to keep consistent
with the backing page table. To make updates to the page table visible to
software, existing entries must either be explicitly updated, or invalidated
and the hardware page-table walker fetches the new translation from the
updated page table.

2.2.2.4 Register-Based Lookup Tables

Page-based translation schemes do not have to use multi-level, in-memory
page tables: if the number of pages is small enough, an array of registers
may be sufficient to configure the translation. An example of such a lookup
table is the system memory page table (SMPT) of the Intel Xeon Phi co-
processor [Int14a] or the Intel Single-Chip Cloud Computer (SCC) [Int10b].
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The system memory page table (SMPT) translates addresses from a 512
GiB region in the 40-bit Xeon Phi address space to the 48-bit system
address space (possibly protected by an IOMMU).

Figure 2.7 illustrates this translation. The lookup table consists of 32 regis-
ters each controlling how a 16 GiB “page” is being translated. There exists
a fixed relationship between the register and the region of co-processor
physical addresses controlled by the register. Any 16 GiB aligned target
address is possible. In contrast to the page tables, an entry of the SMPT
cannot be invalidated, it always translates somewhere.

Similarly, the SCC has a 256-entry lookup table each mapping a 16 MiB
physical memory frame in the processor’s 32-bit address space to the
extended memory map of the system. More on SCC memory addressing
in Section 2.2.3.1.

0x0...0

/

Base Address
0xA000000000 0x1000000000 0x1000000000

OxASFFFFFFFE ﬁ + 16GB | 0x13FFFFFFFF
32 SMPT Control Registe\

32 x 16GB pages OxF...F

3

Figure 2.7: The System Memory Page Table on the Intel Xeon Phi Co-
Processor.
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2.2.2.5 Fully Associative Lookup Table

One way to interpret the SMPT is like a “direct mapped” translation cache:
each entry of the SMPT holds the translation for one specific, fixed page of
memory. On the other side of the spectrum, a fully associative translation
cache decouples the entry from the memory page it translates, while N-way
set associative caches are in between.

The MIPS R4600 TLB [ITD95] is an example of a fully-associative lookup
table. It is a software-loaded, fully associative TLB with 48 entry-pairs.
The translation scheme is illustrated in Figure 2.8 and further used as an
example in Section 4.6. Note, that some TLBs implement a multi-level
caching scheme and are N-way set associative.

0x0...0
0x10000000
0x10003FFF
0x2000000
. 0X2003FFF
VPN PFN O
0x4000 0x4000000
0x10104000 _
0x10107FFF Page Size PFN 1 L_* 0x4000000
0x4000 0X2000000 0X4003FFF
48 TLB Entry Pairs
OXF...F

Figure 2.8: Fully Associative, Software Loaded Translation Lookaside
Buffer.

Each entry of the MIPS R4600 TLB maps two consecutive pages of virtual
memory to two independent physical memory frames. Each entry can map
any virtual page to any physical frame. In theory, it is possible to have two
entries translate the same virtual page which leads to undefined behavior
and possibly damage the chip [ITD94].
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2.2.2.6 Multi-Stage Translation Schemes

Memory addresses might be translated multiple times while a memory
request traverses the network of interconnects in the system. Examples
of this include the memory controller on multi-socket x86 machines, ac-
cesses to the host DRAM from the Intel Xeon Phi co-processor (Sec-
tion 5.5), and the ARM Cortex-M3 Subsystem on the Texas Instruments
OMAP4460 [Tex14].

Memory controllers and multi-socket machines Large server machines
consist of multiple processors each having a collection of cores. Each pro-
cessor has memory controllers with DRAM memory attached (Figure 2.9).
The memory access characteristics of such a machine are non-uniform, or
NUMA [Lam13] for short, where accesses to a processor’s local memory
is faster than accessing memory attached to another processor [Gau+15;
Kae+15].

DRAM Channel 0 DRAM Channel 1

DRAM Channel 0 DRAM Channel 1

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM
Rank Rank Rank Rank Rank Rank Rank Rank
Memory Memory Memory Memory
Mapper Mapper Mapper Mapper
N N

| Target Address Decoder |

| Target Address Decoder |

A
[
| Source Address Decoder |

|

| Source Address Decoder |

Processor Socket 0

Processor Socket 1

Figure 2.9: Memory Controller Configuration of a Two-Socket Intel
Haswell.

Memory controllers of modern processors are configurable. However, there
exist hardly any public documentation on the multi-stage translation and for-
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warding process of memory controllers. Nevertheless, reverse engineering
efforts can reveal the translation scheme and register descriptions [Hill7;
Hil+17].

The BIOS (firmware initializing hardware during boot) might display an
option to select the visibility of the NUMA topology to the operating system.
This corresponds to partitioning of memory into the NUMA regions, or
striping among all NUMA nodes at cache-line granularity. The system
software can configure the memory controllers using memory mapped
registers where each socket can be configured individually.

Figure 2.9 depicts the address translation scheme of Intel Xeon proces-
sors of the Haswell and Broadwell generations based on the description
in [Hill7; Hil+17]. Note, that the address decoding happens after the
last-level cache and therefore in physical addresses. The translation is
triggered when a memory access fetches data from DRAM. The steps are
as follows:

1. The source address decoder forwards the request to the memory
controller of the target NUMA node depending on the physical
address of the memory access and the configuration of the source
address decoder.

2. The target address decoder forwards the requests to the memory
mapper of the correct DRAM channel. While doing so, the target
address decoder converts the physical address from the system
address to the mapper-local address space. Again, this depends on
the configuration and the physical address.

3. The memory mapper forwards the request to the corresponding
DRAM rank, as defined by its configuration. Again, this converts
the address into the DRAM rank local representation.

Secondary Translations on the Ti OMAP 4460 The ARM Cortex-
M3 subsystem of the Texas Instrument OMAP 4460 [Tex14] presents an
interesting case: the two ARM Cortex-M3 cores share a two-stage MMU
setup as shown in Figure 2.10. The MMUs of the Cortex-M3 cores are
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configured from the Cortex-A9 processor on the OMAP 4460 through a
dedicated configuration port.

The shared L1 MMU translates memory requests and forwards them to the
L2 master interface (L2 MIF). This acts as an address splitter, forwarding
requests either to the local RAM, ROM, or to the second-stage translation
unit (L2 MMU, on Figure 2.10) which translates the address and routes the
request to the L3 interconnect. This makes other system resources such as
RAM accessible to the Cortex-M3 core.

The interesting case, however, is when the L2 MMU emits an address to
the L3 interconnect, which falls into the address range of the L2 MPORT.
This creates a cycle: L2 MIF-L2 MMU-L3 interconnect-L2 MIF. Note, a
similar cycle exists on the Intel Xeon Phi co-processor. In both instances,
they are benign.

L2 MIF
] 64 kb RAM

Shared L1 Cache
- 7] 16kb ROM

M3 Core —‘
s 1]t 3

L2 MPORT L3 Interconnect 1GB RAM

Shared L1 MMU

Figure 2.10: Texas Instruments OMAP4460 Cortex-M3 Subsystem.

2.2.2.7 System on a Chip Firewalls
SoC platforms are networks of components which are connected through

interconnect networks and buses. Firewalls mediate access from and to
hardware components connected to a bus or interconnect.
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Based on in-band attributes including the request type (read/write), and
connection identifiers for example, the firewalls of the Texas Instruments
OMAP 4460 [Tex 14] can block or allow access to an entire subsystem.

The firewall is region based, where each region has a start and end ad-
dress, an assigned priority level, and can have different access permissions.
Regions with a higher priority take precedence over lower priorities. Fig-
ure 2.11 illustrates a firewall configuration using regions with different
priorities shown as levels in the figure. The regions are then projected on
one another onto the result plane.
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Figure 2.11: Address Filtering in the Firewalls on the Texas Instruments
OMAP 4460 [Tex14].

2.2.2.8 IOMMU / System MMU

IOMMUs or System MMUs translate memory requests coming from
I/O devices. This effectively restricts the resources a device can access
e.g. which RAM regions it can write to. IOMMUSs are often configured
using the same paging-structure to configure the translations as processor
cores use for paging [Int19b; AMD16; ARM16]. In contrast to a processor
core, there might be multiple devices covered by a single IOMMU which
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maintains a context per device. This context then contains a pointer to
the root-level page table to be used to translate requests from this device.
Similar to “normal” paging, IOMMU also support virtualization using
nested paging. Figure 2.12 shows an illustration of the translation process.

The IOMMU then selects the context based on the source from which the
memory request comes from. This source might be, for example, the PCI
bus-device-function triple contained in the PCI transaction. Consequently,
even though two devices access the same address, they can get translated
differently by the IOMMU.

Virtual Address
0%20000010 +}—{ 0x7A000000

PCI Device Address
0x8:4.2

Page Tables

Context Table System Address
Pointer Space

| || |

Context Lookup I Page Based Translation 1

Figure 2.12: Example of a Translation Scheme of an IOMMU Based on
Intel VT-d [Int19b].

2.2.2.9 Enclaves

Applications running on an operating system or virtual machines running
in the cloud are isolated from each other through hardware mechanisms
such as virtual memory. However, they have to trust the operating sys-
tem, hypervisor or cloud vendor not to interfere with the integrity and
confidentiality of their data.
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Hardware mechanisms such as the Intel Software Guard Extensions [Int19a]
(SGX) are designed to prevent the operating system or hypervisor from
accessing application data (e.g. [Fer+17; BPH15]) through memory isola-
tion and encryption. This enclave “is a protected area in the application’s
address space, which provides confidentiality and integrity even in the
presence of privileged malware.” [Sell6]. However, information may still
be leaking out of the enclave through side channels [Van+18].

The Intel Software Guard Extensions (SGX) [Int19a] explicitly assigns
memory to the Enclave Page Cache (EPC) to make it accessible to the
enclave. Memory accesses to a page of the EPC is subject to additional
hardware access control checks e.g. from within an enclave, code cannot
be loaded from outside the enclave, and access to pages in the EPC from
outside the enclave results in undefined behavior. Normal protection such
as paging and segmentation are still effective as the enclave effectively
runs with the linear address space of a user-level process.

2.2.2.10 ARM TrustZone

Recall, ARM-based platforms that implement TrustZone [ARMO09] split the

memory subsystem into two: a secure world and a non-secure world. Effec-
tively the “ARM architecture defines two physical address spaces” [ARM17].
Memory, devices and processors can be assigned to either the secure or

non-secure world. Some of which are capable of being in both, or switch

between worlds by changing the operation mode (e.g. secure monitor calls

on the Cortex processors)

Figure 2.13 illustrates a simplified setup with one ARM Cortex processor,
some DRAM and a device — the generic interrupt controller (GIC). A por-
tion of DRAM is configured to be secure memory and hence only accessible
from secure devices or processors. Similarly, the GIC is TrustZone-aware
and some of its registers are “security banked” meaning despite being
located at the same address, a different register is accessed depending
on whether the access originated from the secure or on-secure world.
A formalization of TrustZone revealed several imprecise or ambiguous
specifications [Arc19].
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Figure 2.13: Two Physical Address Spaces in ARM TrustZone.

The processor can operate in secure and non-secure mode which changes
the view of the world: only in the secure mode, the processor is able to
access the secure memory region.

2.2.3 Proposed Translation Schemes

The implementation of address translation schemes usually involves trade-
off decisions such as the granularity of protection and translation vs. re-
quired resources to configure how hardware translates addresses. This
section surveys improvements and alternatives to the translation schemes
described in the previous section and prototype hardware.
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2.2.3.1 Intel’s Single-Chip Cloud Computer

The Intel Single Chip Cloud Computer (SCC) [Int10b] consists of 24 tiles
with two Pentium cores each. The tiles form a two-dimensional mesh
structure where each tile can be identified using its (x, y)-coordinates.
Figure 2.14 on page 37 illustrates the top-level layout of the chip. The
architecture has four memory controllers (MC) that allow up to 64 GiB of
DRAM. In addition, each core has private, on-die memory for message
passing buffer (MBP) and system configuration space.

The cores operate as normal Intel Pentium processors including segmen-
tation and paging as described earlier. Logical and linear addresses are
translated to (core-local) physical addresses. Upon a miss in the core’s L.2
cache, the request is forwarded to the mesh interface unit (MIU) on the tile
which then consults the system address lookup table (LUT) to obtain the
destination tile of the request.

The memory request is then forwarded to the destination tile using the
routing network. The router in the destination tile forwards the request
to the sub-destination ID passed as part of the address. The bypass bit
indicates whether to bypass the mesh interface unit to access the tile-
local memory buffer directly. Each core having its own lookup table and
configuration registers being memory mapped, it can be configured such
that the core is completely sequestered and cannot change its own lookup
table, which defines what resources the core can access.

2.2.3.2 Reducing TLB Miss Overheads

Big-memory workloads experience a high TLB misses rate resulting in
overheads due to walking the page-table structures. This is a problem
as such workloads end up spending 50% or more of their clock cycles
handling TLB misses [Bhal7], while at the same time those workloads
seldom use the rich features provided by page-based virtual memory. Di-
rect Segments [Bas+13] map a part of the linear address space using
segmentation-based technique, while mapping the remaining part of the
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Figure 2.14: Memory Addressing in the Intel Single-Chip Cloud Computer
(SCO).
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linear address space using page-based virtual memory translation (Fig-
ure 2.15).

| [ Direct Segment | |

| | T

System Address Space

Figure 2.15: Tllustration of a Direct Segment Mapping.

This effectively preempts the page-table walk, similar to large-pages which
may not necessarily be good in NUMA systems because of memory ac-
cess imbalances causing memory controller congestion [Gau+14]. The
overhead of radix-tree based virtual memory translations can be reduced
by leveraging application specific translation schemes and exposing phys-
ical memory resources to applications [Ala+17]. The direct segment
approach is also applicable in the virtualized case where it can reduce the
full nested page-table walk to two direct segment translations [Gan+14].
Range Translations [Gan+16] and redundant memory mappings [Kar+15]
added support for multiple ranges or segments to be mapped. Those ap-
proaches speed up translations at the cost of coarse-grained protection
and requirement of large, contiguous blocks of ‘physical’ memory. Agile
paging [GHS16] combines nested page-table walks and shadow-paging
to reduce overheads of 2D page-table walks and virtual machine monitor
involvement in page-table updates. Those proposals effectively carve out a
contiguous region of memory which is translated differently. Devirtualized
memory [HHS18] tries to identity-map memory to avoid virtual to physi-
cal translations by leveraging permission validation techniques [KCE92;
WCAO02].
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2.2.3.3 Hardware Capabilities

Page-based virtual memory introduces a tradeoff between translation and
protection: while the use of large and huge pages speed up TLB misses
by cutting page-table walks short, the protection granularity is coarser
grained as a result. Instruction set capabilities such as CHERI [Woo+14]
or “Matching Key Capabilities” [Ach+17a; Azr+19; Bre+19] separate
translation from protection as illustrated in Figure 2.16. To some extent,
this adds a segmentation-like layer on top of the virtual address space,
where the segment descriptor is encoded into the hardware capability. The
set of physical resources that are accessible is defined by the combination
of the capability protection and the virtual memory translation.

Virtual Address
0x20000010 + 0x7A000000
Capability n 2 ]
Pointer 0x20000010 320000070
Base  0x20000000
timit  Ox2fffffff +
] L]
Page Tables
Translation
. Base Register _
Virtual Address Space Physical Address
| . Space .
! Capability Protection H Page Based Translation '

Figure 2.16: Hardware Capabilities used as “Fat Pointers”.

Memory accesses are sanitized against the size base and limit of the
hardware capability (in the case of CHERI encoded in a “fat pointer””) and
any attempts of out-of-bounds accesses are blocked. CODOMs [Vil+14]
tags every page in memory while using the instruction pointer as a capability
that defines which page tags a program can access. Single address space
operating systems use global address translations and enforce isolation by
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maintaining protection domains [Cha+94]. Protection lookaside buffers
caches the (domain,page) protection information [KCE92]. Processes
running on the Cambridge CAP Computer [NW77; Lev84] access memory
through capabilities stored in the process resource list. In contrast, the
Hypernel [Kwo+18] uses a hardware module between the processor and
DRAM supporting protection at word granularity.

2.2.3.4 Heterogeneous Memory Architectures

The Part-of-Memory (POM) [Sim+14] manages two types of memory
(slow and fast). POM distinguishes between a page-table physical address
(PTPA) and a DRAM physical address (DPA). On a memory access,
the PTPA is further translated to the DPA using a segmentation based
translation scheme to either a region within the fast or slow memory
(Figure 2.17). The configuration of the secondary translation step is defined
by the segment remapping cache (SRC) and the segment remapping tables
(STR) residing in fast memory. This mapping can be changed dynamically
depending on the access patterns of the application. Unified memory
architectures for memory-mapped SSDs [Hua+15; Abu+19] us a similar
approach to access data on SSDs.

SRT | Fast Memory

SRC || |

Page
Tables
VA PTPA DPA Slow Memory

Figure 2.17: llustration of the Part-of-Memory POM Architecture.

Impulse [Car+99; Zha+01; ZPC06] adds address translation hardware to
the memory controller that allows transforming a data structure scattered
across pages or cache-lines in main memory to a single, contiguous region
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on the systems bus. Example applications include sparse matrices, struct-
of-arrays and array-of-structs, column-store vs row-store. In contrast to
POM [Sim+14], Impulse allows for a more flexible, secondary translation
step from the system bus to the memory controller.

2.2.3.5 Multiple Views of Memory

Instead of the multi-stage address translations mentioned above, the same
byte in DRAM can appear at different addresses in the processors local
physical address space, where each mapping has a different memory lay-
out e.g. array-of-structs and struct-of-arrays views as in SAMS [GKGOS;
GKG10]. Memory controllers of modern processors already allow a lim-
ited set of transformations [Hil+17; Hill7]. Page overlays [Ses+15] allow
memory management at cache-line-granularity where each virtual page
is mapped to a regular physical page and an overlay page using a direct
mapping where the overlay address is a concatenation of the process ID
and the virtual address. (Figure 2.18). The overlay mapping table (OMT)
stores which pages have an overlay. The memory controller receiving the
request in the overlay memory store region, returns the cache-line from
normal main memory depending on the configuration of the overlay.

] Overlay Address Space
direct mapping

§ OMT

page-tables

1 direct mapping H

Virtual Physical Main Memory
Address Space Address Space Address Space

Figure 2.18: Address Translation with Page Overlays.
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2.2.3.6 Large Rack-Scale Pooled Memory Resources

Technological advancements in optical interconnects [ORS13] and non-
volatile memory allow low-latency, high-bandwidth access to rack-scale
memory pools or “fabric-attached memory” [Far+15; Bre+19; Keel5].
Fabrics such as Gen-Z [Gen18] provide a “memory-semantic” intercon-
nect to access volatile and nonvolatile storage in a machine through a
byte-addressable load/store interface. Mediating access and enforcing au-
thority in such an architecture poses new challenges to the system software
developers [Azr+19; Bre+19].

Node 0 Node 1 Node n

IDRAM I | Controller | I DRAM I | Controller | IDRAM || Controller |
— — !

| Network Fabric |
i 1 i 1 i 1 i
‘ NVM | ‘ NVM | ‘ NVM | ‘ NVM |

Figure 2.19: Rack-Scale Pooled Memory Resources (as in [Keel5]).

An example of pooled memory resources is shown in Figure 2.19. There
is a collection of compute nodes, each having a set of cores and local
memory resources. Parts of the node’s local address space is mapped onto
the network fabric where storage nodes are attached. This is yet another
instance of a multi-stage translation scheme. In such a system, the size
of the memory pool is larger than can be addressed by the core. Memory
resources in the memory pool have a larger address.
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2.2.3.7 Near Data Processing / In Memory Processing

Executing operations on data often means fetching it from off-chip memory
into the processor caches, apply the operation and write it back to off-chip
memory. This induces overheads in terms of latency, bandwidth and mem-
ory consumption. Processing in memory (PIM) or near-data processing
(NDP) architectures try to reduce this data transfers by deploying small
cores close to memory that are capable of executing simple operations.
Proposed architectures (e.g. [Ver+16; Ver+17; HSO1]) employ various
translation and protection schemes providing a global address space or
local memory regions, for instance. System software needs to manage
those translations and components [Bar+17].

2.2.4 Summary

The survey presented a list of different address translation schemes. In sum-
mary, translations are defined using in-memory data structures (e.g. page
tables) or registers (e.g. SMPT of the Xeon Phi co-processor). The trans-
lation granularity is either fixed or configurable. The actual translation
depends on the target or sources address. Memory requests traverse a
multi-stage translation scheme with possible loops. Hardware extensions
such as enclaves and capabilities put another layer on top of virtual memory
mediating access to the physical resources. From a single address space,
addresses can be translated using multiple, different translation schemes
(e.g. direct segments and paging).

2.3 Current Physical Address Space Model

When opening a computer systems textbook, one gets presented with a
nice and simple view of a computer, where a processor has an address
translation unit which turns virtual addresses into physical addresses (refer
to Figure 1.1 on page 4).
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In the case of multi-processor systems, each core has its own translation
unit which can be configured independently. As far as the operating system
is concerned, running a process in parallel on multiple cores simply means
programming the translation units with the same page tables, defining
the virtual-to-physical address translation. To set up the page tables for a
process, the operating system simply needs to know the important physical
addresses (e.g. RAM, device registers, page table roots, etc.) and manage
this address space accordingly. Every byte-addressable resource such as
RAM or device register, that could be addressed by a processor has a
unique (physical) address.

Virtual-memory support is a complex element of both operating system
design and processor architecture [CKZ12; CKZ13], providing translation
and protection mechanisms, and a uniform and flat view of memory for
each process running on the system. To make this work, the following key
simplifying assumptions about the underlying physical address space play
a central role:

1. All physical resources such as RAM and memory-mapped I/O
registers, appear in a single, uniform physical address space.

2. Any processor core (via its MMU) can address any part of this
physical address space at any given time.

3. All processors use the same physical address for a given physical
resource — memory cell or hardware register.

This view of the world with the assumptions stated above does, provides a
nice and simple model of a platform and to write software for it. However,
it does not hold for modern hardware ranging from rack-scale systems to
systems-on-a-chip (SoCs) in mobile devices — if it ever has held in the past.
The next section examines where these assumptions break. This provides
evidence that the concept of a globally unique physical address (as seen
from the processor) will become even more ambiguous and increasingly
unsuitable for a using it as a unique identifier for resource management
operating systems.
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2.4 Problems with the Current Model

The previous two sections presented a survey of different memory ad-
dressing schemes and the commonly used abstraction of the memory
subsystem using the single address-space-assumption. This section now
highlights cases where there is a discrepancy between real hardware and the
single-address-space assumption (Section 2.4.1) and resulting problems in
systems software (Section 2.4.2).

2.4.1 Observations

Based on the survey (Section 2.2), this section highlights several observa-
tions which provide evidence of the mismatch between real hardware and
the operating system abstractions.

2.4.1.1 First Observation: Disjoint Address Spaces

Rack-scale systems are a tightly interconnected collection of individual
machines forming a single unit, in this case a rack. Hardware vendors
like Oracle, Teradata, SAP, and others combine commodity servers and
custom-built hardware to a single system, where servers are connected
through a high-speed, low-latency network. A diagram of an example
system can be seen in Figure 2.20. Each machine has processors, memory
resources and a hardware module (labeled “RDMA Card” in Figure 2.20)
connecting the machine to the global interconnect network.

One of the features of such systems is the capability to access memory
resources of another machine directly. Remote direct memory access
(RDMA) allows applications to copy data to and from the RAM of an-
other [Rec+07] without involving the operating system. The RDMA card
issues a memory read or write request to the global interconnect network.
This request contains the target machine identifier and the address within
the target machine’s local address space. This address may be further trans-
lated before issued to the machine local interconnect. Memory resources
are therefore identified with a machine identifier and an address.
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Figure 2.20: An Example of a Tightly Interconnected Rack-Scale Machine.

Scale-out NUMA [Nov+14] pushes this idea further by integrating an
RDMA-like interface into the processor’s cache coherence protocol to
reduce or eliminate overheads from network stacks, PCI express and DMA
copying resulting in a dramatically lower overhead for remote reads, writes,
and atomic operations. Applications simply use loads and stores to access
remote memory. Scale-out NUMA exposes some of a machine’s local
resources to other machines of the cluster. Exposed resources are globally
identified with a node identifier, a context and an offset. This triple is then
converted into a local address in the destination machine.

The machine boundaries of such tightly interconnected systems is increas-
ingly blurred. As in NUMA machines [Lam13], buffer allocation and
correct placement of data is critical to performance [Kae+15], but in
contrast requires global coordination and protection of multiple physical
address spaces. Moreover, the address at which a buffer appears might not
be the same on all the machines.

2.4.1.2 Second Observation: Parallel Address Spaces

The ARM architecture [ARM17; ARMO09] defines two physical address
spaces explicitly: “secure” and “non-secure” where the normal world
cannot access the secure address space, whereas the secure world can
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access both address spaces. Some resources are aliased in both address
spaces, whereas others only ever appear in one (e.g. banked registers)

Accessing the same physical address from the secure and non-secure
world, therefore, resolves the addresses in two different address spaces
(Figure 2.13). Memory and devices may behave differently depending on
whether the access originated from the secure world or not.

2.4.1.3 Third Observation: Different Views

PCI Express [PCI17] is a programmable, high-speed bus connecting pe-
ripheral devices such as graphic cards (GPGPUs), network cards (NICs),
FPGA accelerators etc., with memory bus of the host system. Many of
those PCI devices contain large amounts of on-card memory forming a
separate physical address space. An example is given in Figure 2.21.
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Figure 2.21: Address Spaces of a System with PCI Express Attached Co-
Processors.
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To perform useful work, data needs to be transferred over the PCI bus
between host memory and the device. This can be done using loads/stores
by the processor, a DMA transfer on the device, or even using a separate
DMA engine to perform a transfer as shown in [Ach14]. Setting up data
transfers is non-trivial:

1. Not all memory resources may be reachable from the processor or
the DMA engine doing the transfer (e.g. device A in Figure 2.21
only supports 32-bit addressing).

2. Evenifall resources are reachable, only one direction of transfer may
be supported e.g. Intel CrystalBeach 3 DMA controllers [Int13;
Int17] (device C in Figure 2.21) can only copy from DRAM to
GDDR, but not the other direction.

3. Depending on the current configuration, different source and desti-
nation addresses must be used e.g. devices B and C in Figure 2.21.

In any case, software has to translate addresses correctly independently
which transfer mode is being used. IOMMUs [Int19b; AMDI16] or Sys-
tem MMUs [ARM16], do not facilitate the problem at hand, they rather
add complexity leading to vulnerabilities [Mar+19; MMT16], as they
effectively introduce additional address spaces.

2.4.1.4 Fourth Observation: Intersecting Address Spaces

Some PCI Express devices such as GPGPUs, accelerators or FPGAs
contain a significant amount of memory resources (e.g. GDDR in the case
of GPGPUs) and they are capable of running general purpose workloads.
The system is heterogeneous, consisting of at least two types of cores and
memory. An example of such a system is shown on Figure 2.22, where
two Xeon Phi co-processors [Int14b] are plugged into PCI Express slots,
resulting in an intersecting address space configuration where the host and
Xeon Phi address space have windows into each other’s address space.

On the one hand, the Xeon Phi co-processor appears in the host’s address
space as a PCI Express device with two distinct memory regions: one 16
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GiB region maps to the GDDR RAM on the co-processor card, while the
other, smaller region holds the Xeon Phi’s memory mapped I/O registers.
Where those regions appear is configurable and determined by the PCI
Express bridge programming algorithm.

On the other hand, the Xeon Phi cores have a different view of the world:
GDDR RAM and MMIO registers appear at fixed locations in the local
address space. The upper half of the address space (512 GiB) is where the
window to the host address space resides. This region is divided into 32
separate 16 GiB regions, each of which can be translated independently
via a lookup table to any physical address on the host side — this includes
the GDDR RAM of both Xeon Phi cards that may be present in the system.

This example invalidates all three assumptions stated earlier: there are at
least two distinct physical address spaces, the host address space is larger
than the Xeon Phi address space and therefore not everything is reachable
at any point in time, and memory resources have at least two different
physical addresses. Even worse, this real-world hardware example permits
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addressing loops to occur, as highlighted in Figure 2.22 — something an
operating system would ideally be able to prevent. True loops might cause
bus errors or data aborts, whereas benign loops alias memory at different
addresses which is a correctness problem for address-based access control
and resource management.

Programming frameworks like CUDA Unified Memory [NVI13], OpenCL
SVM [Khr18], AMD HSA[HSA14] or Linux Heterogeneous Memory
Management (HMM) [Lin19c] try to unify host and graphics accelerator
memory, which works for their specific setup, but does not work in the
general case. Those frameworks provide a rather opaque solution: Linux
HMM for instance migrates memory between host and device memory
transparently without explicit application request.

2.4.1.5 Fifth Observation: Dynamic Address Spaces

Parts of the system may change during runtime. Power constraints pro-
hibit running all cores and devices in the system at the same time (dark
silicon [Esm+11]). Depending on the workload, specialized accelerators
are turned on, while other ones are switched off. Similarly, PCI Express
supports hot-plugging of devices [PCI13].

This effectively changes the number of address spaces in the system,
including the physical resources within them. Not only the number of
address spaces changes, but also how the remaining address spaces map
regions is adapted to account for the vanished resources.

2.4.1.6 Sixth Observation: Code, Data and Stack Segments

Segmentation is one of the protection modes of x86 processors. The
Intel 64 and TA-32 Architectures Software Developer’s Manual [Int19a]
specifies three segmentation models using up to six different segments
which can be classified into code, stack and data segments. Depending on
the type of memory access and the segmentation mode, the processor will
access the memory location through another segment i.e. an instruction
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fetch, stack or data access to the same address results in different locations
being accessed as illustrated in Figure 2.23.

Segment registers are still used today to hold pointers to core-local data
structures, for instance. Moreover, proposals published at architecture
conferences such as direct segments [Bas+13] advocate the use of special
memory regions which are translated through segmentation instead of
paging to eliminate page-walk time. In addition, hardware capabilities such
as CHERI [Woo+14] provide segment-like base-limit access restrictions
on top of virtual memory.
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Figure 2.23: Memory Access Through Segmentation.

2.4.1.7 Seventh Observation: Configurable NUMA

Large servers typically consist of multiple processors connected through a
high-speed coherency interconnect such as Intel’s QPI [Int09] or AMD’s
HyperTransport [HypO8]. Each processor contains memory controllers
which have some RAM attached. Memory accesses from cores are non-
uniform: accessing local memory has different characteristics than accesses
to memory attached to a remote processor, also called NUMA [Lam13]. An
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Figure 2.24: NUMA Memory Controller Configuration with Private Mem-
ory (C and E).

example of a two-socket system is shown in Figure 2.24: Each processor
has multiple cores and a memory controller which maps four memory
regions: A and B are shared, C and D are private, and E is interleaved
between the two DRAM modules.

The memory controller in each processor effectively works as an arbiter for-
warding memory accesses to the local memory or to the remote node. This
can be configured at cache-line granularity. It is possible to alias memory
regions with different interleaving. Depending on the workload, memory
can be allocated with the optimal interleaving resulting in performance
improvements [Hil+17]. Moreover, this configuration can be different for
each processor socket, even parts of the memory resources can be made
inaccessible to implement private memory.

2.4.1.8 Eighth Observation: Heterogeneous SoC
The problem is not just confined to high-end servers with custom-built hard-

ware and accelerator cards. System-on-a-Chip (SoC) based platforms such
as the Texas Instruments OMAP series [Tex14], nVidia Tegra [NVI17] or
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QualComm’s Snapdragon [Qual8] are inherently heterogeneous consist-
ing of a mix of different cores, memory, devices and interconnects, each
of which effectively forming a different address space. Figure 2.25 shows
the block diagram of the Texas Instruments OMAP 44xx SoC series.

This chip has two ARM Cortex A9 cores as main application processors
and consists of at least 13 distinct interconnect each of which is guarded by
firewall modules defining which subsystems can access which parts of the
chip and at which addresses. In addition, there are at least seven processing
cores (most prominently two ARM Cortex A9 and two ARM Cortex M3,
plus DSP and graphics processors), last but not least a collection of on-chip
DMA-capable devices. Each of those processing cores and devices have
distinct views of the system, often having a private access port to other
subsystems. Finally, the address translation of this chip can be configured
such that a memory access is routed through the very same interconnect
twice. This effectively results in a loop.

In summary, the interconnect of such SoC chips forms a complex network
of buses of different widths. Highly configurable translations and firewalls
between the buses and the cores, devices or memory attached to them enable
sand-boxing of low-level software on some cores. Security extensions such
as ARM TrustZone [ARMO9] divide the components into secure and non-
secure worlds, where some resources are only accessible when the core is
in a particular mode. Moreover, devices can behave differently whether
the access originated from a secure or non-secure context.

In addition, the memory maps printed in the publicly available manuals
for such SoC chips list multiple physical addresses for the same device
register or memory cell. The address is different depending on which core
is initiating the bus cycle (e.g. [Tex14]).

2.4.1.9 Ninth Observation: Core-Local Resources

Even an off-the-shelf, low-end personal computer consists of multiple
physical address spaces. PCI Express devices aside, every core has its
own memory mapped-local interrupt controller (local APIC [Int19a]).
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Figure 2.25: Schematics of the Texas Instruments OMAP4460
SoC [Tex14].
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Figure 2.26: Core-Private Resources of the Local APIC on x86 processors.
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Figure 2.27: Processor’s Address Space Size is Smaller than the System
Address Space at the Example of the SCC.

Figure 2.26 shows an illustration of this scenario. This also applies to
hyper-threading or simultaneous multi-threading where there are multiple,
independent execution contexts per physical core. The local APIC has
a well-known, but configurable address. Consequently, in a multi-core
system the address, by default, is the same for all and therefore even though
the cores issue the same address different resources are reached.

2.4.1.10 Tenth Observation: Limited Number of Bits

Finally, the size of available memory simply exceeds the number of address-
able bits of an address space. Machines with terabytes of main memory are
already available today and projects like “The Machine” [Far+15; Keel5]
envision main memory in the order of petabytes. Note, that current plat-
forms support up to 48 bits or 256 TB of addressable memory, which is also
a limitation for virtual address spaces [El +16]. In addition, the number
of available bits may be even lower, as some of them are used to route
memory transactions to the appropriate part of the machine, or mapping of
kernel windows etc, and hence further reduce the amount of addressable
memory.

Hardware vendors proposed designs to extend the physical address by
adding additional address bits (e.g. Intel’s Physical Address Extension
(PAE) [Int19a], Arm’s LPAE [ARMI11], or Intel’s Single Chip Cloud
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Computer [Mat+10]). An example is shown on Figure 2.27. Increasing
the number of available bits is costly, as it requires additional wires and
space in the caches etc.

Furthermore, efficient scaling of conventional page-based translation mech-
anisms to very large memories is questionable [Bai+11; WCAO2]. It seems
more likely for hardware designers to add additional layers of physical ad-
dress translation: the Intel Single-Chip Cloud Computer [Mat+10; How10]
extended a 32-bit address to a 46-bit address using a 256-entry lookup
table, the Intel Xeon Phi [Int14b] extends a 40-bit address to a 48-bit
address. Similar approaches are followed by rack-wide persistent memory
pools as in [Ach+17a; Azr+19; Bre+19].

2.4.2 Resulting Problems in Operating Systems

The complexity of the memory subsystem and its configuration of hardware
platforms is also reflected in the operating system, which in turn is often
complex itself, and relevant source code is poorly documented [Gor04].
The struggle with wrong assumptions about memory addressing on various
platforms by introducing special cases and actually getting it right in an
operating system is revealed by numerous bugs and vulnerabilities [HQS 16].
Examples include:

* CVE-1999-1166 -Potential map of kernel memory to user-space.

* CVE-2011-1898 - Using DMA transfers to write to interrupt regis-
ters.

* CVE-2013-4329 - Using DMA before the IOMMU is setup properly.
* CVE-2014-0972 - IOMMU registers not write-protected.

* CVE-2014-3601 - miscalculation of the number of affected pages.
* CVE-2014-8369 - Due to bug in fix of CVE-2014-3601.

* CVE-2014-9888 - Access rights for data pages.
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CVE-2014-9932 - Improper address range calculation in TrustZone.
CVE-2016-3960 - Handling of shadow page tables.

CVE-2016-5195 - Race conditions using memory hardware features
(DirtyCow).

CVE-2016-5349 - Not providing enough memory address informa-
tion to secure execution environment.

CVE-2017-5925 - Potential ASLR break due to page-table walks.
CVE-2017-6295 - Reading the wrong buffer location in TrustZone.

CVE-2017-8061 - Interactions of virtually mapped stack with DMA
scatter lists.

CVE-2017-12188 - Not properly translate guest virtual to guest
physical addresses.

CVE-2017-16994 - Ignoring holes in huge pages.

CVE-2018-11994 - SMMU misconfiguration allows access to HLOS
memory.

CVE-2018-1038 - Allowing a process to modify its own page-table
entries.

CVE-2019-0152 - Insufficient memory protection in System Man-
agement Mode.

CVE-2019-2250 - Writing to arbitrary memory location.

CVE-2019-2182 - Wrong page permissions leave read-only pages
writable.

CVE-2019-10540 - Insecure setup of SMMU.
CVE-2019-15099 - Wrong DMA address in descriptor.
CVE-2019-19579 - Possible DMA to host memory from Xen guest.
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Out-of-bounds memory accesses, address miscalculations or misinterpreta-
tions, under- or overflows of addresses and offsets, can lead to unexpected
behavior, including crashes and memory corruption [KA18]. DMA-based
attacks [SB13] and misconfiguration of IOMMUs or SMMUs [Mar+19]
further lead to security implications.

For example, violations of system integrity policies allowed the WiFi co-
processor to request a change in the IOMMU configuration to gain access
to memory at will [Gon19]. Device drivers being one of the major causes
of operating system crashes [SBLO3; Mat+14]. Overlapping memory
addresses with MSI-X interrupt ranges (Linux commit 17f5b569e09cf)
can lead to unintended interrupts, and no proper memory writes.

In summary, the complexity of the memory subsystem of real hardware and
the lack of a faithful and sound representation thereof in system software
has been the source of serious security vulnerabilities and bugs. This is a
problem for which this thesis proposes a possible solution.

2.5 Implications for Operating System
Architectures

Based on the survey and the observations above, there are two options:

* Ignore the problem. One can simply ignore the problem and continue
with the old “cores plus RAM” view of the world. As a consequence,
have the operating system manage the increasingly small areas of
the machine where this old model still fits.

» Embrace the problem. One can acknowledge the problem and find
a better model to express the memory subsystem topology with its
configuration and physical addressing.

This section describes implications and challenges for the design and
implementation of system software.
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2.5.1 Operating System Design Implications

The observations above suggest five key implications for operating system
design and implementation with respect to memory management

Naming of resources. There are multiple-levels of translation and how
they map addresses may change. Therefore, physical addresses as seen by
a processor core are not a stable concept. Ultimately, there is some local
physical address that refers to the resource, but which one is it? This is
important for memory management. Allocating a physical frame on one
core and freeing it on another core must operate on the same underlying
physical frame. System software must be able to unambiguously name
a specific resource. Failing to do so, can lead to double allocations or
releasing of physical resources and this can lead to data corruption due to
unintended sharing of memory.

Different views. Memory resources can appear at different addresses
on different cores, or the same address may resolve to another memory
resources. To access a particular resource, a core may need to issue a
different local physical address. This is important when sharing data
structures between multiple cores and devices: what is the local physical
address in the address space of the other device or core? Getting this ad-hoc
translation wrong results in memory accesses using invalid pointers to the
wrong data structures, causing data corruption or information leakages.
System software needs to explicitly convert the name of a resource into a
valid local physical address e.g. when updating the page tables of a process.

Configurable multi-stage translation. Memory requests traverse multi-
ple interconnects and translation units. This process transforms the request
with its address several times between the issuing core and the destination
resource. This chain of translation steps is configurable which implies
that the core-local physical address is not a stable concept. It can change.
System software needs to ensure that this change is reflected in the relevant
translation layers e.g. invalidate a process’ corresponding virtual address
space region to avoid unintended data accesses. Moreover, the view of a
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process running its virtual address space must remain consistent across
cores and reconfiguration steps (i.e. pointers must always refer to the same
resource). System software needs to track every part of an address space
that is mapped in other address spaces.

Limited reachability. The possible number of memory locations in a
machine exceeds the range of physical addresses a core can issue. This
implies that some memory locations are not directly or just temporary
reachable from a subset of the cores. System software needs to be aware of
this when allocating memory. Allocation policies must include constraints
on where the memory is used from. Failing to do so renders the memory
unusable on some cores, worse pointers could be truncated or refer to dif-
ferent memory resources resulting in accesses to the wrong data structures
or registers.

Access to kernel data structures. Processor cores are not the only source
of bus cycles: DMA capable devices and other hardware components can
access memory resources. System software needs to be aware of this when
allocating memory for kernel data structures. As a security property, it must
be impossible for any user-level process running on a core, Co-processor or
device to access kernel data structures. This suggests a distinction between
user-accessible and privileged memory regions.

2.5.2 Virtualization as a Solution?

Virtualization technologies are able to emulate a particular environment
and topology to their guests. Memory virtualization can provide a unified
address space: virtual machines can be configured to emulate a single,
uniform guest physical address space per-virtual machine. This is similar
to the linear address space of processes.

However, this still does not solve the problem: the lowest layer in the stack
(the operating system or hypervisor) still needs to deal with different views,
reachability and multi-stage translation described above. Virtualization
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adds another layer of translation on top. Moreover, running concurrently
on multiple cores requires careful synchronization of translation structures.

2.5.3 Operating System Design Challenges

In the presence of multiple, intersecting and configurable address spaces,
managing translations and physical resources remains a key operating
system design challenge:

1.

How does an operating system correctly and efficiently allocate,
manage, and share regions of physical memory regardless whether
it is DRAM, byte-addressable non-volatile memory, or memory-
mapped I/O registers?

Which translation units does system software need to configure
to make the allocated region accessible and what is the correct
configuration to apply?

How does an unambiguous naming scheme for physical resources
look like?

How does systems software communicate and share a set of memory
locations (e.g. to set up a shared buffer) between two cores, co-
processors or devices of the machine?

When can processes run on multiple cores concurrently using a
single, shared virtual address space? Under what circumstances is
it guaranteed to be feasible and when is it not? How does system
software need to configure the relevant translation hardware?

How can system software developers get assurance that the address
being issued by a process or device actually ends up at the right
memory resource?

Large-scale platforms such as Hewlett-Packard’s “The Machine” [Far+15;
Keel5] raise additional challenges in memory management regarding
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different memory types, reliability, and security and authorization aspects
in highly distributed architectures.
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* Heterogeneous Memory.  Already today, machines consist of

a highly heterogeneous memory architecture including DRAM,
Graphics Memory, byte addressable read-only memory (ROM) and
device registers. The introduction of persistent memory [Cut19]
forming large pools of non-volatile memory holding operating sys-
tem and application data structures requires careful allocation and
tracking of memory regions [Bre+19].

Reliability. With the distributed nature of tightly interconnected
machines, memory or interconnects may fail transiently or partially.
Systems software and hardware must be aware of potential failures
when accessing memory nodes, either local or remote [Kha+17].

Security. The questions “who should be able to change which
translation unit” and “what resources should be accessible” will
become crucial for security related aspects of system design. Al-
ready today, SoC platforms include configurable firewalls to shield
critical code from accesses of other software running on the same
chip [ARMO09; Tex14]. Likewise, the Intel SCC [How 10] allows to
completely sequester cores even when running in privileged mode
through programming of the system lookup tables.

Energy Consumption. DRAM is a major contributor to energy
consumption of today’s servers [SWO09]. Approaching the power-
wall, it might be impossible to power on all components of a sys-
tem [Esm+11]. Thus, the operating system must take power con-
straints into consideration when allocating and managing memory.



2.6 Conclusion

2.6 Conclusion

This chapter provided evidence based on several real world and prototype
examples that a physical address space is no longer what it used to be. The
single, globally uniform physical address space is an illusion.

Multiple address spaces form a network of numerous heterogeneous
processor cores, devices, co-processors, interconnects, buses and byte-
addressable memory resources such as DRAM, non-volatile memory, or
devices registers, all of which together forms a tightly interconnected
distributed system [Bau+09b]. Address-translation units and hardware
firewalls translate and manage accesses to and from hardware components.
Two distinct cores and devices have different views of the system. In
summary, there is no single “reference” physical address space [Ger+15].

Moreover, the chapter presented problems resulting from the mismatch
between the single address space abstraction and real hardware, and the
resulting implications and challenges for the design and implementation of
system software. Addressing any of these challenges requires a clear and
sound basis for unambiguously naming and referring to physical memory
resources. This is a prerequisite allowing an operating system to reason,
control and manage memory accessibility from different parts of the system,
resource allocation and address translation schemes.

The remaining chapters of this thesis explores ways to find applicable
techniques and architectures to design and implement operating systems
which are capable of handling the large amount of address spaces of today’s
and future machines.
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The previous chapter showed that a physical address is no longer (or
never has been) a stable concept. A memory request traverses multiple
interconnect and buses where its address is translated several times, often
based on the configuration of translation units and firewalls. Modern
computer systems from rack-scale to SoCs are composed of multiple
physical address spaces. The interactions between those address spaces is
non-trivial: they overlap and intersect in complex, and dynamic ways.

Abstract system representations and models thereof are an important part
of system software and runtime systems. They are used in identifying
memory resources, as performance models for allocation and schedul-
ing decisions, understanding and specification of memory systems and
hardware platforms, and system software verification.
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This section presents related work in the following areas:

* Section 3.1 describes sources of system topology information to
operating systems.

* Section 3.2 shows behavioral platform descriptions including the
semantics of memory accesses.

» Section 3.3 presents a survey of physical resource management in
operating systems.

* Section 3.4 investigates software runtime systems and programming
languages.

3.1 System Topology Descriptions

Having a clear description of the system topology is important for system
software to locate particular physical resources such as memory, devices
and processors. System software obtains relevant information from parsing
firmware provided data structures, hardware discovery mechanisms, use
information encoded in domain specific languages, or use hard coded
values in a header file when building a platform-specific image.

3.1.1 Self-Describing Hardware and Firmware

Certain hardware subsystems are self-describing. Standards such as PCI
Express [PCI17] and USB [USB17] define discovery and enumeration
procedures to obtain the bus hierarchy and the connected devices. System
software needs to correctly initialize and program the devices. This
process includes assigning addresses: in the case of USB devices are
operated by the host controller using a logical address within the USB
hub topology, whereas in the case of PCI Express devices appear at
configurable physical addresses in the system address space through PCI
bridge windows. The PCI Express specification [PCI17] defines a set of
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constraints (e.g. alignment, ordering, size) a valid bridge configuration
must satisfy. This is a natural match for declarative programming and
constraint solvers which operate on top of an encoded PCI Express topology
to produce a valid configuration for all PCI Express bridges satisfying all
constraints imposed by PCI standards [Sch+11; Sch+08].

Tools like LIKWID [THW 10; THW 12] use the self-describing features of
processors (e.g. the cpuid instruction on x86 processors) to provide detailed
information about the processor topology. This includes the mapping of
hardware threads to cores, and information about the cache hierarchy
like the different sizes, associativity and how they are shared among the
processor cores of the system.

During the boot process, lower-level firmware can provide information
about the system topology through well-defines data structures or services:
UEFI [UEF17] provides system services to allocate and free memory, and
to obtain a system memory map which describes the memory resources
of the system and whether they are unallocated or how they are used.
ACPI [UEF15] defines a set of tables that list processors, PCI Express root
complexes, [OMMUSs with their device assignments, memory controllers
with affinity and bandwidth information.

In summary, the self-describing mechanisms of hardware in combination
with low-level system firmware can provide a platform description for
operating systems, which in turn provide this information to applications.
However, this information is incomplete. Those mechanisms only provide
a partial description of the platform. For instance, PCI Express describes
the existence of a compliant device, but not the processing and memory
resources of the device itself, ACPI lists the different IOMMUSs but not
how they are translating memory accesses.

3.1.2 Domain Specific Languages
The self-describing mechanisms or data structures provided by firmware

only provide a partial description of a platform, or worse they may be not
available at all. System software needs to use other sources of information.
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One example used in production environment are DeviceTrees [dev17]
adapted from the Standard for Embedded Power Architecture Platform Re-
quirements [Pow11]. They provide information of devices and components
including processors, memory and peripheral devices for which there is no
discovery mechanism. Similar to ACPI or PCI, DeviceTrees indicate the
presence of a particular device, but not the resources of the device itself. As
the name suggests, a DeviceTree is a tree data structure with a single root.
They are not capable of describing complex, non-uniform heterogeneous
platforms. The hierarchy described by a DeviceTree is projected to the
view of a single core, while other topology information such as caches,
TLBs and views from other cores are ignored.

The Arm Architecture Specification Language (ASL) [Reil6] specifies
the environment of an Arm platform including the instructions with its
encoding and semantics, registers, stack and program counters, exceptions,
system operations, and the memory translation of the processor’s MMU
with a page-table walk. From the ASL, architecture and register docu-
mentation can be generated. The combination of an ASL interpreter and
elf-loader produces a simulator (or executable specification) of an Arm
processor [Reil7a].

Similar to the ASL register specification, which describes the details of
every bit field of a register, Barrelfish’s Mackerel [Bar13] provides similar
functionality to describe registers and hardware-defined data structures
of a device. In addition, Mackerel has a notion of address spaces which
defines how device registers are accessed (e.g. I/O, memory mapped or the
Arm model specific register space). An address space defines read/write
functions of specified bit widths, and translates reads/writes to the relevant
instructions (e.g. I/O or loads/stores).

In contrast, the Sockeye language [Sch17; Barl7b] describes memory,
interrupt, clock and power subsystems of a platform on an abstract level.
Sockeye is descriptive and not behavioral. It can express the existence
and static state of an MMU, however it does not define the behavior of the
translation mechanism and the page-table walker, for instance. Sockeye was
motivated and influenced based on the model that Chapter 4 presents and
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is further used as part of the operating system implementation described
in Chapter 6.

3.1.3 System Topologies Summary

In summary, hardware description standards and bus specifications provide
information about the hardware and the topology of a system. However,
none of the methods described is capable of representing the entire memory
subsystem with enough detail and semantics to enable formal reasoning of
memory addressing in a system.

3.2 Behavioral System Descriptions

The platform description languages and discovery mechanisms of the
previous section provide information where a certain resource is located
and at which address it is accessible. However, two platforms with identical
memory map can provide different memory access semantics. This section
surveys related work of behavioral memory models focusing on their
representation of memory address translations.

3.2.1 Micro Architecture Specifications

Platform descriptions indicate the location at which physical memory
resources of a machine reside. They may further provide information
on the memory type. However, those specifications are not behavioral:
they do not model the effect of different load and store instructions issued
by the processor. In particular, out-of-order execution, memory access
reordering, and the memory model of the processor are not expressed.
This is an orthogonal problem to the work presented in this dissertation.
Nevertheless, this section presents the related work in this area with respect
to memory addressing and address translation.
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The memory model of a hardware architecture defines the guarantees that
hardware provides on the ordering of memory accesses. Weak memory
models as used on Arm and IBM Power platforms, allow many memory
accesses to be re-ordered leading to different execution traces due to write
buffering or speculation. Ideally, the set of possible traces should be a
subset of the set of allowable traces even in the presence of reordering or
speculation [Alg+10].

Behavioral models of weak memory system (Arm and Power) express
software visible semantics of memory operations [Alg12; Flu+16] and
the number of fences used in programs [AHW15]. This also includes
pipelining effects, or operation reordering in write buffers. However, those
models stop at the last-level cache of the processor and do not capture
the complexity thereafter, which this dissertation focuses on and thus
complementing the weak memory models [Alg12; Flu+16]. Similarly, the
total-store ordering (TSO) model [OSS09] expresses the semantics of the
x86 memory model.

Each instruction the processor executes has a certain effect on the processor
and memory state. The instruction set architecture (ISA) defines the
semantics of the different instructions a processor can execute. Behavioral
models of the ISA e.g. 32- and 64-bit Arm [FM 10; Reil6; Reil 7b] including
aconcurrency model [Flu+16], or x86_64 [Das+19] provide a framework to
unambiguously write down and specify the semantics of every instruction
of a micro architecture. Based on this model specification, interpreters and
executable specifications provide an execution environment to run and test
software, and examine the effect on the processors model state [Das+19;
Reil7a]. This also includes the effects on a particular memory address
with respect to store instructions and the visibility to other processor’s
on the platform. Serval [Nel+19] uses the Rosette [TB14] language to
specify the semantics of instructions to reason about the correctness of
software using symbolic execution. While modeling memory accesses and
their semantics with respect to possible re-orderings in write buffers, the
models stop at the processor boundaries or express the memory as a flat,
byte-addressable global array.

70



3.2 Behavioral System Descriptions

3.2.2 Processor Models

Processors are complex pieces of hardware on their own consisting of
execution pipelines, load and store units, and several layers of caches or
buffers. The first verification efforts (e.g. CLI’s FM9001 [HB92; BHY92;
BHK94]) only targeted parts that today would just comprise the processor
core without much more. The mechanized proof shows that the circuits
of the FM9001 (as specified in the hardware description language) im-
plements the instruction-level specification. Later projects such as the
Verisoft VAMP [Bey+06], modeled the cache-memory interface and the
processor at gate level and shown that the collection of gates implements
the specification. Those types of verification show the functional correct-
ness of the hardware at gate level with respect to its specification. Despite
modeling parts of the memory subsystem, those CPU models did not at-
tempt to capture and express its full complexity especially the PCI Express
bus hierarchy, non-uniform memory access configurations of multiproces-
sor systems or multi-stage translation schemes despite being commonly
present in modern systems of that era. This is the focus of this dissertation.

The memory system micro architecture influences the instruction-set se-
mantics of processors, which affects the considerations on how hardware,
including the instruction-sets, are modeled [VelO1; GGAO5]. A behavioral
specification can be defined in terms of instruction-set model e.g. the HOL4
Arm model [FM10], or machine-readable specifications e.g. Arm V8-A
System Level Architecture [Reil6]. Those models provide a foundation
to represent and reason about the behavior of software running on the
processor. However,they do not include the complex interconnects present
on, for example, modern SoCs.

Translation lookaside buffers (TLBs) caches virtual-to-physical translations
defined by the in-memory page table. Ensuring consistency between the
cached translations in the TLB and the in-memory page table is security
critical. Operational models of a TLB [SK17; SK18] formally express
the state of the TLB and the semantics of the maintenance operations.
The model focuses on the virtual-to-physical address translation, including
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page-table walks and the resulting memory accesses. It does not consider
further translation of the local physical address.

Lastly, there seem to be no industrial projects that claim to target the
area of physical memory addressing [Hun+17]. This thesis focuses on the
complexity in the physical interconnection of devices.

3.2.3 Behavioral Models Summary

The micro architecture of a platform defines the behavior of instructions and
memory accesses. Behavioral models of processors specify the semantics
of instructions, in particular the possible re-ordering and visibility of
memory writes. However, those models currently stop at the processor
boundaries, and include the processor’s MMU at most. Complex networks
of buses and interconnect with multi-stage translation schemes, and the
routing of memory accesses are not expressed in those models.

3.3 Memory Management in Operating
Systems

Operating systems need an abstraction model of the memory addressing
subsystem of the system hardware to manage physical resources and config-
ure address translation hardware. Correct management of physical memory
resources is one of the core tasks of system software. To accomplish this
task, system software needs a way to refer to memory resources and to
implement a suitable accounting facilities to keep track of allocated and
free memory. This section surveys the memory management and physical
resource representation of operating systems.
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3.3.1 Monolithic Operating Systems

The BSD operating system [BSD19; CP99] manages a data structure
(vm_page_t) per page of physical memory. This data structure contains
the physical address of the memory page which is then used to set up
page-tables and considered globally unique. Similarly, Linux [Lin19a]
also uses a data structure (struct page) per physical memory frame which
is identified by its physical frame number. The Linux kernel can be
configured to use one of three different memory models which assume
either a flat, contiguous physical address space or supporting different
memory nodes and memory hot plugging. In its evolution, the Linux
memory subsystem experienced various bugs and vulnerabilities [HQS16].
Heterogeneous Memory Management [Lin19c] attempts to unify the view
between processors and devices by duplicating the processor’s page-table
in the device page-table. The goal is that a pointer stays valid when
dereferenced from the processor and the device. (refer to Section 6.2 for a
more detailed description).

The Popcorn Linux project [Bar+15a] deploys a replicated kernel operat-
ing system model on a heterogeneous hardware platform with different
instruction set architectures by providing a consistent memory view across
machine boundaries (single system image). The hardware model includes
a global eventually consistent memory and memory areas that are ex-
clusively accessible by processor groups. Popcorn Linux implements a
distributed-shared-memory abstraction using page replication. Popcorn
Linux supports migrating applications between different instruction set
architectures, which requires a special compiled application image and the
reconstruction of the page tables on the new platform.

Biscuit [CKM18] is an operating system written in Go [Gol19]. It im-
plements the POSIX API and is able to run unmodified Linux binaries.
Biscuit makes use of the Go runtime for memory allocations and garbage
collection for pages. Unlike Linux, there is no reverse mapping or NUMA
(non-uniform memory access) or heterogeneous memory support.
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3.3.2 Single-Address-Space Operating Systems

In contrast to the operating systems above, where each process runs iso-
lated in its own virtual address space, a single-address-space operating
system (SASOS [Wil+95]) runs all processes within in a single, global
virtual address space which is sparse, flat and has a 64-bit addressing
width (e.g. MIPS R4000 series [ITD95]). Consequently, all translations
are global. Any virtual address to a memory object remains valid for all
processes which allows implementing shared pointer-based data structures.
This separates protection from translation: instead of using different trans-
lations, protection domains [KCE92] provide mechanisms for protection
and isolation between processes. The TLB only stores address translations,
whereas a protection lookaside buffer caches protection tags, but no ad-
dress translations [KCE92]. This is not limited to TLB-based architectures.
An alternative to this approach is provided by memory protection keys as
available on the Intel Itanium architecture [Int10a], for instance.

Opal [Cha+92; Cha+94] uses a single virtual address space where all
primary and secondary storage is mapped. Any memory residing object is
named with the same unique virtual address by all processes that access
them. This facilitates sharing. Opal uses protection domains to restrict
access to resources (this is analogue to a Linux process). Opal uses
disjoint virtual segments and capabilities naming them for access control.
A protection domain can attach a segment if it holds a capability to it.
Opal also supports the integration of persistent storage into the global
virtual address space. This implements a single-level store [Kil+62] which
enables persisting pointer-based data structures without serialization using
the virtual memory abstraction to hide the disk as persistent storage.

The Nemesis operating system [Han99] provides a self-paging mechanism
which makes applications responsible for all their memory faults using their
own resources. The basis-virtual-memory abstractions used in Nemesis
are the stretch (a range of virtual addresses, similar to Mach’s regions) and
a stretch driver handling faults occurring on the stretch. To handle a fault,
the stretch-driver can use resources already owned by the application it
belongs to. Both, stretches and physical memory are allocated centrally.
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Applications can request physical frames (even with special properties)
from the frame allocator. The virtual memory system allows mapping,
unmapping and querying the current translation of a virtual address. Neme-
sis uses a concept of self-contained modules [Ros94] without unresolved
symbols and mutable data. A module can be executed by any domains.
This improves sharing of code and data segments using pointers between
protection domains.

Mungi [Hei+98] is a single-address-space operating system that runs
on standard 64-bit hardware (MIPS R4600 [ITD95]). It uses objects, a
contiguous range of virtual pages, as a basic storage abstraction. The
protection domain defines the set of objects a process is allowed to access.
Rights on objects are represented using password capabilities [APWS86].
Mungi uses a guarded page table [Lie96; Lie94] to store and look up virtual-
to-physical mappings during a hardware TLB miss on a software-loaded
TLB (e.g. the MIPS R4600).

The IBM AS/400 [McC98; SC97; Daw97] featured a large, virtual address
space, which was emulated using custom hardware on top of processors
supporting smaller address spaces. The AS/400 supported single-level
stores, and provides functionality to do object-based protection using
capabilities [HSHS1]

In summary, single-address-space operating systems run all processes in
the same address space. This allows using the virtual address as a unique
identifier for objects in the single global address space.

3.3.3 Verified Operating Systems

Formal verification of operating systems (and software in general) provide
correctness guarantees with respect to an abstract specification and a
representation of the hardware platform. The proofs are therefore based
on a particular abstraction of a machine and its memory subsystem. The
abstract specification and hardware model are assumed to be correct.
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The seL.4 microkernel [Kle+09] externalizes physical resource allocation
to user-space processes while enforcing integrity in the kernel. selL4
uses typed capabilities [EDEOS] to enable user-space to securely manage
physical memory which is abstracted as a flat, linear addressable array. This
exposes physical memory to user-space applications and provides a strict
policy-mechanism separation by exposing low-level capability operations
which enable the implementation of memory management policies in user-
space. seL4 assumes a single, fixed, physical address space. The model
does not include any no other translation hardware besides the processor’s
MMU and does not provide guarantees of safety in the presence of other
cores or incorrectly programmed DMA devices.

The machine model used in the CertiKOS [Gu+16] operating system uses
logical memory and distinguishes between memory that is private to the
processor and memory that is shared between multiple processors. This
distinction eliminates synchronization for private memory. CertiKOS uses
a page allocation table to manage physical memory. Each physical page
has a corresponding entry in this table. The modeled memory management
unit translates virtual to physical addresses using a page map.

Hyperkernel [Nel+17] uses a push-button approach to verify the correct-
ness of xv6-based operating system [CKMO06] which is another UNIX-like
operating system managing physical memory using 4 KiB pages. Their
memory model consists of a virtual and physical address space acknowl-
edging that aliasing of physical memory in the kernel address space pose
challenges for verification especially when the virtual-to-physical map-
pings can change. This is not limited to operating system verification.
Models of memory consistency that explicitly verify memory addressing
and translation only consider the case of virtual-to-physical translation
mappings [RLS10].

The verification efforts need a hardware model, and they used one that is
available at the time, or which fits their verification goals as proving the
functional correctness of a real operating system like sel.4 comes with
significant proof effort. This array-like model of physical memory, while
certainly useful to prove the correctness when running on an abstract
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machine, does not reflect reality accurately enough. In particular the
complex networks of modern SoCs, hierarchical bus topologies as in PCI
Express, or multi-stage translation schemes are not captured.

3.3.4 Microkernel Operating Systems

In contrast to monolithic operating system kernels, microkernels provide
only a minimal set of mechanisms to ensure isolation and protection,
and to provide inter-process communication, while pushing many of the
operating system personality into user-level services and libraries. This
enables applications to safely implement their own virtual address space
management policies, for instance.

The L4 microkernel [Lie95] uses address spaces as an abstraction for
memory management. Initially, an address space is created empty and is
then populated and managed through operations which grant, map or flush
pages in an existing address space. The grant operation transfers a page
between two address spaces, the map operation creates a (shared) mapping
of a page in another address space, and flushing a page removes the page
from all other address spaces. Address spaces are thus defined recursively
with the base being sigma zero, a special address space containing a map-
ping to all physical memory (excluding the kernel region). All resources
are referred to by an address in some address space. Flexpages [HWL96]
enable address space management to operate on pages of arbitrary sizes in
contrast to a fixed page size.

The CMU Mach operating system [Ras+87] manages memory resources
using memory objects which are managed by a server. Memory objects
can be mapped into a task’s virtual address space by that object’s pager (the
task that created the memory object). When creating a new memory object
the calling task obtains access rights to a port representing the new memory
object. Physical memory serves as a cache for virtual memory objects.
Mach uses physical page numbers to refer to physical frames which could
only belong to at most one memory object at a time, and are allocated
on demand from pools held by the kernel. Advanced Shared Virtual
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Memory (ASVM) [ZTM96] extends Mach’s virtual memory system to
work distributed over multiple machines. ASVM extends the use of physical
memory as a cache for the contents of virtual memory objects to multiple
nodes and copies. Extended memory management (XMM) [Bla+98] added
support for distributing memory management among multiple Mach nodes
across a machine cluster. This enabled Mach address spaces to share any
memory with any other address space independent of its location in the
cluster of machines.

The Chorus Distributed Operating System [Roz+91] is a modular OS that
consists of a small nucleus running on multiple machines. The Chorus
memory model is based on global segments, a storage construct e.g. file
or swap area. Segments are identified by capabilities and can be mapped
into a region (virtual memory space) of a process running on Chorus. A
segment server provides a read/write IPC interface reacting to read/write
requests to the segment’s backing store. The Chorus nucleus manages
a per-segment local cache of physical pages. A segment can be shared
among actors running on different machines. The segment server must
keep the local caches of the segment consistent.

Exokernel [EKO95; EGK95] pushes the management of hardware re-
sources to an untrusted library operating system. This separates resource
protection (done by the kernel) and resource management (handled by
the library), and in turn allows applications to use their own policies to
manage resources. The Exokernel explicitly exposes allocation (of specific
physical resources), physical names (to avoid a level of indirection) and
revocation protocols. Physical pages are protected by capabilities. The
Exokernel also exposes TLB resources to the application.

The K42 operating system [Kri+06] and its predecessor Tornado [Gam+99]
is built on an object-oriented structure. K42 implements address spaces
which consist of contiguous regions of virtual addresses, which conceptu-
ally map onto a special “file” representing physical memory. The assign-
ment of page frames to files is controlled by the file cache manager, which
obtains frames from the page manager implementing global paging poli-
cies. This memory structure is expressed as clustered objects connected
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by references. The hardware representation of a process’ address space is
managed by a hardware address translator managing hardware segments
(e.g. the page-tables defining the segment translation). Hardware address
translators may be shared among multiple address spaces. K42 is aware
of the machine topology i.e. the affinity of memory nodes to processors.
It uses this information to allocate memory in proximity to the processor
where it is being accessed.

The Multikernel [Bau+09a] used in the Barrelfish operating system man-
ages physical resources using a distributed, partitioned capability sys-
tem [Gerl8]. Similar to seL4 [Kle+09], Barrelfish’s capabilities live in
their own “address space”, the CSPACE, which is partitioned across the
different operating system nodes. Certain capability operations (e.g retype
or revocation) may require agreement of all operating system nodes and
thus require a distributed protocol [Ger18]. The capability system relies
on physical addresses for comparing capabilities with each other.

M3 is a microkernel-based system for heterogeneous many-cores [Asm+16].
It uses capabilities to manage physical resources of a machine. M3 runs
on a network-on-chip architecture where each node in the network has a
data transfer unit (DTU) which offers message-passing and memory access
functionality. The DTU is the abstraction to access other cores and memory
in the system. SemperOS [Hil+19] extends M3 to support a large number
of heterogeneous cores by a hardware/software co-designed distributed
capability system.

Helios [Nig+09] targets heterogeneous platforms. It deploys satellite
kernels consisting of scheduler, memory and namespace manager, and
communication modules. Every NUMA domain runs its own satellite
kernel. There is a single, unified namespace where services advertise.
Using an affinity metric, applications can hint the operating system where
it is best to run (e.g. co-locating with a used service). Helios limits
applications to a single NUMA node and strictly uses local memory.
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3.3.5 Hypervisors and Simulators

Virtual machines (e.g. Xen [Bar+03], Linux KVM/Qemu [lin 19], Microsoft
Hyper-V [Mic18], Oracle VirtualBox [Oral9] or VMware ESX [VMw19])
provide a configurable, virtual hardware platform to the guest operating
system which can run unmodified. Some hardware elements have support
for virtualization acceleration e.g. processors have virtualization exten-
sions and nested paging, and PCI Express has SR-IOV which provides
virtual device functions. Arrakis [Pet+14] uses this feature to safely export
devices and memory management to applications. Virtual machines also
support emulating a different platform than the host machine e.g. running
Arm binaries in Qemu on an x86 host. The hypervisor provides a flat,
uniform guest physical address space to system software running in the
virtual machine. This effectively hides details about the underlying phys-
ical machine by providing an abstract, uniform memory topology to the
guest. Architectural simulators e.g Gem5 [Bin+11] and the Arm FastMod-
els [ARM19b] allow the implementation of complex memory topologies,
translation features and hardware components. Section 7.7 uses the Arm
FastModels to simulate a system with heterogeneous views of memory.

3.3.6 Early Capability-Based Operating Systems

Hydra [Wul+74] manages physical and virtual resources based on a notion
of objects as the abstraction and unit of protection of resources. Objects are
referred to by capabilities. Hydra runs on the Carnegie-Mellon Multi-Mini-
Processor, where each processor has a small amount of private memory and
relocation hardware translating a virtual address to a physical address. Hy-
dra separated protection (mechanism) from security (policy), this concept
policy-mechanism separation is adapted from Nucleus [Han70].

The Cambridge CAP computer [NW77] uses capabilities to provide fine-
grained access control to programs executed on the CAP. Every program
should only ever have access to data it needs to correct functioning, and
nothing more. Memory segments (contiguous set of memory locations) on
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the CAP have two types: either data or capability. The processor contains a
capability unit, which holds 64 evaluated capabilities and the addresses of
their memory segment. Applications can use up to 16 capability segments.
Applications address memory by specifying the triple: capability segment,
index within the capability segment, and word offset into the segment
referred to by the capability at then index. This triple is also called the
complete CAP virtual address [Lev84]. Ultimately, the CAP virtual address
gets translated to a physical address.

Built for the CM* architecture, StarOS [Jon+79] uses typed, distinct and
unique objects to manage information in the system. Access to those
objects is mediated and protected by capabilities naming the objects and
specifying the authority on the object. The capability contains a 16 bit
name which identifies a 16 byte descriptor. Based on the descriptor, a
18 bit address is calculated, which is local to the processor specified by
the corresponding field in the descriptor. Objects can be mapped into a
4 KiB window of the immediate address space of a process. Processor
memory references are routed through a switch and either forwarded to
a local memory of the module, or to the map bus and further of another
module. Memory is effectively distributed across the cluster, appearing as
a single large memory.

Accent[RR81] is a network operating system kernel which uses message
passing as its core abstraction. Messages are sent and received on ports
which are indirectly referred to using capabilities. Memory is allocated
using the notion of segments and mapped into an address space using
the ReadSegment RPC the reply of which contains newly allocated pages
which are mapped upon the reception of the message. Accent assumes a
per-node flat physical address space.

KeyKOS [Har85; Bom+92] is a capability-based operating system designed
to run on the IBM System/370. The ‘page’ is the simplest KeyKOS object
referring to a location on a persistent storage device. A page object
can be mapped into a process’ address space or a segment which is a
collection of pages or other segments. Segments form address spaces. The
implementation of segments in KeyKOS is based on a tree of nodes with
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pages as leaves resembling hardware page-tables.

IBM System/38’s capability system had “resolved address” registers which
cached the resolved physical address corresponding to a particular capabil-
ity [Lev84; HSHS81].

3.3.7 Other Operating Systems

The Mondrian memory protection system [WCAO2] splits a single address
space into multiple protection domains. Mondrian provides segmentation
like protection semantics by checking virtual addresses against the access
rights defined in permission tables residing in main memory with a pro-
tection lookaside buffer as a cache. This is similar to single-address-space
operating systems such as Opal [Kil+62; Cha+92; Cha+94] separating
translation from protection. Mondrian supports protecting variable ranges
and works on top of normal virtual memory without tagging pointers or
other ISA capabilities. Mondrix [WRAOS5] applied the Mondrian memory
protection inside the Linux kernel where each kernel module gets its own
protection domain.

CheriBSD is a variant of the BSD operating system adapted to run on
a CHERI-enabled processor [Woo+14] with a corresponding POSIX C
runtime environment [Dav+19]. CHERI is a capability-based addressing
extension to the instruction set architecture offering byte-granularity pro-
tection of data structures. Capabilities are implemented using fat pointers
encoding base and length that can be addressed with it. CHERI capabilities
enforce protection on top of transitional virtual memory systems.

The hardware model used in LegoOS [Sha+18] consists of dis-aggregated,
network-attached hardware components (e.g. CPU, RAM or storage) that
separate processor and memory functionalities. To manage such dis-
aggregated systems, LegoOS deploys a Splitkernel which splits operating
system functionality among the hardware components each running a
Splitkernel monitor. LegoOS uses virtual addresses in the caching hierar-
chy. Only the dedicated memory components contain translation units.
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GMM [Mil+00] splits memory management into local resources and a
global address space which is distributed among all the nodes of the cluster.
Each node is effectively capable of accessing parts of the other nodes’
dedicated memory over an interconnect. In GMM, the size of the global
address space exceeded the size of the virtual address spaces of the nodes.

Global Memory Service [Fee+95] unifies memory management of a work-
station cluster in a distributed way. The system fetches memory pages over
an ATM network and identifies nodes with their IP address.

3.3.8 Operating Systems Summary

Operating systems, from monolithic architectures over single address space
operating systems to verified kernels use different ways to manage resources
and enforce isolation between processes. This involves naming the resource
orobject (e.g. using its virtual address, physical frame number, or file name),
and enforcing access control and protection (e.g. access control lists or
capabilities). However, this relies on a stable concept of a physical address
space and does not take multi-stage translation schemes into account.
Lastly, virtual machines and simulators expose a certain machine topology
to the guest operating system, the problem of managing resources and
translation still exists at the hypervisor layer.

3.4 Runtime Systems and Programming
Languages

The performance of large-scale workloads highly depends on data al-
location and scheduling policies. Applications or libraries adapt their
memory allocation and working set sizes based on the sizes of memory
and caches, as well as their memory access patterns [Gau+15; Cal+17;
Kae+15; Kae+16]. This requires a model of the machine or cluster they
are running on. This section presents a survey of different libraries and
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operating system extensions which tune memory allocation decisions to
the platform.

3.4.1 Memory Topology Models

Big-memory workloads running on large machines consisting of multiple
processor sockets, each having a portion of DRAM attached, experience
non-uniform memory access (NUMA) effects. Memory accesses to lo-
cal memory resources inhibit lower latency and higher bandwidth than
accessing memory attached to another processor. Optimal allocation of
data structures in such a system is a challenge [Gau+15] and depends on
not only the system NUMA topology, but also on the algorithm and the
resulting access pattern [Kae+15].

Topology information obtained through mechanisms outlined in Section 3.1
is used to initialize the machine topology models of schedulers, memory
allocators and other runtime services used by memory intensive workloads
to allocate, run and tailor workload sizes and data structures to the concrete
runtime system e.g. Smelt [Kae+15] or use micro-benchmark to augment
the topology with performance numbers e.g. Smelt [Kae+16].

Operating systems like Linux offer different memory allocation policies,
which can be controlled on a per application basis. Libnuma [Kle08]
provides application with an interface to allocate memory form a particular
memory node. DVMT [Ala+17] allows applications to explicitly request
physical frames with specific properties from the operating system. The
system enables applications to tailor the virtual-to-physical mappings to
their needs by registering a TLB miss handler for the special DVMT range.
Likewise, microkernel operating systems such as Barrelfish [Bau+09a;
Gerl18] and Arrakis [Pet+14] let applications manage physical memory
and their address space directly. This is yet again an example of policy-
mechanism separation where user-space implements policy decision using
mechanisms exposed and enforced by the kernel.

Systems like Carrefour [Das+13] or Linux’s AutoNUMA [Red 18] monitor
memory accesses and try to optimize the placement of data structures
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by migrating data between memory nodes, while others migrate hot and
cold data pages between fast and slow memories, e.g. Thermostat [AW 17].
Shoal [Kae+15] replicates data structures across NUMA sockets and black-
box concurrent data structures has support for writable, replicated data
structures [Cal+17]. MPI+OpenMP [Mah+12] runtimes use message pass-
ing between processor sockets and the OpenMP framework to parallelize
computation within processor sockets. Those systems rely on firmware
provided topology information (Section 3.1) and operating systems support
to allocate memory from particular memory nodes.

Hybrid or heterogeneous memory consists of multiple types of memory
with different characteristics e.g. fast and slow memory. The programmer
or runtime system must make explicit data placement decisions for optimal
performance [SLL16]. Data intensive workloads are sensitive to allocation
policies in heterogeneous memory systems. CoMerge [DG17] prefers a
sharing over a partitioning technique for co-located applications.

Rack-scale systems consisting of a collection of machines which are con-
nected with a high-speed network which offers direct access to remote
memory using RDMA [Rec+07]. FARM [Dra+14] provides a shared
address space abstraction of the cluster’s memory offering an interface to
read, write, allocate and free objects. RDMA can be used to distribute in-
memory join [Bar+15b] or data shuffling [LYB17] operators of databases
across the cluster by using networking primitives offered by the network.

Scale-out NUMA [Nov+14] proposes the use of a remote memory con-
troller integrated into the local coherence hierarchy offering a load/store
interface to remote memory. Scale-out ccNUMA [Gav+18] introduces a
caching layer at each node to mitigate skewed memory accesses.

The Message Passing Interface (MPI [Wal92]) is a widely used standard
for parallel applications running on high-performance clusters. MPI works
well for parallel workloads over multiple machines. Combining MPI with
OpenMP exploits inter and intra machine parallelism [CE00; Mir+17]
following the cluster topology.

In summary, the libraries and operating system extensions described in
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this section try to allocate memory with certain properties (e.g. proximity
to a processing unit) or access remote memory directly to write data
structures to be used in the next phase of the algorithm. Central to this
approach is a good representation of the system topology with its memory
resources, processing units and interconnects. Current APIs use coarse
grained information such as machines or memory nodes, and do not take
memory channels or interconnect links into account.

3.4.2 Cache Topology Models

The memory topology does not stop at the level of memory nodes. Proces-
sors consist of a collection of cores, interconnected with a certain network
topology (e.g. a ring bus or mesh), and a hierarchy of different caches
of various sizes. Tools like LIKWID [THW 10] provide detailed informa-
tion of the cache hierarchy to applications. Despite being on the same
processor, memory accesses or communication between two cores can be
non-uniform and different for each new architecture. Augmentation of the
topology information with actual measurements provide a good basis for
allocation and scheduling decisions [Kae+16].

The size of data caches and TLBs influence the design of algorithms.
Techniques such as processing data in blocks [LRW91] limit the working
set size to the size of the cache to reduce cache misses. Hash joins in
databases are a prime example, where the hash table size is chosen with
respect to the cache size [BLP11].

Total size of the cache is important, but so is the optimization with single
cache lines in mind. For instance, Masstree [MKM 12] carefully layouts
data structures to cache-lines and uses prefetching to populate the processor
cache with relevant data strategically to optimize performance.

Scaling cache-coherence to large machines is hard [FNW15]. The result
is a collection of coherency domains. This requires careful data place-
ment and cache management to ensure correctness. The same applies to
programming translation hardware or DM A-capable devices where cache
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flushes ensure the device or translation unit see up-to-date data, or the data
does not get overwritten by a cache-line eviction. Cache-snooping [PCI17]
or direct cache access [HITO5] enable certain devices to directly read/write
processor cache contents.

While caches are not a core focus of this dissertation, their presence,
related memory resources, and management are an important factor in the
performance and correctness of applications and system software.

3.4.3 Co-Processor Offloading

Different software frameworks provide specific ad-hoc point solutions
targeting their particular use-case. Offloading computations to GPUs is
a prime example: OpenGL [Khr18] or CUDA [NVI19] provide runtime
support for allocating and accessing data structures on the host or the GPU,
VAST [LSM14] uses compiler support to dynamically copy memory to
and from the GPU and Mosaic [Aus+17] provides support for translating
addresses in a shared, virtual address space with multiple page sizes.

The nVidia CUDA framework [NVI19] distinguishes between host and
device memories. Memory is allocated on the host or the device explic-
itly. The CUDA runtime abstracts memory references using pointers,
where a host pointer can be converted explicitly to a device pointer using
cudaHostGetDevicePointer which takes a valid host pointer and returns a
device pointer, or indicates failure . Unified memory (UM [NVI13]) sets up
a managed memory space. This eliminates the need for explicit allocation
and copy. The goal is to provide the same view of memory resources to
all processing cores. This requires that each processor must have its own
dedicated translation unit. Similarly, Shared Virtual Memory (SVM) as
implemented by HSA [Rog16; HHG16] exposes a single, virtual address
space to the host and to the devices. This enables using of pointer-based
data structures. It does so by extending parts of the global memory into
the host address space, and by definition, devices have access to global
memory and hence the host address space. To some extent, this provides
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similar functionality as with single-address-space operating systems where
the virtual address uniquely identifies a memory object.

The OpenCL specification [Khr18] defines three named address spaces:
private, local and global. OpenCL programs use pointers to refer to
memory where a pointer on the host is not necessarily valid on the device.
Pointers can be converted between the address spaces, but may not be
valid between devices. The OpenCL runtime abstracts physical resource
management. Memory regions (or pools) define a distinct, logical address
space. Memory regions may overlap in physical memory. Global and
constant memory is accessible by all kernels, where constant memory
remains constant during the execution of a kernel-instance. Local memory
can be shared between work-items of a particular work group, where as
private memory is valid within a single work-item only.

3.4.4 Programming Languages

High-level programming languages such as Java and C# have well-defined
memory models [MPAOS; Dem+13] which define the semantics of variable
and data structures accesses. In the case of Java, programs are compiled
into an intermediate byte code representation which is the run in the
Java virtual machine (JVM). Java programs are architecture independent
as the JVM interprets the byte code and interfaces with the underlying
operating system to provide memory resources to the application. Hera-
JVM [MSO09] hides the details of a heterogeneous platform in a virtual
machine abstraction.

The interaction of the language-specific memory models and the underly-
ing hardware memory models are of particular interest [ZP16; Sar+12]
especially in highly parallel workloads where locks, barriers and fences are
essential building blocks of programs. However, those models do not go
beyond operation reordering and the required fences and hence low-level
memory access routing is ignored and left for the operating system to be
taken care of.
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3.4.5 Runtimes and Programming Languages Summary

Understanding the memory topology, including locality and cache in-
formation, is important for application performance. Runtime libraries
and programming languages provide an environment with certain seman-
tics. Those environments are point solutions, targeting a specific use case
(e.g. GPU offloading). Overall, there is an implicit notion of address spaces
(e.g. allocate memory on the GPU or a specific memory node). However,
memory is either assumed to be accessible at the same address, or copied
in the background from and to the GPU.

3.5 Summary

The related work presented in this chapter showed that there exist various
sources of hardware topology information which is used by libraries and
operating system in resource allocation and scheduling decision. Runtime
libraries such as libnuma provide an API to applications to request memory
from a particular memory node, or even a specific machine in a cluster.

In all cases, the physical address is used as an identifier of memory re-
sources within a machine and all memory resources are in a single, uniform
and global physical address space. Virtual machines abstract the under-
lying machine topology to provide the exact same single-address space
representation. Other formal specifications of processors and memory
models focus on the semantics of instructions and possible reordering
of memory accesses in the various buffers of a machine, and less about
memory address translation which is what this thesis is focusing on.
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A Formal Model for Memory
Addressing

This chapter presents a new abstraction to faithfully represent memory-
address decoding of modern hardware and the formalization there of: the
Decoding Net model [Ach+17b; Ach+18] a model specification of address
translation in Isabelle/HOL. The formal model is able to express the
complex addressing schemes implemented by hardware designers of the
different real platforms and System-on-Chip (SoC) from Chapter 2.

To show the applicability and versatility of the Decoding Net, the model is
then further refined to express the translation behavior of a software-loaded,
fully associative translation lookaside buffer (TLB) in great detail at the
example of the MIPS R4600 TLB [ITD95].
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The main objective of the work presented in this chapter is to describe a new
model to faithfully capture memory-address translation characteristics of
modern hardware. Formal specification of the address decoding semantics
provides a sound basis for accurate system descriptions and reasoning
about memory address translation in a system. This chapter consists of the
following parts:

1. Section 4.2 describes the address-space model in the context of a
naming problem.

2. Section 4.3 then defines the Decoding Net, a formal specification
of the address spaces and their semantics in Isabelle/HOL.

3. Section 4.4 expresses the current state of an example system using
the Decoding Net model.

4. Section 4.5 describes and specifies algorithms on top of the Decod-
ing Net to perform view preserving transformations.

5. Section 4.6 shows how real translation hardware can be expressed
with address spaces using selL4-style refinement methodology.

4.1 Motivation

Modern computing platforms, from high-end servers to smartphone SoCs
are highly complex and diverse (Chapter 2). Those systems are effectively
a heterogeneous collection of cores, interconnects, programmable memory
translation units, and devices — abstractly a network of physical address
spaces. Moreover, each processor core or DMA-capable device may have
a different view of the system requiring different (local) physical addresses
to be used for memory accesses.

Correct operation of system software inherently relies on the correct re-
source management and configuration of these interconnects and translation
units. For this, operating systems must be able to

92



4.1 Motivation

1. unambiguously name physical resources of the system,

2. correctly resolve the names of physical resources to a local address
in any address space.

The second point is important to derive the local address to be issued to
access the physical resource, and how to configure the local translation unit
which needs the local address the resource appears in its address space.

However, current operating systems, including formally verified or certified
projects such as seLL4 [Kle+09] or CertiKOS [Gu+16], use a simplified, flat
representation of the memory subsystem and assume a globally uniform
physical address space which does not hold as shown in Chapter 3.

It is the operating system’s job to correctly enumerate and name physical
resources, as well as initialize and configure all address translation units
and protection modules with the right values. This requires an unam-
biguous representation of the memory system topology. This task mostly
involves reading technical manuals from hardware vendors which are often
thousands of pages of plain English prose describing the hardware plat-
form. These descriptions are not always precise enough and leave room
for ambiguity [Arc19].

DeviceTrees [dev17] are the state of the art of machine-readable platform
descriptions. They are widely used by the Linux kernel to describe devices,
processors, memory and interrupt resources of a platform. The DeviceTree
files are compiled into a binary file format, which the Linux kernel parses
during boot to initialize certain fields of data structures. DeviceTrees
are specified in a textual format, which is then compiled into a binary
representation expected by the Linux kernel [Lin19b]. This compilation
process removes any topology information from the representation. Often,
accurate topology information is not present in the first place. For instance,
the DeviceTree files for the Texas Instruments OMAP4 SoC [Tex14] and
other platforms used in the Linux kernel acknowledge the complexity of
the SoC network:
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“XXX: Use a flat representation of the OMAP4 interconnect.
The real OMAP interconnect network is quite complex. [...]
Since it will not bring real advantage to represent that in DT
for the moment, just use a fake OCP bus entry to represent
the whole bus hierarchy.” — Linux Kernel, omap4.dtsi

Consequently, DeviceTrees are not capable of expressing the presence of
multiple physical address spaces and different views as described in the
previous chapter. Moreover, the lack of rich semantics and this narrow
focus render DeviceTrees unusable for later reasoning about correctness.

Ultimately, to be able to make correct statements about the memory
subsystem of a platform, system-software developers need a faithful and
sound representation of the memory topology with well-defined semantics.
This includes a mechanism to unambiguously name the physical resources
of a platform and to derive the local address of any resource in any address
space (if applicable).

4.2 An Accurate Model for Memory Address
Translation

The previous section provides evidence that the hardware abstraction model
of a single, uniform physical address space used in operating systems
contradicts the reality of different hardware platforms, from server-class
systems to phone SoCs. The physical address as seen from a core does not
uniquely name a resource.

This section presents the foundations of new representation of address
decoding on modern platforms [Ger+15]. The goal of the model proposed
in this section is to provide:

1. A way to represent and express what a given physical address
actually means in a machine.
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2. A mechanism to unambiguously decode an address on any processor
core or DMA capable device.

3. Alogically sound foundation enabling the design and implementa-
tion of physical memory management systems for modern machines.

In other words, the model should be able to describe the resources and the
topology of a platform. DeviceTrees [dev17] essentially provide similar
functionality: they list the (undiscoverable) resources of a system such as
the number of cores and devices including the addresses of their registers
for SoC platforms. However, resembling a file format, the DeviceTree
specification does not accurately represent the platform topology and as
such is not able to capture and express different views of from distinct cores.
Instead, the model needs to focus on how hardware decodes addresses
within a system including non-hierarchical relationships.

4.2.1 Formulation as a Naming Problem

For system software to perform resource management tasks correctly, it is
essential to have an unambiguous way to refer to the physical resources of
a platform.

This is an instance of a classic naming problem as described in Saltzer’s
seminal work Naming and Binding of Objects [Sal78]. The paper presents
two case studies on memory addressing in the Multics operating sys-
tem [CV65] and on file systems. In summary, it is central to all naming
problems to carefully define the context in which names are resolved. In the
problem at hand, a name in Saltzer’s terminology corresponds to addresses
and the context is the address space within the addresses are resolved.

4.2.1.1 Terminology

* Core. An entity that is capable of issuing memory requests. For
instance, processor core or DMA-capable devices.
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* Physical Resource. Addressable memory cell or device register.
* Address. An offset into some address space.
e Name. An address qualified with its address space context.

* Canonical name. The unambiguous name of a resource. Resolving
a canonical name yields the same canonical name. A resource can
have many names, but has precisely one canonical name.

» Virtual address. An address used by software and issued by a
processor, or a device. The virtual address is valid within the
context of the process or device.

* Local physical address. In the context of a processor, the result of
a virtual address translation. The emphasis is on local. The address
is valid within the context of the processor.

4.2.1.2 The Address Space Context

The identification of every possible, distinct naming context in the system
forms the starting point of writing down the addressing model. An address
space forms the naming context within an address is resolved. Each address
space is characterized by

1. aunique address space identifier (ASID),
2. aset of known address values, and

3. a function from addresses to referents.

The set of know addresses is typically a range. The number of bits that
form an address typically defines this range: [0,2") with b being the bit
width of an address. A referent is either: i) memory contents that are local
to this address space and hence the only place where they can be directly
accessed, or ii) a handle to a new address in possibly another address space.
Note, that this does not rule out that the referent is a different address in
the same address space. Figure 4.1 illustrates two address space contexts.
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0x40000000 0x80000000
Addri ntext : ’ ‘
ddress Space Conte ASID: Ol l Ox4fffffff l Ox8ffFFFFF
0x0 oxf..f
0x00000000
Address Space Context ASID: 1| Ox1fffffEf
0x0 ox1f..f

[Mapping Region| | Local Region

Figure 4.1: Illustration of Address Space Contexts.

4.2.1.3 Regions and Translation

An address space can be divided into a set of non-overlapping, contiguous
regions. Each region is either:

* local the region only contains local referents to RAM or memory-
mapped registers, or

* mapping the region is a function that maps addresses within the
region’s range to an address in the target address space context.

Regions are not mixed in the sense that they contain referents to local
resources and mappings at the same time. A mapping region is effectively
an “aperture” or a window into an address space. The region’s translation
function defines what can be seen through the aperture.

Examples for this translation function include i) the identity mapping,
where an address range of a region is mapped one-to-one to the same
address range in the target address space, ii) static transformations, such
as adding a base address, shifting or pre-pending bits, or iii) dynamic
translations defined by in-memory data structures (e.g. page tables) or
hardware registers (e.g. segment registers).

4.2.1.4 Locality of Physical Resources

Physical resources, such as DRAM cells or memory-mapped hardware
registers only exist once i.e. are a local region of one address space
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(Invariant 14.1). At first glance, it may seem that there are resources which
appears at multiple locations (regions of address spaces). However, those
locations are not the true, canonical location of the resource. In fact, they
are mappings to the canonical location of the resource, which exists exactly
once.

Invariant I14.1 (Resource Locality) Each physical resource is local
to exactly one address space.

Consequently, if a resource seems to be local in multiple address spaces,
then apply Algorithm 1, which

1. Creates a new address space where the resource is local.

2. Replaces all other “local” occurrences of the resource to mappings
to the region in the newly created address space.

The resource is now local to exactly one address space which satisfies In-
variant 14.1.

4.2.1.5 Summary

This section defined the naming problem of address decoding. Each
physical address is always relative to an address space context. Each
region either resolves to a unique, real local resource, or is a mapping to a
new address in some address space context. A resource is local to exactly
one address space. Algorithm 1 corrects violations of Invariant I4.1.

4.2.2 Address Resolution and Memory Accesses

In modern systems, there are many agents that can issue memory accesses:
processor cores execute load/store instructions, PCI transactions either
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1 def MakeLocal(r, A):
Data: r :: resource local to multiple address spaces,

A :: set of address spaces
Result: Transformed set of address spaces

2 a; «— NewAddressSpace {r};
A" —A{ar};
foreach a € A do
if isLocal r a then
‘ a’ «—— ReplacelocalWithMap a (r,a;);
else
L a’ «— a;

A — A'Uda’;

® N kW

N

10 return A’

Algorithm 1: Making a Resource Local to Exactly one Address Space.

initiated from a device or the host processor, a DMA bus cycle issued by a
device, or even a cache in response to a coherency protocol message.

The term core is used to refer to anything that is capable of issuing a
memory access. Each core then has its local address space which defines
what resources the core “sees” and under which addresses they appear.
Each core can emit loads and stores to addresses within its local address
space only. Note, even hardware threads on the same physical processor
core (e.g. hyperthreading) effectively have different address spaces, as
each of them has its own, memory-mapped local interrupt controller and,
depending on the configuration, cache partition.

Address resolution starts at the local address space of a core. In each
resolution step, the address is resolved within an address space. This can
result in three possible outcomes:

1. The address is within a local region of the address space and
resolution terminates.
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2. The address is within a mapping region. The resolution process
applies the translate-function of the address space and recurses by
resolving the new address in the next address space.

3. The address is neither in a mapped/local region. This is a fault and
terminates resolution.

Note, this procedure is not guaranteed to terminate: address resolution
can end up in the same address space multiple times (as illustrated in the
examples Section 2.2.2.6 or Figure 2.22), creating routing loops. However,
this is not a problem in general: It is perfectly possible that this is fine
when, for instance, the address is different each time, but may result in a
bus error in the case of a true loop.

4.2.3 System Representation

The state of a complete system consists of a collection of cores and address
spaces where each core has its own, local address space. In this model,
only cores can issue memory accesses relative to their local address space.
Recall, a core can refer to a processor or a DM A-capable device. Figure 4.2
illustrates an example system with three cores (two processors and a device)
and four address spaces and the corresponding local and mapped regions.

One aspect to emphasize here is that there may exists resources that cannot
be directly addressed by all cores of the system. For instance, the DRAM
of Figure 4.2 is always accessed through a mapping, and parts of it are not
accessible from the DMA device. Likewise, not all address spaces actually
have local resources, and some of which do not have mappings. The novelty
of this model is to express intermediate translation steps explicitly and
cleanly using the address space abstraction.

Figure 4.2 shows the decomposition of a 64-bit x86 system with two
processor cores, some RAM and a network card which is capable of
issuing DMA transactions, but is only capable of emitting 32-bit addresses.
One possible way to express this system in the address space model is as
follows:
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Local Region
Mapped Region

Figure 4.2: The Address Spaces in a Simplified 64-bit PC with Two Pro-
cessors and a 32-bit DMA Device.

In total there are three cores (one for each processor core and one for the
network card) and four address spaces (one for each core and the main
system interconnect). There are two RAM regions, one in low memory
(below 4GB) and one in high memory (above 4GB). Both RAM regions
are local to the main system interconnect and identity mapped into the
three core’s address spaces. Note, the NIC supports only 32-bit addresses
and therefore the NIC cannot access the high RAM region. Consequently,
the RAM region above 4GB is not mapped into the network card’s address
space. The network card has memory-mapped registers, which are local to
the NIC’s address space and mapped into the system interconnect. Finally,
the address spaces of the processor cores are basically an overlay of the
system interconnect, but each of them include a local region for the local
APIC registers. Core-local processor caches are omitted.

Note, Figure 4.2 shows one possible instance how to express this system in
the model, an alternative representation is shown in Figure 4.3. The differ-
ence is the level of detail the memory controller is represented. Whereas
in Figure 4.2, there is just DRAM, Figure 4.3 highlights which regions
map to which memory channel. However, this additional information of
memory channels can be useful in allocation decisions to balance the load
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between the two channels. In contrast, Figure 4.2 collapses the memory
controller reducing the number of resolution steps. Section 4.5.3 describes
a transformation algorithm to show equivalence of the two representations,
and Section 6.3 the application thereof.

|[oram[jmi BXIE]| DRamM | | [[DRAM[MMI] [ ]
0 4GB (I
|| DRAM| MMIq || DRAM | |Main System Interconnect
0 | 4GB
v l

I i o

4GB ' Memory Controller |Mapped Region
DRAM 0

Figure 4.3: Alternative Representation of Figure 4.2 Highlighting Two
Memory Channels.

[[oram]
0

This rather small example of a system nicely demonstrates the complexity of
memory addressing in modern systems. The system shown in Figure 2.22
is also a simplified example of the model, where several address spaces
like SMT threads or the 228 distinct address spaces of the 57 x 4 = 228
Xeon Phi hardware threads are omitted.

4.2.4 Discussion

Following the modeling principle of memory resources being directly
accessible by and thus local to a single, unique address space (Invariant14.1).
Algorithm 1 provides a mechanism to introduce new address spaces and
fix violations of the locality Invariant I4.1. Any system can be decomposed
into a set of address spaces which i) have memory resources and ii) translate
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addresses between themselves. Using this principle, each memory resource
can be uniquely named by providing address space context and the address
at which the resource appears within this context. Moreover, the “core’
abstraction allows the identification of possible actors in the system.

[l

Address spaces and cores together form a system representation which has
a well-defined translation behavior that enables reasoning about static or
dynamic configuration.

Despite an increasing total number of (conceptual) address spaces, any real
system does not result in an exploding number of address spaces. Hard-
ware components and modules such as hardware threads, interconnects or
memory controllers typically introduce only one or two address spaces to
the system, and the total number of hardware components is finite. In a
large system with many devices this results in hundreds of address spaces
and a number of hops between the cores and local resources below ten.
This property is an important aspect for designing algorithms later on.

4.3 Model Definition

The previous section described memory address decoding as a naming
problem. It further gives an intuition of the complexity and semantics of
address resolution. However, this does not quite provide a rigorous and
sound basis to express the properties and semantics of memory address
decoding, a property which is desirable for correctness.

This section introduces the Decoding Net model [Ach+17b; Ach+18], a for-
malization of the address space sketch of the previous section. The formal
model is capable of expressing any complex memory addressing and trans-
lation schemes of modern hardware ranging from SoCs to desktops and
high-end server-class machines with custom-built hardware components.

The Decoding Net is specified in Isabelle/HOL.
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4.3.1 Design Goals

The design goals of the formal specification of the model are as follows:

1. Express the memory subsystem of real hardware.

2. Provide an unambiguous interpretation of memory accesses.
3. Avoid pre-mature simplifications or abstractions.
4.

Form a sound basis for system software verification.

Overall, the model should enable easier code engineering for real operating
systems with high confidence of interoperability across different platforms.
This should include system software code generation at compile time and
using the model at runtime.

4.3.2 Address Space Definition

The first core definition of the model is the qualified name which is an
address in the context of an address space i.e. its namespace. The address
space effectively specifies where the decoding of the address starts. Each
address space is uniquely identified by a natural number, the address space
identifier (or ASID for short). Moreover, addresses are discrete, non-
negative integers and hence are also a natural numbers. Formally, a name
is a tuple of two natural numbers identifying the address space context and
the address within.

name = N X N

A memory translation unit, for example, defines an address space which is
identified by n. It translates (or maps) names (addresses qualified with by
the address space identifier n) to another address within an address space
n’ (e.g. the local physical address space of the processor). Generally, a
name can potentially be translated to any other name including the name
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itself or to no name at all. In practice, for each address space there is a set
of address spaces that can be reached from it.

Formally, the translation behavior of a fixed name is given by the function:

translate : NxN — {N x N}

The function maps a fully-qualified name (n,a) (i.e. an address a within
an address space context ), to a set of names {(n’,a’)} where address a’
is in address space context n’. If there is no translation, the empty set
is returned. Thus, the translate function is fully defined. There is no
restriction on the set of possible translations.

Note, the fact that the translate function returns a set of addresses instead
of a single address is required to express non-determinism (e.g. returning
the universal set). This is important to express undefined behavior as
required in Section 4.6. Otherwise, this would be an early simplification
ruling out particular hardware designs e.g. hardware-based broadcast and
multicast. Additionally, this allows using the very same model to express
interrupt routing [Hum+17; Ach+17b] which makes use of broadcast and
multicast of interrupts. These aspects fall out of the scope for this thesis.

The memory request should eventually ferminate somewhere. There are
two possible cases that terminate address resolution:

1. The address resolution process reaches, for example, a DRAM cell
or device register.

2. Address resolution stops as a result of undefined behavior such as
if the name is neither terminating nor translating.

Those two cases must be distinguishable: A name (n,a) is terminated at
an address space n if a is in the accept set of the address space n:

accept : N —» {N}
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Name resolution terminates with undefined behavior if the name does
neither translate nor is accepted:

undefined (n,a) < a ¢ accept n A translate (n,a) =0

An address space has therefore two properties: a set of addresses that are
accepted by this address space and a translation function that translates local
addresses to names. This is expressed as a node record in Isabelle/HOL.
Here, nodes and address spaces are used interchangeably.

record node =
accept :: addr set

translate :: addr — name set

Note, accept and translate are not exclusive. A node can have non-empty
accept sets and non-empty translate sets. This is important to express
behavior present in caches: some addresses are locally accepted by the
cache itself (cache hit) while other addresses are forwarded to another cache
or DRAM (cache miss). Expressing caches formally is out of the scope of
this thesis. Another example is the Intel Xeon Phi presented in Section 2.1:
the co-processor can be expressed as an address space where one part
accepts addresses (corresponding to the GDDR memory) and another part
is translated onto the IOMMU address space (corresponding to the system
memory page table region.)

4.3.3 Decoding Net Definition

The Decoding Net is an association of address space identifiers (or node
identifiers) to nodes. The function net returns the corresponding node
record for a given node identifier.
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net : N — node

The two primitives accept and translate together with the Decoding Net
definition are sufficient to define the core semantics of the model. Other
properties can be derived from them.

Moreover, one possible interpretation of the Decoding Net is a directed
graph which is not guaranteed to be cycle free i.e. it is not a directed,
acyclic graph (DAG). In this graph, the set of well-defined paths is given
by applying the translate function repeatedly until it eventually ends up
in an accepting set of a node (see resolution below). In other words, any
well-defined path through the Decoding Net ends up in the accepted names
set which is the union of all accept sets of all nodes:

accepted_names = { (n,a) | a € acceptn }

The one-step decodes_to relation can be constructed by associating the all
possible inputs of the translate function with the obtained output. This
relation effectively encodes the edges of a directed graph. If this resulting
graph is a directed, acyclic graph (DAG) then the decoding of all names is
well-defined i.e. there are no decoding loops.

decodes_to = { ((n,a),(n’,a’)) | (n’,a’) € translate (n,a) }

Similarly, the decodes_to relation can be expressed using the Decoding Net
and the node representation. Two names (n,a),(n’,a’) are in the decode
relation of a Decoding Net, if the name (n’,a’) is in the result set of the
translate function of node n evaluated with address a. (This is the duality
between the relational and functional specification).

((n,a),(n’,a’)) € decode net & (n’,a’) € translate (net n),a
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The core Decoding Net model is able to capture and express the static state
of the system at a fixed point in time. The subsequent chapters of this
thesis will extend this to include the dynamic aspects such as configurable
translations and authority.

4.3.4 Address Resolution

The decodes relation defined above only encodes a one-step translation. In
general, the diameter of the Decoding Net graph is not guaranteed to be one.
In fact, it is likely to be larger than one: each node in the graph corresponds
to a single translation step and Chapter 2 showed that platforms consisting
of multiple, fixed or configurable translation steps are not uncommon.
Therefore, resolving a name requires decoding it repeatedly.

The resolve function returns all possible names where a given input name
n = (nd,a) (i.e. address a in address space nd) might be accepted. Note,
in the equation below, n and n’ are names i.e. node-address tuples. For
memory translation this might just be the empty set or a singleton set,
whereas for hardware with broadcast support (e.g. interrupts) this might
as well be a set with multiple names.

resolve n = ({n} N accepted_names) U U resolve n’

(n,n’)edecodes_to

The resolve function works as follows: If the input name is already part of
the accepting names set, then resolution terminates, and the name is added
to the result set. Note, that this definition allows cases where accepting
names are further translated. This is important to represent caches.

Otherwise, take the recursion step: for all relations where the current input
name (n,a) decodes to, take the union of all recursion results starting from
the name obtained by one-step decoding.
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Note, the termination of the resolve function is not guaranteed, which is
the case in the presence of loops. See section Section 4.5 for necessary
and sufficient termination conditions. In this case, the resolution function
is not defined for this name.

The function definition mechanism of Isabelle/HOL defines a predicate
(resolve_dom) of the domain of incomplete functions (such as resolve).
It asserts that the function is well-formed for the input arguments of its
domain. Under the condition of the domain predicate, the resolve function
for a name (#, a) is the intersection of the accepted_names of the Decoding
Net with the transitive closure of the decodes_to relation.

assumes resolve_dom (n,a)

shows resolve (n,a) = accepted_names N (decodes_to*(n,a))

4.4 System Descriptions and Syntax

To achieve the design goals stated in the previous section, it is necessary to
write down the hardware configuration of a system in terms of Decoding
Net nodes which corresponds to the address spaces on the platform. Writing
down every single address in the accepted set or specifying the translation
function directly is a tedious endeavor. Ideally, the specification of nodes
gives some correct-by-construction guarantees.

This section presents a concrete syntax to specify a Decoding Net and its
address space nodes for a particular machine. It further provides examples
of real systems expressed in this syntax.

4.4.1 Syntax

The following snippet shows the elements of the concrete syntax where
(e) denotes an optional element e, the pipe operator e;|e; denotes an
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alternative branch of either e; or e, curly braces {..} denote set of zero or
more elements and brackets [..] denote a list of zero or more elements.

blocks := N-N
map, := block, to N < at N> {, N < at N>}

nodeg = <accept [ {blocks} ]> <map [ {maps} ]> <over N>

nety = {N is nodeg | N..N are nodes}

Blocks The syntax does not operate on addresses directly. Instead, it
uses contiguous blocks of addresses which include every address between
a base and a limit. Naturally, a single address can be expressed by setting
base equal to limit.

A single 4 KiB page at address 0x1000 is expressed as:
page = 0x1000 — O0x1fff
which corresponds to the set of addresses
page = { a|0x1000 < a Aa < Ox1fff }.
Maps The map construct specifies how a single block of addresses is
translated. The entire input block is mapped to some output node at a
possible new base address, effectively shifting all address values to this

new address. The same block may be mapped to multiple nodes to support
possible broadcast scenarios.

The 4 KiB page from above might be mapped to node 3 at address 9x2000

map, :=page to 3 at 0x2000
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Nodes The node construct consists of three separate parts where all of
them are optional. In the order of precedence:

1. accept: A set of blocks that define the addresses accepted by the
node. The accept set is the union of all blocks.

2. map: A set of maps that specify how the node translates addresses.

3. over: Indicates the overlay node, a one-to-one map of all input ad-
dresses to the specified overlay node, unless the address is otherwise
mapped.

The node in the following example overlays node 4, i.e. all addresses are
translated one-to-one to node 4 unless they are within one of the two
mapped blocks (map, or map,). Recall, an address can be both, mapped
and accepted.

node; = accept [ page, ] map [ map,, map, ] over 4

Net Finally, the net construct assigns identifiers to nodes. It is possible to
assign multiple identifiers to a single node specification. This corresponds
to multiple identical nodes with different node identifiers in the Decoding
Net. This is useful to express a multi-core processor for instance.

net =3 1is node;, 4..5 are node;

4.4.2 System Descriptions

Recall Figure 2.25 which depicts the simplified block diagram of the Texas
Instruments OMAP4460 SoC earlier in this chapter. This section expresses
parts of the memory subsystem of this chip using the syntax defined above.
More system descriptions can be found in [Ach+17b] and the open source
Isabelle theories [ACH19].
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Figure 4.4 and highlights three interesting cases of the OMAP4460 SoC:
* RAM Access from the ARM Cortex-A9 and M3 cores.
* A loop through the MIF node of the ARM Cortex-M3 subsystem.
 Shared and private accesses to the General Purpose Timer (GPT)

The block diagram of Figure 4.4 is expressed using the model syntax
in Figure 4.5

Accessing RAM  The ARM Cortex-A9 cores of the SoC have a private
connection to the DRAM module which shadows the path through the L3
Interconnect. DRAM appears at address 9x80000000 in the core’s ‘physical’
address space (Pag9). The DSP subsystem on the other hand only has
connection to DRAM through the L3 interconnect which exposes DRAM
at the same address to the DSP cores. In contrast, the ARM Cortex-M3
first routes memory requests through an address splitter (labeled as “MIF”
in the block diagram) and then through a second stage address translation
unit before reaching the L3 interconnect. The address window of the
“L2” translation unit starts at 8x0 and provides 1.5GB of address range.
Consequently, the Cortex-M3 and Cortex-A9 cores never see DRAM at
the same local physical address.

General-Purpose Timer Access The general-purpose timer is visible
at different addresses for the ARM Cortex-A9 cores, the DSP subsystem
and even at a configurable address as seen from the ARM Cortex-M3
subsystem. Therefore, there are at least three distinct addresses for the
same registers. The Cortex-A9 uses 0x40138000, a DSP uses 0x01D38000 and
a DMA-capable device on the L3 interconnect uses x49038000. Plus, the
Cortex-M3 core uses the configurable mapping onto the L3 interconnect
at 0x49038000.

The MIF Loop The ARM Cortex-M3 subsystem contains a (benign)
routing loop: A memory access that is forwarded to the “L2” translation
unit by the MIF address splitter is translated to the address on the L3
interconnect which matches the address port back to the MIF splitter. This
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Figure 4.4: Simplified Addressing Block Diagram of the Texas Instruments
OMAP 44xx SoC as Shown in [Ach+17b].
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V9.0 is map [0x20000000-0x20000fff to P4g.o at 9x80000000]
Vao.; is map [0x20000000-0x20000££f to Pyo.; at 0x80000000]
Pa9-0, Pag.; are map [0x40138000-0x40138fff to GPT at 0x0
0x80000000-0xbfffffff to RAM at 0x0] over L3
Vpsp is over Ppsp
Ppsp is map [0x01d3e000-0x01d3efff to GPT at 0x0] over L3
L2)3 is map [0x00000000-0x3fffffff to L3 at 0x80000000]
Vs, Vs are over L1 3

L1)3 is map [0x00000000-0x0f£f£f££0,5 to MIF]

RAM),3 is accept [0x55020000-0x5502ffff]

spcL4 is map [0x49038000-0x49038££f to GPT at 0x0]

ROM)y;; is accept [0x55000000-0x55003fff]

GPT is accept [0x00000000-0x00000£fff]

MIF is map [0x00000000-0x5fffffff to L2)3,
0x55000000-0x55003fff to RAM),;3,
0x55020000-0x5502ffff to ROM),;3]

L3 is map [490003/24 to L4 at 401003,
550003/12 to MIF]
800003 /30 to RAM|
RAM is accept [0x00000000-0x3fffffff]

Figure 4.5: Describing the Texas Instruments OMAP4460 using the Con-
crete Syntax.
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creates a loop, however the address is different the second time and will
be forwarded to the RAM or ROM nodes where resolution terminates.

4.5 Algorithms

The previous sections defined the Decoding Net model and presented a
concrete syntax that enables concisely describing the memory subsystem
of real systems. With heterogeneous platforms in mind, where two distinct
cores have two different views of the system in which addresses are trans-
lated multiple times before their decoding terminates, with the possibility
of decoding-loops, how can one answer arising questions such as:

* ‘How can two views be expressed and compared efficiently?’
* ‘How can the model be efficiently manipulated at runtime?’

* ‘How can the absence of decoding loops be shown?’

This section presents algorithms that run on top of the Decoding Net model
that enable reasoning about address translation.

4.5.1 Views

The Decoding Net model introduced in Section 4.3 consists of a decode
relation and the set of accepted_names which together encode a directed
graph. While this allows specifying the address decoding behavior of
hardware concisely, it does not explicitly and directly say anything about
what a core (i.e. a processor or device) sees from the system.

The questions such as “Which resources are visible in this address space?”
and “At which address does this resource show up in that address space?”
are of particular interest for memory allocation considerations.

A core has a particular viewpoint which is defined by the cores’ local
address space. The resolve function links the local names (addresses
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relative to the core’s viewpoint) to global names i.e. the nodes may accept
the name and the local address at which they will accept it.

Fixing the viewpoint and resolving addresses within therefore defines a
view of the Decoding Net from a particular node, in other words, all
resources that can be reached from that node. However, not all addresses
can be resolved: some of them may result in a decoding loop while others
simply do not translate. The view from a node # is defined as the reflexive,
transitive closure of the decoding relation:

A(n,a). accepted_names N (decodes_to*(n,a))

Formulating this as a function, however, requires a proof of termination.

4.5.2 Termination

Decoding Nets are, by construction, directed graphs which may have
loops and thus they are neither acyclic graphs nor trees. This property
is necessary, as real hardware in fact does have loops e.g. the Texas
Instruments OMAP4460 or the Intel Xeon Phi as illustrated on Figure 4.6
and more examples in [Ach+17b]. The presence of loops is a problem
because in this case, address resolution does not terminate. This results
in unspecified behavior. However, despite having loops, the two examples
of Figure 4.6 can be proved to be benign i.e. they are not true loops. Instead,
the address is different every time the same node is traversed. In general,
whether a system is free of true loops is a property to be proved. It is not
an a priori assumption.

The absence of loops is a desired property and ideally it should be possible
to verify that system software does not configure translation units such that
true loops are created. This proof obligation is not added to the model out
of the blue. Instead, the absence of loops is a naturally arising property
from a functional representation of address spaces: Isabelle/HOL is a
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Xeon Phi virtual address space

Xeon Phi co-processor address space
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Figure 4.6: Existing Loops in Hardware. Xeon Phi on Top and OMAP
4460 on the Bottom [Ach+18].
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logic of total functions which implies that the function is defined for all its
possible input values. This is not the case in the presence of loops.

In other words, there are no loops if every path defined by the decode-
relation starting at the input address is finite. Every step of the decode-
relation brings the resolution process closer to the final step. Intuitively,
the ‘distance’ to the result is strictly decreasing until it reaches 0. Formally,
this is a variant expressed by a well-formed ranking function:

f :name - N

The ranking function f is well-formed for a starting name (n) and if it is
strictly monotonic decreasing for every step in the decode-relation:

Vx,y. (n,x) € decodes_to A (x,y) € decodes_to" — f(y) < f(x)

Termination follows by induction on the value of the ranking function: f is
bounded below by 0 and f is strictly monotonic decreasing. Therefore, if
a well-formed ranking function f exists, then the name » is in the domain
of the resolve function (n € resolve_dom) and resolution terminates.

What is left to show is that the decode-relation does not grow indefinitely.
In other words, each decoding step produces a finite number of translations
for a name. This is trivially true for real hardware, as the components are
finite. Also, the syntax enforces this by construction, as it requires listing
all translations of a node. This is a necessary condition to be able to find a
well-formed ranking function.

The ranking function can be constructed by induction over the decodes_to
relation as shown in Algorithm 2. Every name n that are part of the
accepted\_names set of the Decoding Net have a trivial ranking value of 0,
because resolution terminates at the accepting set. Otherwise, Algorithm 2
assigns the rank as the maximum rank of all successors plus one (if a

118



4.5 Algorithms

1 def RankingFn(n):
Data: Decoding Net, name
Result: rank of name n

if n € accepted_names then
‘ return O;
else
rank_max «— 0;
foreach (n, x) € decodes_to do
r «— RankingFn(x) ;
L rank_max = max(rank_max,r);

®w N N i A W N

9 return rank_max + 1

Algorithm 2: Ranking Function Construction Algorithm.

well-formed ranking exist). Note, this is where the finiteness condition of
the translate function is required.

Finally, this establishes the fundamental duality between the graphical and
operational views of an address space by the equivalence of the relational
and recursive-functional models. If the resolution is well-defined, then
the result is the set of accepting names that are reachable via the decode-
relation. Whenever Algorithm 2 produces a well-defined ranking function
f for aname (n, a), then that name is in the domain of the resolve-function.

Af. wf_rank f (n,a) <«— resolve_dom (n,a)

4.5.3 Normal Forms and View-Preserving
Transformations

For practical use in system software, an efficient representation and al-
gorithms are needed to manipulate and query the decoding net at both,
runtime and compile time. For example, generating kernel page tables
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1 def Flatten(net, root):
Data: Decoding Net, Root Node

Result: Flattened Representation

nety «— empty_net;

net, «— empty_net;

foreach (n,node) € net do
nodeg,nodes «— Split(node);
nety(n) := nodey;
nety(n) := nodeg;

N QN R WN

node_root «— Merge(net(root));
return net, + node_root

Algorithm 3: Flattening Operation.

for the bootstrap processor (e.g [Sch17]) requires knowledge of where in
the processor’s “physical” address space devices and RAM appear. This
information is implicit in the Decoding Net model, but not easily accessible
as it requires computationally and memory intensive computations.

A more efficient way to obtain the same information is to compute and
materialize a flattened representation, while preserving the view from each
core. Because of view preservation, querying the full Decoding Net or the
flattened representation yields the same results, while the latter is more
efficient. The flattened representation is the normal form (Figure 4.7): a
single translating node (one-step transitive closure of the decode-relation)
maps directly to a set of accepting nodes. Algorithm 3 transforms the
Decoding Net into a normal form for a well-defined root using the split
and merge operations:

1. Split: Every node in the Decoding Net is split such that it either
accepts addresses (i.e. it is a physical resource), or it translates
addresses and forwards them to other nodes, but not both. Thus,
nodes can be classified into accepting and translating.

2. Merge: Starting from the root node, the translating nodes are merged
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together by flattening multi-stage translation steps — effectively
computing the one-step transitive closure of the decode-relation.
The resulting, flattened node translates each input address directly
to an accepting name. The translate function then defines the
address space visible from that node.

It is important to emphasize here, that the result of normalization depends
on the fixed observer, i.e. the root-node for which the flatten operation
generates the view.

The question arises, whether the transformation flatten (Algorithm 3) is
actually correct. This requires verification of the algorithm. The reminder
of this section shows the definition and verification of view equivalence-
preserving transformations on the semantic model. Ultimately, an algo-
rithm that refines (or faithfully implements) the transformation produces
the correct result. The reminder of the section defines view equivalence
and gives formal definitions of the transformations.

Mapping node
I [ [ I 11
I oL

G_, ¥ )
I 1T 1
Accepting node Accepting node

Figure 4.7: Normalform Representation — A Single Translation Step onto
the Physical Resources of the System.

View Equivalence Two Decoding Nets net and net’ are view-equivalent
if all observer nodes in S in both nets have the same view. In other words,
the output of the resolve function from the nodes § is the same modulo
some renaming of accepting nodes (f and g). This implies that in both
Decoding Nets, the same accepting resources can be reached from the
nodes in S. The view equivalence is denoted as:
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(f.net) ~s (g.net’)

Node Splitting Splitting of nodes effectively doubles the number of
nodes as each node is divided into an accepting and mapping part. Doing
so requires associating the split nodes with new, unused node identifiers.

For this purpose, let ¢ be greater than the label of any existing node. Then
the accept and translate functions of the split decoding net are defined as
follows:

accept, =0
En+c)

translate, a = {(n+ c,a) | a € accept,} U translate, a

accept = accept,

4 —
translate<n+c) a=0

Where accept|,, denotes the accept-set for node n, and translate, the
translation function of node n analogously.

Node n is therefore split into two nodes: n with populated translation
function and n + ¢ with populated accept set. Note, the translation function
now also includes translations to the accept-set of node n + ¢ because of
the splitting.

The resulting Decoding Net is view-equivalent to the original one. Names
that were accepted at node n are now accepted at node n + ¢, and node n
translates those addresses to node n + c¢. This gives the renaming function
n — n + ¢ for the equivalence:

(n > n+c,net) ~s (0,split(ner))
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Syntactic Node Splitting Instead of splitting the node in the abstract
representation as above, the same operation can be applied to the con-
crete syntax representation. In this case the splitc is a simple syntactic
operation:

nd is accept A map M over O —[ nd + c is accept A,
nd is map M(nd — nd’) over O |

Whether splitting at the syntactic level or on the abstract level produces the
same outcome needs to be proven. The following commutative diagram
expresses the necessary refinement proof:

splitc .
s — split(s)

l parse j parse
split

spl
parse(s) P et

The proof requires to show that the two operations (split() and split.())
together with the state relation (parse()) actually produce the same result.
parse() constructs the Decoding Net from the syntactic representation. In
the end, the equivalence must hold:

split (parse s) = parse (splitc s)

The combination of the split equivalence and the refinement yields that the
concrete implementation preserves the equivalence of the nets constructed
by parsing.

(n+— n+c,parse s) ~g (0,parse (splitc s))
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Flattening Operation Flattening of a node does not change the number
of nodes in the Decoding Net as the splitting operation does. Flattening
targets the translate function of a node, or in other words the decode
relation of the Decoding Net. Effectively, all names, that are translated by
that node, are now directly translating to the accepting resource (resolve).

For a fixed node n, the flattening is expressed using the resolve function:

accept, = accept,,

translate,a = da.resolve (n,a)

This transformation does not alter the set of accepted_names. Moreover, the
equivalence of the decode-relation of the original Decoding Net and the
flattened version can be shown:

(x,y) € (decode (flatten net nd))* «— (x,y) € (decode ner)”
Putting it all together Combining the equivalence results of the splitting
and flattening operations enables the verification of equivalence between:

1. The physical resources that are reachable from the transformed
model.

2. The physical resources that would be reachable when expensively
traversing the original, hardware-derived model for all addresses.

Chapter 6 uses this result in operating system services and at compile time
to generate low-level, platform specific operating systems code.
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4.6 Modeling the MIPS R4600 TLB

Translation lookaside buffers (TLBs) of processors cache the translation of
virtual addresses to (local) physical addresses defined by a data structure
called page tables. TLBs are probably the single most complex translation
element and are used to implement the abstraction of virtual memory. The
processor core executing an application issues loads and stores to virtual
addresses. Those memory requests are intercepted by the translation
hardware (e.g. the memory management unit) which translates the virtual
address to a local physical address, based on the state of the TLB, which
defines the translation function. TLBs are small and are therefore not able
to cache all translations. An attempt to translate an address for which there
is no matching entry in the TLB triggers an exception or translation fault:
this may either invoke a hardware page-table walker or result in a page
fault to be handled by the operating system.

This section demonstrates the ability of the Decoding Net model to capture
and express the configuration of real hardware, as well as reasoning about it
at the example of the MIPS R4600 TLB [ITD95]. This is a well-understood
and well-documented instance of a software-loaded TLB. The MIPS R4600
TLB explicitly exposes configuration operations to the operating system.
The reminder of the section is structured as follows:

1. Define the operational model of the MIPS R4600 TLB including
operations and invariants.

2. Show that the operation model refines the Decoding Net.

3. Define and show the equivalence of a small TLB plus fault handler
and an infinitely large TLB holding all translations.

4. Use the operational model to prove the impossibility of provably-
correct initialization.
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4.6.1 The TLB Model

This section defines the operational model of the MIPS R4600 transla-
tion lookaside buffer (TLB) including its state and operations invoked by
systems software to update it.

4.6.1.1 State Definition

The MIPS R4600 TLB consists of 48 entry-pairs, each of which is mapping
two adjacent virtual pages to independent physical frames of the same size.
The virtual pages are identified by their virtual page number (VPN) as
specified in the EntryHi. The two EntryLo® and EntryLo1 contain the physical
frame number (PFN) which defines the target, local physical address of the
translation. The mask defines which of the seven pre-defined page sizes is
used for the entry. Figure 4.8 gives the layout of a single TLB entry-pair.

An entry-pair of the TLB is expressed in Isabelle/HOL with the following
record type definitions:

TLBEntryHi = (region : N, vpn2 : N, asid : N)
TLBEntryLo = (pfn : N, v : bool, d : bool, g : bool)
TLBEntry = (hi : TLBEntryHi, 100 : TLBEntryLo, lol : TLBEntryLo)

| | Mask| | Mask
63 25 24 13 12 0

R | | VPN2 6] | ASID | EntryHi
63 62 61 40 39 13 12 11 8 7 0
| | PEN | c | D | v EntryLoO
63 30 29 6 5 3 2 1 0 EntryLO:L

Figure 4.8: A MIPS R4600 TLB Entry with Non-Zero Fields Labeled.
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As already mentioned, the MIPS R4600 TLB consists of 48 entry-pairs
where each entry is indexed by a number from 0 — 47. Besides the
entry-pairs, the state of the TLB also contains the wired and random values
which alter the behavior of some state modifying operations (see paragraph
below). Moreover, the state also includes the (static) capacity to facilitate
refinement proofs later on. In Isabelle/HOL the entire state of the TLB is
expressed as the following data record:

MIPSTLB = (wired : N, capacity : N, random : N,
entries : N — TLBEntry)

4.6.1.2 Operations

The MIPS R4600 TLB is software-loaded. This means there is no hardware
component that automatically walks in-memory page tables on a TLB miss.
Instead, when a virtual address lookup fails, the TLB hardware triggers
a fault. In response, the operating system is responsible for taking action
and install an entry for the faulting address (if appropriate).

The operating system, therefore, modifies the state of the TLB explicitly and
it does so using four special instructions provided by the MIPS instruction
set. The operations effectively transfer the TLB entry-pair contents from
and to a temporary register. The four operations are:

» TLB Probe [tlbp] performs an associative lookup by matching the
TLB entry-pairs against the contents of the register based on the
VPN, ASID, and the size mask. The result of the t1bp operation is
either the index of the matching entry, or an miss indication.

e TLB Read [tlbr] reads the requested TLB entry-pair at the specified
index, and copies it to the temporary register.

* TLB Write Indexed [tlbwi] updates the TLB entry-pair at the speci-
fied index with the contents of the temporary register.
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* TLB Write Random [tlbwr] updates the TLB entry-pair at the index
specified by the Random register. The contents of the Random can
assume to some value in [wired, capacity).

Note, the value of the Random register is effectively decremented every
processor clock tick. Therefore, the precise value of the Random register at
the time of the random-write operation depends on the exact execution trace.
Without knowing the trace, the precise value is unknown and thus model
assumes a value non-deterministically chosen from [wired, capacity).

The result of the t1bp operation is undefined when multiple TLB entry-
pairs match at the same time. This is an important correctness property. A
violation of this leads to undefined behavior and may even cause permanent
physical damage to the chip (see Section 4.6.2). A TLB entry-pair matches
against EntryHi if the address falls within the range covered by the VPN
and the address-space identifier (ASID) matches. An entry with the global
bit set matches any ASID. The EntryMatch predicate expresses this in
the model. Similarly, a VPN and ASID can be matched against an entry
directly using the EntryMatchVPNASID predicate.

EntryMatch :: TLBEntry = TLBEntry = bool
EntryMatch el e2 =
((EntryVPNMatch el e2) A (EntryASIDMatch el €2))

EntryMatchVPNASID :: VPN = ASID = TLBEntry = bool

EntryMatchVPNASID vpna e =
EntryMatchWithVPN vpn e A EntryMatchWithASID a e
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The state-update are then operations are expressed in Isabelle/HOL using
the following signature types:

tlbp : TLBENTRYHI — MIPSTLB — {N}

tlbr : N — MIPSTLB — {TLBENTRY?}

tlbwi : N — TLBENTRY — MIPSTLB — {MIPSTLB}
tlbwr : TLBENTRY — MIPSTLB — {MIPSTLB}

All of these operations return a set of values to express undefined behavior
and non-determinism. In fact, any of these operations can result in unde-
fined behavior: For instance, the attempt to read or write a TLB entry-pair
at an out-of-bounds index or probing the TLB with multiple matching en-
tries is unpredictable. Moreover, updating an entry with one that conflicts
other entries leaves the TLB in an unknown state.

Undefined outcomes are modeled as non-determinism and hence all oper-
ations return a set of possible outcomes where UNIV, the universal set, in-
dicates complete under-specification. The t1bwi operation, for instance, re-
turns UNIV when an out-of-bounds index access occursi.e.i > capacity t/b,
and otherwise the specified entry-pair i is updated and a singleton set is
returned. This is expressed in Isabelle/HOL as

tlbwiietlb =ifi < capacity tlb
then {¢/b (entries := (entries t1b)(i := ¢))} else UNIV

where the notation f(x :=y) denotes a function update at x with value y
in Isabelle/HOL syntax.

Recall, the TLB Write Random (t1lbwr) updates the entry-pair at the in-
dex defined by the Random register whose values are within the range
[wired, capacity). Because the actual value of the Random register is updated
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non-deterministically, the TLB Write Random operation is expressed as
the non-deterministic choice of some indexed write. This is the union of
all possible TLB states which may be observed depending on the capacity
and the contents of the wired register.

(capacity #lb)—1
tlbwr e tlb = U tlbwii e lb

i=wired 1lb

4.6.2 The Validity Invariant

The MIPS R4600 TLB and its predecessors famously permit the program-
mer to unsafely configure the TLB, leaving the TLB in an inconsistent
state. This results in undefined future behavior of the processor. Worse,
in earlier versions of the chip this could even lead to permanent hardware
damage whereas newer versions silently turn off the TLB.

At its core, the source of the problem is how virtual addresses (or the
registers when doing a probe operation) are matched against entries in
the TLB. Being fully associative TLB, this is implemented by a parallel
comparison against all 48 entries. This happens on the critical path of
any memory access as the TLB translates every virtual address used by
the processor. The implementation of such an associative lookup requires
a substantial amount of logic and thus is very expensive. Unsurprisingly,
this is highly optimized e.g. by making the assumption that there will be
at most one entry that matches an address. Breaking with this assumption
leads to two or more entries driving the same wire to different voltages
resulting in inconclusive results, or worse burning the chip.

The vendor of the MIPS R4600 TLB places this burden onto the operating
system programmer who needs to ensure that this assumption is never
broken. It’s important to emphasize here that entries still match an address
despite being marked as invalid (valid bit (v)) set to zero). This is an
important detail. In addition, the requirement is in fact that two entries
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never can match which is a stronger requirement than that they never do.
A possible reason for this could be that doing the associative lookup first,
then check the valid bit is cheaper than doing both steps in parallel. In
general, this is even more important on hardware, which does speculative
execution: a memory access is triggered speculatively based on some
access patterns (as in [Lip+18; Can+19; Koc+18]) which causes a TLB
lookup of an address it actually never computes. Despite discarding the
results afterwards, damage would have been done.

This property is expressed in Isabelle/HOL as a conflict set. The conflict
set of an entry-pair is the set of indices at which there exists a matching or
overlapping entry. The same applies for virtual addresses analogously.

EntryConflictSet :: TLBEntry = MIPSTLB = {N}
EntryConflictSet e tlb =
{i.i < (capacity tlb) A EntryMatch (entriestlbi) e }

The correctness invariant is that the conflict set is either empty or it is a
singleton set consisting solely of the index of the entry-pair itself (an entry
pair always matches itself).

EntryConflictSet (entriestbi)tlb C {i}

Each entry-pair also must be well-formed. This includes the mask field
having a valid bit pattern e.g. the VPN or PFN not exceeding the number
of supported bits, etc. Lastly, the number of wired entries must not exceed
the capacity of the TLB.
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Putting everything together yields the TLBValid invariant (Invariant 14.2):

Invariant 14.2 (TLBValid)

TLBValid :: MIPSTLB — bool
TLBValid ¢/b = wired tlb < capacity tlb A
(Vi < capacity 1lb.
TLBEntryWellFormed tlbi A
EntryConflictSet (entries b i) ilb C {i})

The invariant states that all entry-pairs of the TLB are well-formed and
there are no conflicting or overlapping entries in the TLB. Changes to
the TLB state using the indexed or random write operations must always
preserve this invariant, otherwise leaving the TLB in an undefined state.
This requires a proof that both modifying operations, indexed and random
write, preserve the invariant.

Indexed write preserves invariant. The first lemma states that if the
TLB is in a valid state, the new entry is well-formed and does at most
conflict with the entry at the index with is to be replaced and the index is
within range, then the t1bwi operation will preserve the invariant.

Lemma L4.1 (tlbwi preserves invariant)

assumes i < capacity /b and EntryConflictSet e tlb C {i}
and TLBValid¢/b and TLBENTRYWellFormed e
shows V¢ € tlbwi i e t/b. TLBValid ¢
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Random write preserves invariant. The second lemma is analogous to
the first one, however the random write operation may replace any entry
of the TLB, therefore the precondition must be stronger: it is required that
the new entry does not conflict with any existing entry in the TLB, i.e. the
conflict set is empty.

Lemma L4.2 (tlbwr preserves invariant)

assumes TLBValid t/b and TLBENTRYWellFormed e
and capacity #/b > 0 and EntryConflictSetetlb = {}
shows V¢ € tlbwr e tlb. TLBValid ¢

4.6.3 Modeling TLB Translations

The previous sections define the MIPS R4600 TLB operational model with
the validity Invariant 14.2, which ensures that the TLB is in a well-defined
state. Translation lookaside buffers typically cache a small number address
translations and, as a consequence, they cannot hold all address translations
of the entire address space. Nevertheless, the TLB provides the illusion to
applications that they have the full address space at their disposal.

An attempt to translate an address for which there is no matching entry
triggers an exception (Section 4.6.3.1). In response, software or hardware
tries to replace an entry with based on a data-structure lookup (e.g. a page
table Section 4.6.3.2) and then continues execution of the user-space pro-
gram. This provides the illusion of an infinitely large TLB (Section 4.6.3.3)
which contains all translations of the process’ virtual address space. The
remainder of this section describes how those aspects are expressed on top
of the MIPS R4600 TLB model.
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4.6.3.1 Translations and Exceptions

Addresses that do not have a matching entry in the TLB, or the entry
has wrong permissions raise an exception when the processor issues that
address. On the MIPS R4600, this triggers a software handler routine,
whereas on other architectures, such as ARMvV8 or x86, this handler
routine is implemented in hardware. In both cases, the handler evaluates
the translation function based on the configuration defined in some data
structure (e.g. a page table).

Not all exceptions are created equal: An exception can occur when there is
no matching entry, the entry is invalid, or the permissions do not allow the
desired access to that memory address. Figure 4-19 in the MIPS technical
reference manual [ITD95] shows the corresponding exception flowchart.
The following three exceptions are defined:

* TLB Refill. No entry matched the given virtual address.
e TLB Invalid. An entry matched, but was invalid.

» TLB Modified. Access violation, e.g. a write to a read-only page.

Table 4.1 summarizes the possible outcomes of an address lookup.

The operation model expresses this as an datatype in Isabelle/HOL, where
EXNOK represents a success condition.

datatype MIPSTLBEXN = EXNREFILL | EXNINVALID |
EXNMOD | EXNOK

Recall, an entry-pair matches a certain address range defined by its virtual
page number (VPN) and the address space identifier. Depending on whether
the VPN is odd or even, the address is translated either using EntryLo® or
EntryLol. The result is either a singleton set in the case of successful
translation or the empty set otherwise. The following function defines the
translation of a single TLB entry in Isabelle/HOL.
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TLBENTRY_translate :: Entry - N — N — {N}
TLBENTRY_translate e as vpn =
if EntryMatchVPNASID vpn as e then
if evenvpn A EntryIsValidO e
then {(pfn (l00 e)) + (vpn — EntryMin4KVPN e)}
else if odd vpn A EntryIsvValidl e
then {(pfn (lol ¢)) + (vpn — EntryMin4KVPN1 ¢)} else {}
else {}

The translation behavior of the entire MIPS R4600 TLB is then given by
the union of the translates of all entries:

MIPSTLB_translate :: MIPSTLB —» N —» N — {N}
MIPSTLB_translate tlb vpn as =

TLBENTRY_translate ((entries t/b) i) as vpn

i<capacity tlb

Note, the TLB validity invariant (Invariant 14.2) ensures that there are no
conflicting TLB entries. This implies that at most one entry will actually
match and produce a non-empty, singleton result set. Therefore, the union
over all entries itself is either empty or a singleton set.

Using a similar approach, the MIPSTLB_try_translate function can be de-
fined which probes the TLB, but instead of translating the address, it returns
whether the address translation would be successful, or if the address trans-
lation would cause an exception. Note the distinction between odd and even
VPNs. The predicate TLBHasMatchingEntry evaluates EntryMatchVPNASID on
all entries of the TLB.
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MIPSTLB_try_translate :: MIPSTLB — N — N — TLBEXN
MIPSTLB_try_translate t/b as vpn =
if TLBHasMatchingEntry vpn as tlb then
if even vpn A EntryIsValid® vpn as tlb then
EXNOK
else if odd vpn A EntryIsValidl vpn as tIb then
EXNOK
else EXNINVALID
else EXNREFILL

4.6.3.2 Replacement Handlers and Page Tables

As described earlier, the translation lookaside buffer caches address trans-
lations which are defined based on some hardware or software defined data
structure such as a page table.

In the case of a software-loaded TLB, the operating system may implement
any suitable data structures to manage and keep track of the translations.
Logically, this data structure is an array of TLBEntryLo values indexed by
address space identifier and virtual page number. The TLB model expresses
this as the following function:

MIPSPT :: N — N — TLBENTRYLO

While the MIPS R4600 TLB fits well with a linear array as page table, in
general n operating system or hardware implementation is free to chose
other data structures than an array or function representation to save mem-
ory in sparsely populated address spaces. An example of a data structure
used today is a multi-level radix trees e.g. x86 [Int19a] or Arm [ARM17]
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page table. Complex data structures but require a refinement proof to the
logical array used in the model.

When an exception occurs, the handler routine consults the page table to
obtain the translation information, it then creates the TLB entry-pair for
the faulting address. The TLB validity invariant (Invariant 14.2) requires
entries to be well-formed. The following Lemma [.4.3 proves that every
TLB entry constructed from the page table in-memory representation using
the MIPSPT_mk_tlbentry function results in a well-formed TLB entry-pair.
This satisfies one part of Invariant 14.2.

Lemma L4.3 (well-formed entry pair construction)

assumes MIPSPT_valid pr and ASIDValid as
and vpn < MIPSPT_EntriesMax
shows TLBENTRYWellFormed (MIPSPT_mk_tlbentry pt as vpn)

The TLB is always populated from the contents of a page-table represen-
tation. The combination of the page-table representation with the MIPS
TLB then allows modeling a replacement handler that populates the TLB
with translations defined in the page table. The Isabelle/HOL record
MipsTLBPT expresses this combination:

MipsTLBPT = ( tlb : MIPSTLB, pte : MIPSPT )

By constructing TLB entry-pairs from the page table, the TLB should
never have conflicting translations with the page table structure. In fact,
this is what the operating system maintains using TLB invalidation when
it modifies the page table. In other words, the TLB should therefore always
be an “instance” of the page table holding a subset of the translations
defined by the page table. Invariant I4.3 ensures that every entry in the
TLB has been constructed from the page-table representation.
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Invariant 14.3 (TLB instance)

MipsTLBPT_is_instance mt =
Vi < capacity (tlb mt).
entries (tlb mt)i = MIPSPT_mk_tlbentry (pte mt)
(asid (hi (entries (tlb mt)i)))
(vpn2 (hi (entries (tlb mt) i)))

The possible translation function of the TLB is therefore always a subset of
the translation function defined by the page table. The replacement handler
can chose to update entries in the TLB either deterministically, e.g. based
on some function of the entry’s VPN or ASID, or non-deterministically
using some random replacement strategy.

Deterministic Replacement Deterministic choice of an entry to update
effectively implements a direct mapped cache: for each entry there is
exactly one well-defined slot (index) in which it can be placed. This
simplifies reasoning about possible conflicts and the TLB invariant. The
MIPSTLBIndex is one possible way to define the index:

MIPSTLBIndex tlb entry = (vpn2 (hi entry)) mod (capacity tlb)

Two potentially conflicting entries will end up at the same location in the
TLB and hence always replace potentially conflicting entries, and thus
preserving Invariant 14.2.

Non-Deterministic Replacement The deterministic replacement strat-
egy, however, is not always applicable. In particular, when dividing the
entries into wired and random, or in the presence of a hardware page-table
walker, which may update any entry of the TLB. Moreover, this strategy
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may experience more conflict misses than other replacement strategies
such as least-recently used (LRU).

This requires a non-deterministic model of a replacement-handler function,
which can update any entry (more specifically any entry wired < i <
capacity). Consequently, this needs a proof that this replacement handler
does not break Invariant I4.2 by inserting the same entry twice into the
TLB at two different locations (or conflicting with an entry in the wired
part, see Figure 4.9). In other words, the TLB must only ever be updated if
there is no matching entry and hence any translation attempt would trigger
a refill exception, otherwise the same state is returned:

MipsTLBPT_fault mtlb as vpn =
if MIPSTLB_try_translate (tlb mtlb) as vpn = EXNREFILL
then MipsTLBPT update_tlb mtlb as vpn
else {mtib}

The definition of MipsTLBPT_fault ensures that conflicts are never caused
and the TLB invariant is preserved. Lemma [.4.4 proves this statement:
the lemma states that if the TLB is in a valid state, the ASID and the VPN
of the address to be faulted on are valid, then updating the TLB state using
the MipsTLBPT_fault function preserves Invariant 14.2 and Invariant 14.3.

Lemma L.4.4 (Fault handler preserves Invariant)

assumes MipsTLBPT_validmpt and ASIDValid as
and vpn < MIPSPT_EntriesMax
shows Vm € MipsTLBPT_fault mpt as vpn. TLBPT_valid m
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The validity invariant used in this lemma is actually stricter than just In-
variant 14.2. It also includes the well-formedness of the page tables as well
as Invariant 14.3 which links the page tables and the TLB together.

TLBPT_valid mt =MIPSPT_valid (pte mit) A TLBValid (t1lb mt)
A MipsTLBPT_is_instance mt

4.6.3.3 Equivalence to Infinitely Large TLB

The combination of the models for translations, exceptions and refill han-
dlers enables the implementation of the expected abstraction of a single
address space that translates virtual to local physical addresses as defined
by the contents of the page table. This is as if there is a hypothetical large
TLB capable of “caching” the entire page table.

The equivalence of a small TLB plus a refill handler, and a hypothetical
large TLB pre-loaded with all mappings requires a proof. The model of
the hypothetical large TLB assumes it can hold all address translations at
once, and consequently a refill exception can never happen. Populating the
large TLB requires a deterministic placement scheme using the “extended
virtual address”, a combination of the ASID and the VPN. There is a
well-defined correspondence between the extended virtual address and the
TLB index:

tlb_index «— (asid,vpn)

Using this extended addressing scheme, which gives a unique, deter-
ministic location for each entry, the MipsTLBLarge_create function
pre-populates the entire TLB with the contents of the page table:
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MipsTLBLarge_create :: MIPSPT — MIPSTLB
MipsTLBLarge_create pt =
( capacity = MaxEntries, wired = MaxEntries,
entries = An. MIPSPT_mk_t1lbentry pt (i2asid n) (i2vpnn) )

A large TLB initialized in this way will never experience a refill exception
when translating any valid ASID or VPN combination. Lemma L4.5 proves
this statement.

Lemma L4.5 (no refill exceptions)

assumes MIPSPT_valid pt and ASIDValid as
and vpn < MIPSPT_EntriesMax
and mtlb < (MipsTLBLarge_create pr)
shows MIPSTLB_try_translate mtlb as vpn # EXNREFILL

Lastly, Lemma L4.6 proves that the hypothetically large TLB and the small
TLB plus replacement have precisely the same translation behavior i.e. they
produce the same output PEN for a given VPN-ASID combination.

Lemma L4.6 (large TLB equivalence)

assumes vpn < MIPSPT_EntriesMax and as < ASIDMax
and capacity (tlb mpt) >0 and MipsTLBPT_valid mpt
shows MipsTLBPT_translate mpt as vpn =
MipsTLBLarge_translate (pte mpt) as vpn
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4.6.4 The TLB Refines a Decoding Net

The previous sections define the operational model of the MIPS R4600
TLB including a page-table definition, refill handlers and the equivalence to
a hypothetical, large TLB. This section shows that this operational model
of the MIPS R4600 TLB refines the Decoding Net model of a translate-only
node under an appropriate lifting function.

Lifting Function The entries of the TLB define the translating behavior
of the resulting Decoding Net node. In the MIPS R4600, each entry-pair
contributes up to two address-range mappings to the translation function.
An entry-pair matches the input virtual address va against the first or
second half of the virtual address range covered by the page identified by
the entry-pair’s VPN, and translates it if the corresponding EntryLo is valid,
otherwise resulting in the empty set. The EntryToMap function returns a
function from address to a set of names for a given TLB entry-pair. The
node ID of the local physical address space of the processor is passed as an
argument. Note, this function flattens the two dimensional (ASID, VPN)
representation, by extending the virtual address with the ASID.

EntryToMap :: nodeid = TLBENTRY = (addr = {name})
EntryToMap n e va =
(if EntryIsValid® e A va € EntryExtendedRange® e
then {(n, EntryPA® ¢ + (va mod VASize) — EntryMinVAO ¢)}
else {}) U
(if EntryIsValidl e A va € EntryExtendedRangel e
then {(n, EntryPAl e + (va mod VASize) — EntryMinVAl e)}

else {})

The ConvertToNode function lifts the entire TLB representation by taking
the union of all translation functions obtained by applying EntryToMap on
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all TLB entries. The TLB itself does not have resources that the processor
can address using load/store operations (recall, the entries of the TLB are
accessed using special instructions). Therefore, there are no resources that
may accept memory accesses and the resulting accept-set of the Decoding
Net node lifted from the TLB model is empty.

ConvertToNode n tlb =
( accept = {},
translate = da. U EntryToMap n (entries 1lbi) a)

Refinement Proof The following commutative diagram illustrates the
schema of the refinement proof showing that updating an entry in the TLB
then converting it to a node results in the same state as first converting it
and then applying the corresponding operation on the abstract level.

tlb tibui 1y

ConvertToNode ConvertToNode

replace_entry
node node’

On the abstract level, the equivalent to the t1bwi operation is the function
replace_entry. This function replaces entry el with e2 by removing the
translation region of entry el and adding region e2:

replace_entry = translatena —
(translate n a — EntryToMap n el a)

U EntryToMap n e2 a

The following lemma proves the refinement by establishing that the indexed
write operation (tlbwi) and the replace_entry commute with the lifting
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function resulting in the same state under the assumption that the TLB is in
a valid state and that the entry can actually be written i.e. it is well-formed
and does not conflict with the rest of the entries in the TLB.

Lemma L4.7 (TLB refines Decoding Net)

assumes [ < capacity t/band TLBValid ¢/b
and TLBEntryWriteablei etlb
shows ((ConvertToNode n)’(tlbwi i e tlb)) =
(replace_entry n (entriestlbi) e
(ConvertToNode n tib))

Refinement of the Large TLB Section 4.6.3.3 has already shown the
equivalence of the large TLB and the TLB plus replacement handler under
the operational model. What is left to do, is to show the equivalence of
the combination of the TLB with the page table and replacement handler,
and the hypothetical, large TLB under the abstract model. For this proof
Lemma L4.8 compares the result of conversions to the Decoding Net node.

Lemma L4.8 (Equivalence under the abstract model)

assumes capacity (tlbmpt) >0 and MipsTLBPT_valid mpt
and mlg = MipsTLBLarge_create (pte mpt)
shows MipsTLBPT_to_node nd mpt =
MipsLarge_to_node nd mlg

Recall, Lemma L4.6 has already established the equivalence of the translate
function of the two TLB representation. Consequently, applying the lifting
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function on both TLB representation produces equivalent nodes in Decod-
ing Net semantics.

4.6.5 Specification Bugs

The MIPS R4600 TLB manual defines certain states and behaviors which
turn out to be problematic when attempting to formally model the TLB.
This section presents two instances where, for instance, Invariant 14.2 is
violated at reset, and the random write operation performs unexpectedly.

Those specification bugs are an example of an excessively cautious abstrac-
tion hiding correctness-critical details of the underlying hardware. In the
case of the MIPS R4600 TLB this is most likely harmless. However, simi-
lar instances of hiding behavior behind an abstraction lead to correctness
and security critical vulnerabilities as demonstrated by the Meltdown and
Spectre attacks [Koc+18; Lip+18].

4.6.5.1 Invariant Violation at Power On

Lemma L4.1 and Lemma L.4.2 state the necessary preconditions the op-
erating system must satisfy when updating entries in order to preserve
Invariant 14.2. This requires the TLB to be in a valid, well-known state to
start with.

However, at reset (e.g. after the chip is powered on) the guarantees provided
by hardware on the state of the TLB are too loose according to the
specification of the power-on state. This effectively renders satisfying
the invariant at all time impossible. The following quote from the MIPS
R4600 manual [ITD95] describes the reset state as:

“The Wired register is set to 0 upon system reset. [...] The

TLB may be in a random state and must not be accessed or
referenced until initialized.” — MIPS R4600 manual [ITD95]
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Therefore, the state of the TLB entry-pairs is undefined after reset. This
would not be a problem, if the TLB could be switched off, but this is not
the case. The MIPS R4600 TLB is always on. A strict reading of the
invariant demands that there are no two conflicting entries in the TLB,
even if they are invalid. Consequently, it cannot be guaranteed that the
invariant is satisfied at any time because of the unpredictable and undefined
initial state. This despite the kernel being provided a special, untranslated
segment (kseg®) for bootstrapping.

The proof that there is in fact a state that violates the invariant while
satisfying the reset condition at the same time is done by constructing a
plausible initial state and evaluate the invariant and the at-reset-predicate
on it. An example of such a plausible initial state has all entries zeroed out
i.e. being the null_entry:

tlb_at_reset = (wired = 0, random = 47, capacity = 48,

entries = A_. null_entry)

The valid bits of all entries are zero and hence this TLB does not actually
translate any address. However, addresses within the first page of memory
e.g. null pointer dereferences, a common programming bug, will match all
entries of the TLB. Recall, the specification demands that this situation
does never occur even if the addresses are never issued.

Based on experiences from practice, operating systems do successfully
initialize and run on MIPS processors. This suggests that the obvious
approach is likely also a correct one: there is no real problem as long as
no two entries actually match the addresses issued by the processor. This
is achieved by the operating system running in a non-translated window
(kseg®) until the TLB is configured properly. However, an unintended
memory access or dereferencing a wrong address might be enough already
to cause an address translation using the invalid TLB state.
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4.6.5.2 Behavior of a Fully-Wired TLB

The MIPS R4600 TLB has a concept of wired entries. An entry-pair that
is wired cannot be overwritten by the random write operation (t1lbwr) as
stated in the manual:

“Wired entries are non-replaceable entries, which cannot
be overwritten by a TLB write random operation.” — MIPS
R4600 manual [ITD95]

The number of wired entry-pairs w can be configured, such that the lower
w entries are wired. This is illustrated in Figure 4.9. The entry-pairs are
divided into two distinct sets:

wired ={i|i>0Ai<w}
nonwired = {i|i > w Ai < capacity }

wired U nonwired = {i |0 < i < capacity }

Randomly-replaced TLB entries

[
Lof1] [wer | w | | 47
! Wired TLB entries I

Figure 4.9: Illustration of Wired TLB entries as in [Ach+18].

The value of w indirectly defines the entry-pair to be updated using the
random write operation: the value of the Random register selects the entry-
pair to be updated. The range of values the Random register may assume is
defined by RandomRange function below.

At reset, i.e. power on or updating w, hardware sets the Random register to
the highest possible value capacity — 1. Whenever the processor retires
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an instruction the value of the Random register is decremented until value
w is reached, after which a wrap around happens and the value is set to
capacity — 1 again. The entries w — 1 down to O are effectively skipped.
This RandomRange is defined as:

RandomRange t/b = {x. wired t/b < x A x < capacity t/b}

Because the reset value is set to the entry-pair with the highest possible
index (capacity — 1), the random write operation will always succeed in
updating an entry-pair, regardless of the value of w

The corner case, where all entries are wired (w = capacity or even
w > capacity which is not prevented by hardware) renders this defini-
tion problematic. The manual does not specify what happens in this case.
With w = capacity the RandomRange definition yields an empty set:

RandomRange t/b = {x. capacity tlb < x A x < capacity tlb} = {}

By setting w = capacity, the programmer wants all entries to be wired
and none to be replaced randomly. This is in line with the empty set
above.However, this conflicts with the value at reset of the Random register,
which is in this case:

capacity — 1 ¢ RandomRange t/b = {}.

This results in a contradiction: either the semantics of the wired entries, or
the random write operation is wrongly specified in the manual. One way
to work around this is to slightly adjust the definition of the RandomRange
set in the operational model:

RandomRange t/b = {x. wired tIb < x A x < capacity tlb}
U {capacity tlb— 1}
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As an alternative, one could interpret the behavior of a random write in
a fully-wired TLB as undefined behavior, e.g. when the number of wired
entries exceeds the capacity of the TLB. Moreover, the manual assumes
the random register to always have a valid index.

Ultimately, experimentation will reveal the actual implemented behavior.

4.6.6 Comparison to an ARMv7 TLB Model

The TLB of the MIPS R4600 is software-loaded and thus its state is in
control of the operating system. Architectures such as x86, ARMv7 and
ARMVS accelerate the handling of TLB misses by walking the page table
using dedicated hardware. This section compares the model of the MIPS
R4600 TLB presented in this chapter with a model of the ARMv7 memory
management unit and its TLB [SK17; SK18]. Their model uses a state
monad to express the TLB state and integrates with the Cambridge ARMv7
model [FM10] to express memory accesses originating from the hardware
page-table walker. In contrast to the MIPS R4600 TLB model, there are
additional sources of non-determinism, as the ARMv7 TLB can evict and
replace entries with an unspecified replacement policy at any memory read
or write. Using data refinement, they remove non-determinism from the
model using an explicit evict-operation. The MIPS R4600 TLB model also
supports deterministic replacement of entries using a predefined location
based on ASID and VPN. Both models abstract away the TLB state
showing equivalence to a saturated TLB. The MIPS R4600 TLB model
does not take partial page table walks into account.

4.7 Conclusion

This chapter presented a sketch of the address space model, a new ab-
straction for resource management and address decoding in the presence
of multiple address spaces following the principles of Saltzer’s work on
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Naming and Binding of Objects [Sal78]. Secondly, Decoding Net for-
mally defines the semantics of the address space model in Isabelle/HOL.
This model enables reasoning about the increasingly complex process of
memory address resolution and translation in modern systems.

The Decoding Net model is capable of expressing the complex memory
subsystems of desktop computers, rack-scale systems, phone SoCs or ex-
perimental hardware. This provides the foundation of a semantically rich
system description, capable of faithfully representing the memory topology
of heterogeneous platforms. The concrete syntax of the model together
with the presented algorithms form the basis for system software imple-
mentations. Examples include the Sockeye description language [Bar17b;
Sch17] which implements a syntax similar to the presented concrete syntax.
The Sockeye compiler translates system descriptions into a Prolog repre-
sentation which implements the core model and transformation algorithms
providing a way to query the model during compilation and runtime of the
operating system (Section 6.3).

Section 4.6 of this chapter presented a detailed, operational model of
the MIPS R4600 TLB as an instance of a complex memory translation
hardware. The model precisely defines the state of the TLB, its invariants
and update operations. The proofs presented in this chapter show that the
operational TLB model refines the abstract Decoding Net. Moreover, there
is an equivalence between the combination of a TLB, a page-table structure
and a refill handler and an hypothetical, large TLB holding all page-table
entries. This equivalence is verified using the model sin Isabelle/HOL.

As a side-benefit of the modeling effort, the specification bugs revealed in
this study clearly demonstrates the benefit of a rigorous formal model with
accompanying proofs of the hardware semantics.

The presented model effectively extends to virtual memory systems present
in today’s processors. The memory management unit effectively creates
a new, per-process address space with mapping regions. However, this
poses another question on whether virtual memory in its current form is
still a viable form for translation and protection [Ach+17a]. Moreover, the
virtual memory is not free and misses in the translation lookaside buffer are
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expensive [Bas+13]. This is, however, orthogonal to memory addressing
and out of the scope for this thesis.

At its current form, the model is able to express a static configuration of
the system encoding basic reachability of memory resources. However, not
all memory requests are equal: properties such as read, write, cacheable,
non-temporal stores etc. can result in different translation outcomes which
are not expressed in the current model. Moreover, the configuration is not
static, but rather re-configured at a regular basis. In the current form, the
model does not express the configuration space as well as the authority
needed to change the translation behavior. This is exactly what the next
chapter is about.
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The Decoding Net model presented in the previous chapter statically ex-
presses the memory decoding and address translation configuration of a
system. The formally specified model provides a sound basis with well-
defined semantics for reasoning about the memory address resolution. The
Decoding Net is a static representation of the system configuration at a
particular point in time. Hardware, on the other hand, is configurable: soft-
ware can alter the configuration by writing to particular registers or specific
in-memory data structures. Even the hardware components themselves can
change. Device discovery, hot-plugging [PCI13] add or remove hardware
components during the runtime of a system. Power constraints reduce the
number of devices that can operate simultaneously by temporarily shutting
off hardware [Esm+11].
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A machine is a configurable network of address spaces. This chapter
extends the static Decoding Net model with a notion of configurable
address spaces and authority. Two important questions regarding changing
the configuration of an address space are:

* What is the set of valid configurations of an address space?

* What is the required authority to change the configuration of an
address space?

The extension of configurable address spaces and authority then forms
the basis for managing memory resources and address-space configura-
tion within an operating system for modern, heterogeneous computing
platforms. Through systematic refinement and with the combination of
an executable specification, the dynamic Decoding Net model extension
provides the guidance of an implementation in operating systems.

5.1 Motivation

Recall, the physical memory abstractions highlighted in Chapter 3 and
their discrepancy with reality:

Operating systems, from production-quality to fully-verified kernels, use
a flat and array-like representation of the physical memory resource of
a machine. A single physical address space contains RAM and devices.
Physical addresses are similar to an offset into the array-like representation
and serve as a unique identifier for physical resources. All processor
cores and devices of a system have a uniform, homogeneous view of the
physical address space. Processes run in their own virtual address space
where a memory management unit translates virtual to physical addresses.
This translation unit is managed by an operating system. Often, this is a
monolithic kernel which manages all physical resources and configures all
translation units of the system.
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Network of Configurable Address Spaces Unfortunately, this view
of the world does not accurately represent the hardware configuration
which has diverged from, or has never been aligned with, the single-
address-space model. In fact, there is a mismatch between real hardware
and the assumptions made by software. This includes accounting for
the network of address spaces, multi-stage configurable translations, and
heterogeneous cores and devices with non-uniform views of the system
resources. The collection of cores and devices issue memory requests from
various locations within the address spaces network, reaching different
resources depending on the address space configuration and the path taken
through the decoding network. Many of the address spaces of a system
are configurable. System software is responsible for safe and correct
configuration.

Configuration Complexity System software needs to safely manage and
correctly program a wide variety of memory translation units and memory
resources of a system. This includes understanding of valid configurations
an address space can assume. This needs to hold for a variety of different
hardware components. For example, a translation unit may only be able to
translate naturally-aligned 4 KiB regions of memory, while another has a
16 GiB alignment requirement. Misconfiguration of such translation units
happens. For instance, misusing and wrongly programming the IOMMU
or System MMU [NVDI18; Mor+18; Mar+19; MMT16] or incomplete
setup of translation units [NVD13a] allow devices to access resources they
should not be able to. Moreover, reusing virtual memory [NVD17a], or
mismanagement of TLB flushes [NVD13c; NVD13b] can lead to unin-
tended memory accesses. Overall, about 30% of code committed to the
memory manager in Linux are bug fixes [HQS16].

Authority of Configuration Changes Securely managing the complete
set of hardware resources present in a system (e.g. mobile phone SoC or
accelerators) seems infeasible for mainstream operating systems in par-
ticular with respect to identifying the rights and authority in the system.
The operating system may know how to configure a particular translation
unit, but the used authority model, where a monolithic kernel has all
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the required rights to decide what memory to allocate, to whom grant
access to, and how to configure translation units, is another source of
security vulnerabilities. Examples include a “cross-SoC” attack on the
Snapdragon SoC [Gon19], bypassing IOMMU protection from GPU mal-
ware [Zhu+17], breaking through operating system isolation domains using
co-processors [SWS14], or allowing the processes to access and modify
their own page tables [Chel8]. A single entity in the system has too many
rights and is therefore capable to perform any operation.

Features like secure co-processors and system management engines present
on modern platforms do not integrate well with the concept of a centralized
authority over the memory subsystem. In particular the interaction between
processes, operating system, device drivers, and the secure execution en-
vironment (e.g. ARM TrustZone [ARMO09] or Intel System Management
Mode [Int19a]) has been a source of security vulnerabilities such as over-
writing memory by passing crafted pointers leading to arbitrary code
execution in ARM TrustZone [NVD19b; NVD19c], accessing memory
outside of the supplied memory region [NVD17¢c; NVD19d] and insuffi-
cient memory protection for the system management mode [NVD19a], or
not providing the right information to a secure co-processor to unambigu-
ously reference memory [NVD17b].

Summary In summary, a modern platform consists of multiple, config-
urable address spaces which system software needs to correctly manage.
Each of these configurable address spaces has certain constraints on how
they can be configured. Lastly, each configuration change requires a certain
authority. Misconfiguration and missing authority checks have led and still
are leading to numerous security bugs in system software.

The work presented in this chapter has therefore two objectives:
1. represent the configuration of an address space, and
2. express the required authority to change it.

The chapter extends the static Decoding Net defined in the previous Chap-
ter 4 with a notion of least-privilege authorization, protection and config-
uration which captures the richness, complexity, and diversity of modern
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hardware platforms. Following the methodology outlined in Section 5.3,
this chapter defines the semantics of configurable address spaces and a
least-privilege model of access control in three steps:

1. Express the configuration space and the dynamic behavior of a
Decoding Net node (Section 5.4).

2. Identify and specify the required authority for changing the config-
uration of an address space (Section 5.5).

3. Develop an executable specification [Hos19] of the model extension
(Section 5.6).

This then forms the basis for an implementation in an operating system,
which is presented in Chapter 6.

5.2 Bookkeeping and Access Control

Shared-memory programming is important as it obliterates the need to
copy, update and maintain consistency of data structures, allowing differ-
ent threads to directly dereference a pointer to access the data structure.
However, the name used by the thread (i.e. the virtual address) is only
valid local to its virtual address space: the address may be different for
two processes as a virtual address. This makes the use of pointer-rich data
structures impractical. Moreover, sharing is hard to support as memory
mappings need to be updated which requires to unambiguously name the
shared resource and implement proper access control and bookkeeping
mechanisms.

Address translation, virtual memory [Den70] and virtualization [PG74] in
general, are a fundamental building blocks providing isolation and protec-
tion between multiple tenants in a system. In addition, the virtual memory
abstraction enables the implementation of demand paging, machine vir-
tualization, shared memory and libraries, and other functionality. This
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provides the process, or, in the case of virtual machines, even the operating
system, the illusion of being the only entity running on a shared system.

A process has only access to resources that the operating system has mapped
into the address space of the process. Similarly, a guest operating system
has only access to resources the hypervisor has mapped into the guest
physical address space. Two threads of the same process can use the same
virtual addresses as pointers to data structures. For example, a dispatcher
thread can simply pass the pointer to the received request to the worker
thread. In this model, the two threads share the same virtual address space
and hence run in the same protection domain. Using multiple processes,
it is not sufficient to send a pointer over an inter-process communication
channel. The sender must explicitly grant access to the resource through
mechanisms provided by the operating system, e.g. files or shared memory
objects. Recall an address is a name which is only valid relative to its
specific context. Furthermore, the operating system may decide to map
the resources at a different address making pointer sharing impracticable.
To avoid serialization, SpaceJMP [El +16] provides a mechanism similar
to a protected procedure call to context switch into another address space.
Single address space operating systems Section 3.3.2 run all applications
in one global virtual address space, which makes pointer sharing between
applications trivially possible.

In contrast, CleanQ [Hae+19] sends descriptors with offsets and lengths
into preregistered memory regions. VirtlO [OAS18] defines the trans-
mitted pointers to be guest physical addresses. Runtime libraries such as
OpenCL [Khr18], nVidia’s CUDA [NVI13] or HSA [HSA16; HSA14]
try to establish the illusion of a shared-virtual address space between
programs and devices by using the processor MMU and the IOMMU
and demand paging mechanisms to copy data between host and device
memory [VMB15].

The concept of shared access to memory resources is important, and often
required for efficient communication (e.g. zero copy transfer of bulk data).
The operating system needs to ensure correct operation, in particular
enforcing authority by maintaining suitable access control measures for
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establishing shared memory objects, correctly enable shared access to
the same resource, passing pointers between user-level processes and the
operating system kernel, and switching between different address spaces.
This requires the existence an unambiguous handle to the physical resources
of a system. This is similar to what single address space operating systems
and single level stores provide to applications, but with taking multi-stage
address translation, and different views of memory into account. Operating
system kernels use physical addresses to identify resources for bookkeeping
and access control, which is problematic (Chapter 2).

The Linux kernel, for instance, maintains a data structure (struct page)
for each physical frame of 4 KiB, identified by its physical address. This
data structure serves as a unit of bookkeeping and contains necessary
information about the use of that memory region. A shared memory object
then corresponds to a collection of those physical frames, and an access
control list that specifies which users or groups can obtain access to the
shared memory object. A process requests a mapping into its address space
from the kernel.

In contrast, Barrelfish [Bau+09a; Gerl8] and selL4 [EKEO0S; Kle+09]
use a capability system [DV66; Lev84] to represent and manage physical
memory regions and their corresponding access rights. Processes can
transfer the capability between each other and then map it in their own
address space by presenting the capability as a token of authority to the
kernel. However, the kernel still needs to resolve the object name correctly
before using the object, and name resolution may fail.

In both cases, the task of the operating system kernel is to enforce authority
by refusing any requests for which the process has not sufficient rights. In
capability-based systems, the process invokes an operation on a capability
which represents all the authority needed for the operation. In contrast, the
Linux kernel validates the request arguments with the access control list
and uses the authority it has to execute the requested operation on behalf
of the process.

All of these access control and bookkeeping mechanisms must work cor-
rectly in the presence of complex, configurable address space topologies.
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Recall the examples from Chapter 2: the Intel Xeon Phi co-processor
[Int14b] uses a “system memory page table” to access host resources. The
other direction, the programmable PCI bridges map addresses in the PCI
address space to device registers or apertures. Intel’s Single Chip Cloud
Computer [Int10b] translates a core-local, 32-bit physical address to a
46-bit “system address” based on the configuration of a 256-entry lookup
table (LUT). Secondary physical address translation is commonly used
in phone SoC like the NXP iMX8 [NXP19], Texas Instruments OMAP
4460 [Tex14], and NVIDIA Parker [NVI17] processors. The use of sep-
arate processors, overlapping and intersecting address spaces, firewalls
and secondary address translation schemes are a deliberate design choice:
secure co-processors holding encryption keys, for instance, are shielded
from the main application processors.

Wrongly configured firewalls and IOMMUs result in bugs and vulner-
abilities due to failure to provide protection from malicious memory
accesses [Mor+16; Mor+18; MMT16; Mar+19]. This is likely to be-
come worse by integrating IOMMU designs into GPUs, co-processors,
and intelligent NICs (e.g. [Mel17]). Consequently, the overall complexity
of software increases making it harder to write correct software, espe-
cially without sound and well-defined representation of the hardware and
authority model.

Emerging technologies and algorithms for “in-memory” or “near-data”
processing [Pat+97] raise further questions for usable operating systems
abstractions and mechanisms for resource management and authoriza-
tion [Bar+17]. This likely increases the complexity of software which in
turn becomes more prone to errors.

5.3 Methodology

The Decoding Net model presented in Chapter 4 provides a sound foun-
dation for expressing memory address decoding in a system. Recall, the
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| Static Decoding Net Model ‘

!

| Abstract Dynamic Model ‘

y

| Executable Specification ‘

!

| Operating System Implementation ‘

Figure 5.1: Illustration of the Refinement Steps.

Decoding Net captures a static configuration. Consequently, the following
two important features are not defined in the Decoding Net model:

1. Dynamic configuration of the translate function of the Decoding
Net nodes. This is important to capture the reconfiguration of real
translation units.

2. The rights and authority which are required for software processes
to change the configuration of the translate function.

Note, Section 4.6 presented a refinement of the Decoding Net model to
the MIPS R4600 TLB model. This included the semantics of updating
a TLB entry with respect to the configuration of the Decoding Net node.
The MIPS R4600 TLB model does not express the possible configuration
space and the authority to change a TLB entry, which is what this chapter
is about.

The methodology applied in this chapter is strongly influenced by the seL4
project which combined the principle of refinement with the development of
an executable specification (Figure 5.1). This allows for rapid prototyping
of the model using real operations. The choice of applying a proven
methodology is deliberate: it provides confidence that the resulting artifact
is likely to be compatible with an seL4-style verification proof. Moreover, it
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could be used as a more accurate and faithful replacement for the hardware
abstraction model used in the se[.4 and CertiKOS proofs.

1. Abstract Dynamic Model This refinement step introduces an abstract
dynamic model on top of the Decoding Net model. This includes defining
the dynamic state (Section 5.4) and the associated rights and authority
to perform state transitions (Section 5.5). Specifying rights in a system
requires the identification of all relevant objects, subjects present in the
system, and which authority each subject can exercise over an object. For
example, a pager process maps a frame to a virtual address by writing an
entry into a page table. An access-control matrix [Lam74] is the standard
representation of authority in systems [Lam74]. It expresses the relation-
ships between subjects (rows), objects (columns) and the corresponding
authorities (cells) a subject S; has ob object O; in cell M[i][j]. The access
control matrix represents the high-level security policy or the system’s
integrity (Section 5.5). A correct implementation of a system must adhere
to this integrity policy which requires a refinement proof all the way down
to the executable binaries (as done in seL.4 [Sew+11]).

2. Executable Specification Following the methodology applied in the
selL4 verification project [CKSO08], an executable specification of the
model [Hos19] bridges the gap between the abstract dynamic model and
the operating system implementation. The executable specification serves
as a tool to express the behavior of state transitions and dynamic recon-
figuration of the model extension. The executable specification expresses
the identified subjects, objects and authority as first-class objects in the
Haskell functional programming language. This in turn enables rapid
prototyping while enforcing strong formal semantics amenable for formal
verification at the same time. Note, the correspondence between abstract
and executable models is thus far by inspection and careful construction.
A rigorous formal proof is part of future work of this thesis.

3. Operating System Implementation The executable specification

then serves as a guideline in the development of high-performance system
software implementations. Chapter 6 describes a particular implemen-
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tation based on an extension of the Barrelfish research operating sys-
tem [Bau+09a] which is then evaluated in Chapter 7. This step follows
the precedent set by Winwood et al. [Win+09] showing that the abstract
model can be implemented efficiently in a real system.

5.4 Expressing Dynamic Behavior

The Decoding Net model represents a static snapshot of the current system
state. In reality, the system state is inherently dynamic: System software
constantly changes the configuration of MMUs, and other translation and
protection units in response to requests from applications. This section
introduces the notion of configurable address spaces as a layer on top of
the static Decoding Net model.

In principle, it would be possible to extend the Decoding Net with the
notion of dynamic behavior directly. This, however, would trigger a
ripple effect resulting in the adaption and re-verification of many existing
proofs. Instead, the model extension adds an abstraction layer on fop of
the Decoding Net model. This abstraction layer expresses configuration
state as a set of dynamic address spaces.

Each of these address spaces corresponds to a static node in the Decoding
Net. The configuration function

configuration :: address space — node

assigns to each address space a static Decoding Net node which corresponds
to the current, active configuration. This function effectively encodes the
state of the address spaces and lifts the address space model to the Decoding
Net model.

The Configuration Space Conceptually, an address space can have a
fixed or configurable translation function, or a set of physical resources
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such as memory or device registers. A Decoding Net node is able to capture
all of this, except the dynamic aspects.

Whenever the translation behavior of an address space changes, the current
configuration state transitions, and with it the Decoding Net node of that
address space. In principle, this also applies in response to a change in the
availability of physical resources. In general, hardware imposes constraints
on valid translation settings or the availability of physical resources. For
example, a page-table translating at 4 KiB granularity would only allow
contiguous, naturally aligned mappings of 4 KiB in size, and likewise a
DRAM module accepts exactly 64 GiB worth of addresses.

Each address space therefore has a well-defined configuration space listing
all possible, hardware-supported configurations the address space may
assume. The config_space function

config_space :: address space — {node}

defines the configuration space of an address space as a set of static
Decoding Net nodes. The configuration of the system is valid, if for all
address spaces the configuration is within the configuration space (Invariant
I5.1).

Invariant I5.1 (Valid Configuration)

VYa. configuration a € config_space a.

The configuration space, therefore, expresses the possible system states
which in turn may be further reduced to the set of allowable system states
that adhere to a specified security property, e.g. the state of the access
control matrix (Section 5.5).
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State Transitions Changing the mapping behavior of an address space
then corresponds to a state transition from the current configuration C,, to
the next C,,+1. An example for this state transition operation is Modi fyMap,
which changes the translation function of an address space:

ModifyMap :: (name — name) — configuration — configuration

In this case, Modi fyMap updates the current configuration of the system state
by changing where a name maps to as defined by the first argument, and
returns a new configuration.

Note, there is no distinction between map and unmap, these are both
handled by the Modi fyMap operation. Conceptually, unmapping is expressed
by modifying the mapping to point to the null space, which invalidates any
existing translation at that name.

Any update to the configuration that starts as valid, must remain valid
(Equation 5.1). For example, all translating blocks of addresses must be
naturally aligned.

assumes ConfigValid G, 5.1)
shows ConfigValid (ModifyMap (a — a’) c,). ’

5.5 Authority

Recent vulnerabilities in the wireless stack of the Qualcomm SnapDragon
835 and 845 chips [NVD19e; NVDI19f; NVD19¢] allowed the WiFi co-
processor to request arbitrary sized regions to be mapped in the System
MMU [Gon19]. This results in the wireless stack gaining access to any
system memory region and possibly transmitting sensitive data from the
mobile phone. This is by far not an isolated instance [Mar+19; MMT16;
Mor+16]. The Snapdragon example illustrates two things:
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1. There is an authority that can change the view of an address space.

2. The WiFi co-processor succeeded in getting access to memory it
should not be able to.

In this case, the Linux kernel trusted the mapping request coming from the
wireless stack and performed the operation. This scenario is an instance
of the confused-deputy problem [Har88].

Identification of Objects and Rights To analyze what went wrong in the
SnapDragon example, consider Figure 5.2 showing a simplified setup with
three address spaces. This scenario is common for a virtual machine setup
with a two-stage translation scheme. It serves as a basis for investigating
the involved rights to change the configuration of an address space.

Assume, a hypervisor managing the intermediate address space (or guest
physical address space in Intel terminology) wants to update its configura-
tion by mapping a region of the physical address space into the intermediate
address space. This corresponds to making the region in the physical ad-
dress space accessible from the intermediate address space.

Applying this change requires certain rights: First, the map right expresses
the right to change the meaning of an address in the intermediate address
space, i.e. update where this address maps to. Second, the grant right
expresses the right to grant access to some region in the physical address
space i.e. installing a mapping that points to this region or a subset thereof.

Right R1 (Grant)

The right to insert this object into some address space

Right R2 (Map)

The right to insert some object into this address space

Observing this scenario, there are two objects involved in this scenario:
i) a part of the physical address space which should be mapped into the

166



5.5 Authority

Virtual Address Space

Intermediate Address Space

Physical Address Space

Figure 5.2: Mappings Between Address Spaces Showing Grant and Map
Rights of Mapped Segments.

intermediate address space, and ii) a region of the intermediate address
space for which its mapping configuration is to be changed.

Note, this extends to all address spaces. Forinstance, as shown in Figure 5.2,
the virtual address space of a process can be interpreted as an address space
for which nobody has a grant right. Likewise, nobody has the map right to
a physical address space containing memory resources.

Real-World Example Figure 5.3 illustrates the simplified address space
structure a real-world example. The system consists of a host processor,
some RAM and two PCI Express devices, a network card with a DMA
engine and a Xeon Phi co-processor. The co-processor uses its many cores
for handling network traffic it receives on various queues (1). This requires
a shared mapping of a receive-buffer between the co-processor cores and
the DMA engine of the network card. This buffer is allocated in the GDDR
memory of the co-processor (2).

The receiver process ‘owns’ the buffer in GDDR and it can control the
network card’s send and receive queues. Consequently, the receiver process
has the right to temporarily grant the network card’s DMA core access
to the buffer. However, it does not have the right to modify the IOMMU
(4) address space that translates memory accesses originating from the
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Figure 5.3: Address Spaces in a System with Two PCI Devices

DMA core (3). This is in line with the security specification: a general
user-space process should not be allowed to change a translation. The
receiving process does not possess the required map right.

To install this mapping in the IOMMU address space, there must be an
agent (or subject in standard authority-control terminology) which possess
both, the grant right on the buffer object in the GDDR and the map right
of the IOMMU address space object.

The Access Control Matrix To perform the map operation of the exam-
ple above, system software needs to represent those rights. The access con-
trol matrix is the standard representation of authority in systems [Lam74].
It lists the subjects (rows) and objects (columns) in the system and states
the rights a subject S; has ob object O; in cell M[i][j].

Building the access control matrix requires therefore the identification
of subjects, objects and authorities of a system to populate the rows and
columns of the matrix. This process follows the principle of least-privilege
and fine-grained decomposition.
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subject/object DMA IOMMU  buffer

IOMMU driver map

Xeon Phi process grant

Table 5.1: Access Control Matrix of the Xeon Phi Example.

Table 5.1 illustrates the access control matrix of the real-world example
above. There are two subjects: the IOMMU driver which manages the
configuration of the IOMMU, and the process running on the Xeon Phi
co-processor which owns the receive-buffer.

The access control matrix can grow large, which many empty cells and
thus implementing the full access control matrix is impractical [Lam74].
The table can be projected in two ways:

* Row-order: This represents the capabilities each subject has. In the
example, the IOMMU driver has the map capability to the IOMMU
address space, and the receiving process has the grant capability to
the buffer.

* Column-order: This represents the access-control lists of the objects.
The IOMMU allows mapping requests from the IOMMU driver,
and the buffer records a grant permission for the process.

In monolithic system software architectures, the two rights (map and grant)
are implicitly held by the kernel. Processes make requests which prompt the
kernel to exercise those rights on behalf of the subjects. The kernel needs
to validate the request and maintain accurate bookkeeping to conclude
the action is safe to execute (which was not the case in the Snapdragon
example). Access-control lists (ACLs) are typically used for this matter,
where the ACL of an object lists the rights subjects have on it.
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In microkernel-based systems, many system services such as memory
manager, pager, or device drivers run in dedicated user-level processes,
which need the rights to the relevant resources in order to provide a
useful service (e.g. device registers) and address spaces (e.g. the IOMMU
configuration). At the same time, the set of rights should be minimal e.g. a
device driver must not interfere with the hardware registers of an unrelated
device. In other words, the principle of least privilege strongly influences
the design of system services. Capabilities are a natural way to express
authorization in this context.

From an access control perspective, there is a duality between the two
forms. However, they are not strictly equivalent. The obvious difference
lies in the way they are implemented. Moreover, access control lists do
not permit strict implementation of least privilege and are vulnerable to
confused deputy problem [Har88].

Security Property The access control matrix above is the used to define
the correct (and secure) state of a system. If the system’s current configura-
tion is consistent with the access control matrix, then it is correct (secure)
statically — or in a secure state for short.

Likewise, the system is dynamically secure if it is in a secure state and for
any possible state transition (i.e. change of the translation behavior of an
address space), the system remains in a secure state.

Transfer of Rights The security property reduces the configuration
space of the address spaces. Only state transitions that do not violated the
security properties are permissible. In other words, without the needed
rights there is no change in configuration as the target configuration does
not exist in the configuration space. The IOMMU address space of the
example has precisely one Decoding Net node in it, corresponding to the
current state. By transferring the grant right from the Xeon Phi process to
the IOMMU driver, the secure state of the system is updated, which alters
the configuration space of the DMA IOMMU address space accordingly.
Therefore, the IOMMU driver now has the needed rights to perform the
mapping and the state transition remains valid. Similarly, revoking a right
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removes it from a cell in the access control matrix which also removes the
possible transition of the configuration.

5.6 Executable Specification

The previous section describes the extension to the Decoding Net model
which adds semantics and authority of dynamic address spaces in the
form of an access-control matrix and configuration spaces. This extension
specifies the system’s correctness property and the resulting, valid config-
urations an address space may assume. A direct implementation of the
abstract model in an operating system is impractical, as it does not specify
the concrete interactions of user-level processes with the operating system
kernel and the concrete kernel state.

Recall, the operating system implementation is a refinement of the abstract
model where, for example, the access control matrix is implemented
as capabilities or access control lists. Applications then invoke a well-
defined API to perform memory allocation and address space configuration
operations which trigger state transitions. The specification of the API
with its operations and their semantics is another refinement step which
bridges the gap [CKSO08] between the abstract model and the operational
implementation (Chapter 6).

The approach taken follows the example of the seL.4 verification project,
which used such an executable specification [Der+06] to prototype the
kernel prior to the implementation in C. Defining the relevant operations
and their semantics is critical for the usability in the operating system.

This section describes the co-developed executable specification by Nora
Hossle [Hos19] aiding rapid prototyping of the operational model and its
implementation in parallel, defining its API and the model state. Moreover,
it serves as an intermediate step in the refinement process from the abstract,
access-control matrix representation, to the operating system implementa-
tion. The executable specification is a Haskell program which implements
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a reference monitor [And72]. Functional languages like Haskell are well-
suited as they require specifying a state monad explicitly and how a function
modifies it.

The target implementation of the reference monitor is not limited to an
operating system kernel, trusted user-level processes (e.g. a pager process)
acting as a reference monitor are also a possibility. This thesis, however,
focuses on the operating system kernels of Linux and Barrelfish as target
environments. Therefore, the naming scheme of the reference monitor’s
operations and data structures are suggestive of an operating system kernel.

This section describes the refinement steps from the abstract model using
the definitions of the executable specification [Hos19].

5.6.1 Typed Memory Objects

The contents of in-memory data structures such as page tables or device
registers (e.g. Xeon Phi system memory page table or segmentation reg-
isters) define the behavior of translation units. Software changes how an
address is translated by writing the corresponding bit patterns in a particu-
lar page-table entry, or device registers. Therefore, the contents of specific
regions of memory or device registers define the translation state of the
system and ultimately what resources a process can access.

Consequently, unprivileged user-level processes must not be able to change
the translation configuration of an address space just by issuing a memory
write to a device register, or a DRAM region holding a page table, for
instance. However, the process should be able to write to memory regions
and device registers that are not used to configure an address space. This
implies that not all memory objects (e.g. DRAM regions or device registers)
are equal.

To express this in the model, it is necessary to distinguish between objects
of different types: unprivileged user-space processes can request a mapping
of a normal memory object into its address space. However, the reference
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monitor must refuse any request to map a translation structure object into
the address space of an unprivileged, user-space process. Memory objects
therefore have a specific type which defines whether they are mappable or
unmappable. This makes translation structures explicitly visible.

It is important to write down the necessary integrity condition of the
reference monitor using the distinction of object types as Invariant 15.2.

Invariant I5.2 (Never Accessible)

Subjects can never access unmappable objects.

To summarize up to here, regions of memory or device registers are memory
objects with a well-defined type which defines whether it is mappable or
unmappable. In particular, unmappable objects are never accessible from
anyone else than the reference monitor itself.

Object Representation The physical memory resources of an address
space are represented as a set of objects with a certain type. An object is
a set of names, in this case all names starting from a base up to a given
size. The representation in the operating system is implementation defined.
Listing 5.1 shows the data type definition of some objects in the Haskell
executable model. The following list gives an explanation of the types and
their usage.

* RAM. Untyped (physical) memory object. Not mappable.

 Translation Structure. Memory object defining the translation of
an address space. Not mappable.

* Frame. Mappable (physical) memory object.
* Device Frame. Mappable device registers.

» Segment. Mappable segment of a configurable address space.
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Listing 5.1: Object representation in the executable specification

data Object

= RAM {base :: Name, size :: Natural}
| Frame {base :: Name, size :: Natural}
| DeviceFrame {base :: Name, size :: Natural}
| Segment {base :: Name, size :: Natural}
| TranslationStructure {base :: Name,
size :: Natural}
RAM } retype =|| Frame |
untyped objects
AddressSpaceOf | ; 1 N
1 Translation Structure 1€ > Segment |
GGl unmappable objects mappable objects
Address Space retype

Figure 5.4: Object Type Hierarchy Indicating Possible Retypes.

Note, the details of the translation structure objects are deliberately kept
opaque in this representation. In comparison, the seL4 executable speci-
fication modeled page tables explicitly. Keeping the translation structure
opaque enables reasoning about their effect on the configuration of an
address space without imposing restrictions on their form. Modeling
hardware defined page tables is another refinement step.

Object Type Conversion Object derivation explicitly converts an object
of a type T into an object of type T». This is also known as retyping. Object
derivation is not arbitrary: There exist strict rules on how and when objects
can be derived from each other. This is important as an unmappable object
must never be retyped into a mappable object. The object type-hierarchy
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(Figure 5.4) strictly defines the valid object derivations using the retype
operation. For example, a Frame object can be derived from a RAM object,
which is considered a special case of untyped objects. The next section
discusses the special case involving the configurable address space.

Expressing Authority In the abstract model, subject have specific rights
over the objects. The executable specification expresses this as explicit
authority on a specific object (Listing 5.2).

Listing 5.2: Authority in the executable specification

data Authority = Access Object
| Map Object
| Grant Authority

5.6.2 Address Spaces

The translation structures define how an address space translates addresses.
In other words, they span an address space. For example, the system
memory page table of the Xeon Phi co-processor spans the address space
controlling the translation from the Xeon Phi to the PCI Express (or
IOMMU address space). Translation structures, therefore, define a set of
implementation-defined address spaces in the system. The AddressSpace0f
function makes this explicit.

AddressSpaceOf :: TranslationStructure -> AddressSpace

To program multi-stage translations, a subject can derive a segment from
the address space and use that to create a mapping in an upstream address
space. Note, when the translation structure object vanishes (e.g. through
deletion or revocation [Gerl8]), the derived address spaces and segments
must also disappear.
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5.6.3 Kernel State and API

The kernel (or reference monitor) state implements the refined model state
consisting of a representation of the access control matrix which includes
the subjects, objects and the corresponding authorities. Moreover, it also
keeps track of the address spaces of a system. Listing 5.3 shows the
encoding in the executable specification. The kernel state corresponds to
an instance of the static Decoding Net model.

Listing 5.3: Expressing the Model State

data KernelState
= KernelState (Set Dispatcher) MDB (Set AddrSpace)
| InvalidState

The kernel state can assume two conditions: it is either valid if it adheres
to the model invariants, or it is invalid if there is a consistency or invariant
violation (Invalidstate). In the latter case, no statement about the effect of
state transition can be made.

The valid state consists of three parts:

1. Subjects. The subjects in the system are represented as a set of
dispatchers (a term borrowed from Barrelfish), each having a certain
set of rights on objects and an address space they execute in.

2. Mapping Database. The mapping database (MDB) records the
derivation of objects and keeps track of installed mappings them.

3. Address Spaces. Represents the set of active address spaces in the
system.

Similar to the sel.4 executable specification, subjects invoke the reference
monitor through invocations of a well-defined API. The kernel state is
encapsulated as a state monad (Listing 5.4) explicitly exposing operations
on the state.
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Listing 5.4: Operations on the Reference Monitor API

data Operation a = Operation (State -> (a, State))
instance Monad (Operation) where

Any change to the system state corresponds to a sequence of low-level API
calls. For example, calling the high-level function mmap corresponds to a
retype operation on a RAM object to obtain a Frame object which is then
map’ed into a translation structure object.

The kernel state can be updated with operations such as, but not limited to:

* retype converts an existing object into an object of a permissible
subtype.

* map installs a mapping in a translation structure.

* copy copies the rights from one subject to another.

An attempt to perform an operation that would leave the kernel state
inconsistent (e.g. not sufficient rights, invalid retype, etc) sets the kernel
state to the invalid representation.

5.6.4 Validating Traces

A sequence of API calls is referred to as a trace. This corresponds
to a sequence of observed kernel states, each of which defines a static
configuration of the Decoding Net model. As stated above, not all kernel
states are valid with respect to the access control matrix. For example, a
subject may try to map a translation structure or perform an invalid retype.
Thus, there is a set of correct traces CT within the set of possible traces T

CTCcT

A correct trace is a sequence of valid and consistent kernel states that adhere
to the abstract access control matrix and thus satisfy the invariant. In the
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case an operation violates integrity constraints, the kernel state transitions
to the invalid state aborting the execution.

This enables modeling and validating high-level functions performed by
the subjects (user-level applications) running on the operating system
kernel. The mmap example above corresponds to the example trace shown
in Listing 5.5.

Listing 5.5: Operations on the Reference Monitor API

mappingTrace :: (Operation KernelState)
mappingTrace = do

-- retype a RAM object to a Frame

res <- retype RAM Disp Frame Disp

-- retype another RAM object to a translation
structure

res <- retype RAM2 Disp TStructure Disp

-- map the frame into the translation structure

mappingl <- Model.map TStructure Frame Disp

5.7 Conclusion

This chapter presented an extension of the Decoding Net model, intro-
ducing dynamic updates to address spaces and the authority to change
the configuration of an address space. The development of this extension
follows the same, proven methodology used in the seL.4 project to produce
a rigorous model of memory management with explicit address spaces.

The authorization model applies well-known access control concepts,
which define an abstract model that is amenable to implementations in
both, capability-based systems (e.g. Barrelfish), as well as ACL-based sys-
tems such as Linux. The model refinement together with the co-developed
executable specification [Hos19] then provides guidance for an operating
systems implementation. This is the topic of the next chapter.
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Operating System Support for
Dynamic Decoding Nets

The previous Chapter 5 describes the extension of the Decoding Net model
which supports dynamic updates, including the authority required to change
the configuration of an address space. This chapter uses the co-developed
executable specification [Hos19] as a guide to drive the implementation in
an operating system.

1. Section 6.1 describes general considerations for an implementation
of the model.

2. Section 6.2 outlines a proposal of a possible implementation in
a monolithic system by describing how Linux might be extended
with a subset of the model, foregoing most of the least-privilege
principle.
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3. Section 6.3 describes a fully functional implementation of the
model’s executable specification in the Barrelfish research oper-
ating system as an example of a microkernel-based system. The
implementation targets 64-bit x86 and ARMvS platforms.

6.1 General Implementation Considerations

An efficient implementation of the address-space model is not tied to a par-
ticular hardware and software architecture. The relevant abstractions and
mechanisms can be implemented in micro-kernels and monolithic-kernel
operating systems. This section outlines the abstractions and mechanism
needed to enable an efficient implementation in system software.

The address-space model describes the concepts of “cores”, address spaces
with local and translating regions, configuration spaces and authority.
Those concepts need to be reflected in an implementation. This includes:

1. making the address space a first-class operating system abstraction
of the memory-management subsystem,

2. managing physical resources of a machine using the local resource
abstraction of the address space,

3. expressing and managing the address space configuration, including
the required authority, and

4. being aware of “cores’ having distinct views of the system resources.

6.1.1 Explicit Address Spaces

Address spaces are no longer an implicit construct tied to a process. They
are explicitly a first-class abstraction in system software. This is similar to
SpaceJMP [El +16] where applications can create multiple virtual address
spaces and switch between them. For instance, instead of serializing a
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pointer-rich data structure in a response to a request, a service can create
and populate a new address space and pass it as a response to the client
providing similar benefits to a single-level store [Kil+62].

In the context of this thesis, the technique presented in SpaceJMP is not
limited to purely virtual address spaces. A similar approach can be used
when running on different processors with distinct views of the system. In
this scenario, the page tables created for one processor cannot be used on
another. For instance, during different execution phases the application
can request a migration to a processor which is closer to where its data
resides, or which offers particular hardware features. This requires setting
up the virtual address space correctly and selecting the right one on this
core. In some sense, the virtual address space is valid for a particular core,
or set of cores. This is effectively a “replication” of the translation behavior
on different processors, in contrast to a data-structure replication (Mitosis
replicates page tables on different NUMA nodes [Ach+19b]).

In addition, the topology of the address spaces must be efficiently encoded
similarly to today’s use of the NUMA topology, which is used in memory
allocation policies.

6.1.2 Physical Resource Management

The management of physical resources, and memory in particular, is one
of the core tasks in operating systems. Applications request memory
from the operating system, which tries to satisfy the request by allocating
some memory based on some allocation policy, and in the end updating
the relevant bookkeeping entries to keep track on which applications use
memory resources. Operating systems typically manage memory using
contiguous regions which may have a fixed size (e.g. 4KiB pages in Linux
or CertiKOS [Gu+16]), or are variable sized (e.g. memory descriptors
or capabilities [Lev84; Har85; SSF99; Kle+09; Ger18]). This matches
naturally the regions of the address space model of Chapter 4.

Recall that certain regions may not be reachable from all processors or de-
vices. Therefore, it is necessary to request memory from a specific address
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space. To some extent, this is similar to NUMA-aware memory alloca-
tors (e.g. Linux’ NUMA library (1ibbnuma) [Kle08]) where applications
can request memory from a specific NUMA node, zone-based allocators
supporting heterogeneous memory management [Lin19c], or Barrelfish’s
memory server which supports allocations from a specific address range.
While those mechanisms and APIs offer applications to request memory
with certain properties, but those do not include address space identifiers
to request the allocation of memory from a specific address space.

Having address space aware memory allocators, requires that the data
structures used for bookkeeping include information about the address
space to such a resource belongs. Recall Invariant 4.1, which states that
each physical resource is local in exactly one address space. Therefore, it
is sufficient to tag the data structures (e.g. Linux’s struct page, memory
descriptors or capabilities) with an address space identifier, e.g. an integer.

6.1.3 Managing Address Translation

Changing the configuration of an address translation unit is equivalent to
altering the referent where the region is mapped onto. To map a non-local
region into an address space, the destination referent must be resolved first.
This involves querying a representation of the address space topology and
converting the global name of the resource to a local address within the
address space. There are three possible outcomes of the resolution process
for a non-location region:

1. Static translation: Address resolution is fixed and pre-defined by the
hardware. A non-local region can therefore always be translated to
the corresponding region in the local address space using the static
translation function. This function can be pre-generated based on
the address space topology information of the target platform. Note,
the identity function serves as special case, effectively overlaying
one address space onto another, e.g. the core-local address space
mostly overlays the system-wide address space, or a memory address
is expanded from 32-bits to 64-bits.
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2. Dynamic translation: Address resolution is dynamic and defined
by hardware registers or in-memory translation structures, such as
page tables. In this case, the resolution process needs to consult
the actual state of the translation hardware. If there is currently no
corresponding translation set up, the resolution process can indicate
an error, or program it accordingly. Exhausting the translation
resources (e.g. the 32 entries of the Xeon Phi system memory page
table) renders the translation of that region impossible.

3. Impossible translation: Address resolution and derivation of a local
address is not feasible because there is no direct path from the core
to the destination resource, e.g. a hop over a network link. Note that
holding a capability (or a descriptor to a memory mapped file) to this
region is still useful: this allows authorization for, and decentralized
allocation of, remote buffer memory, for example.

The dynamic case is the most complex as it needs hardware programming,
which in turn requires access to memory regions, either physical memory or
device registers, which are potentially a non-local region again. Translation
resources (e.g. entries in a table, or device registers defining the translation)
are yet another instance of scarce resources. Moreover, a single change in
an address space’s translation configuration may trigger many other related
changes to make a region accessible. For instance, setting up subsequent
translations in a multi-stage translation scheme, or unmapping the region
in other address spaces because its mapping has changed and now refers
to a different resource. Consequently, a region may actually be reachable
by setting up a dynamic translation. However, the local core may not be
able to change the translation itself. For instance, a device cannot change
its own IOMMU translation.

In the worst case, resolving the remote region in the local address space
requires knowledge of the memory subsystem topology of the entire ma-
chine. In addition, where the translation structures are not reachable from
the local core, requests need to be sent to the cores that can manage the
translation configuration and poke the translation hardware of the corre-
sponding address spaces. A possible way to reduce the overhead is to cache
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parts of the translations locally for future resolution steps, at the cost of
maintaining an invalidation protocol similar to TLB shoot-downs in which
the operating system notifies the cores, which may have cached the page
table entry in their TLB, to invalidate the corresponding TLB entry.

Reclaiming previously allocated memory, the operating system must en-
sure that this memory is no-longer used anywhere. This is important
and in turn requires finding all references to that resource. Linux, for
instance, maintains a reverse mapping data structure to find where the
page has been mapped, whereas Barrelfish uses the capability system for
this purpose. When using capabilities, all derived capabilities for that
region must be invalidated, a process called revocation [Ger18; EDEQ7;
EKEO08]. The revocation process for static or in-accessible translations is
straight-forward. In the case of dynamic translations, the corresponding
translation configuration needs to be updated to reflect the new state after
the revocation operation has completed.

6.1.4 Address Space Aware Cores

Each core in the system must be aware of the local address space it resides in.
This is important when configuring translation units and allocating memory.
Monolithic system software typically supports core-local data structures,
virtual machines have the concept of vCPUs, and Barrelfish’s Multikernel
architecture runs an independent cpudriver per core. Information about
the local address space including pre-processed topology information for
fast address lookups can be added to those data structures.
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6.2 Proposal of a Possible Implementation in a
Monolithic Kernel

An implementation in a monolithic kernel centralizes authority in the kernel
and therefore an implementation could not take advantage of fine-grained
privilege separation. This section describes a proposal outlining how one
could obtain a possible implementation of the address space model in a
monolithic kernel at the example of a paper study with the Linux kernel.
In this operating system, the kernel is responsible for managing all the
physical resources, address translation hardware, and cores of a system.

6.2.1 Reference Monitor

The Linux kernel is the privileged entity in the system and as such assumes
the role of the reference monitor. It implicitly has all the rights on all
address spaces in the system. Consequently, it can change how address
spaces translate memory requests, and grant or revoke access to memory
resources at will, including to itself.

However, those changes are mostly applied on behalf of user-space pro-
cesses issuing requests to the kernel in form of system calls (e.g. mmap() to
map a memory resource into the caller’s address space), or the result of
policy decisions inside the Linux kernel (e.g. demand paging, page-cache
management, NUMA balancing, or handling out-of-memory situations).

6.2.1.1 Privilege Separation

Despite being a monolithic kernel, privilege separation is possible to
achieve with a varying degree of success. Virtual machines provide
vertical separation, but no horizontal compartmentalization within the
monolithic kernel. The next paragraphs describe techniques that could be
used to implement privilege separation with varying degree of enforcing
capabilities.
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Kernel Modules. Linux supports dynamic extension of the kernel func-
tionality with so-called kernel modules. Similar to libraries, a kernel
module can be statically linked into the kernel or loaded dynamically at
runtime. The kernel module then uses the exposed interfaces (the API) of
other subsystems to allocate memory or configure their device. In some
sense, the kernel module is “unprivileged” and the core kernel is the “refer-
ence monitor’. There is, however, no enforcement of isolation. The kernel
module can, in principle, access all memory that is accessible to the kernel
as a whole and modify data structures directly.

Privilege Separation with Para-Virtualization. Para-virtualization pro-
vides a way to achieve separation cooperatively between the kernel (subject)
and the hypervisor (reference monitor). In this case, the para-virtualization
subsystem (PV-Ops) is configured such that calls to update translation
tables are diverted to the hypervisor. While this gives a clean separation
whenever a translation configuration is updated, without proper virtualiza-
tion strict enforcement is hard to achieve. The nested kernel [Dau+15]
works similar by integrating a small privileged kernel inside the monolithic
kernel which interposes all updates to translation tables.

Other Approaches. Intel’s MPX [Ole+18] provides protection from
accessing memory which is not intended by the programmer (e.g. out-
of-bounds access or buffer overflows). ERIM [Vah+19] uses MPX to
implement isolation within the same protection domain. Likewise, using
Intel SGX to isolate operating system components [RGM16] i.e. running
the reference monitor inside the enclave.

Hardware capabilities such as CHERI [Woo+14] enforces pointer integrity
on top of virtual memory. A pointer acts as a CHERI capability containing
the base and length of a memory region that can be accessed by dereferenc-
ing the pointer e.g. prohibiting accesses to critical data structures (e.g. the
page tables) outside the reference monitor.

Hilps [Kwo+19] implements separation by using the virtual address space
size configuration of ARM. By shrinking the size of the kernel virtual
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address space certain mappings become (temporarily) inaccessible. This
can isolate reference monitor data structures from the remaining kernel.

Hypernel [Kwo+18] adds a memory bus monitor, a hardware module
which monitors and intercepts suspicious memory accesses from the kernel.
Privtrans [BS04] tries to partition monolithic programs such that privilege
separation can be implemented.

6.2.2 Authority with Access Control Lists

Memory resources in Linux are either file backed, i.e. they have a name
(this includes shared memory objects or segments), or they are backed by
so-called anonymous memory. This distinction restricts how user-space
processes may grant access to those memory resources to other processes.
This section describes the two and outlines methods one could use to
implement access control and passing of rights between processes.

Linux uses access control lists (ACLs) to express authority over its file-
based resources. This means that for each object in the system (resource)
there exists a list of subjects plus the permissions those subjects have over
the object. Practically, the standard UNIX ACLs include rights for the
owner, the user group, and everyone else.

6.2.2.1 File Backed Memory

When a user-space process creates a shared-memory object or segment, a
special file is created which resides in a ramfs or tmp£fs mount point. In other
words, there exists a path which uniquely names that object. The Linux
kernel enforces authority over accessing this file using standard UNIX file
permissions, which are represented as access control lists. This implies
that every process belonging to a matching user or group can access the
file, open it to obtain a file descriptor, and then call mmap() on the file
descriptor to get access to the file’s backing memory. This is similar to
files on disk. Moreover, open file descriptors can be sent to other processes
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using UNIX domain sockets. This explicitly transfers a grant right to the
memory resource to the receiving process.

6.2.2.2 Anonymous Memory

In contrast to file-backed memory, there exists no handle (or file) to
anonymous memory. This implies that a process cannot pass a grant right
to the anonymous memory region to another user-space process explicitly.
The kernel grants access to frames of anonymous memory by mapping
it into a process’ address space. The process has the access right to the
anonymous memory region by virtue of running in its virtual address
space.

Applications request anonymous memory mappings using calls to mmap() or
sbrk(). The actual grant of the access right may only happen in response to
a page fault when the process first accesses the memory region. User-space
may supply hints such as NUMA node, huge-page mapping, permissions,
or desired virtual address. Ultimately, the Linux kernel decides what
memory to allocate and at which address to map it.

The only mechanism, which a process can implicitly grant access to its
anonymous memory resources, is by calling fork(). This mechanism cre-
ates a new child process which inherits open file descriptors and the access
right to mapped physical frames from the parent. However, depending on
the permissions, this access right is diminished and may only allow read
accesses. Attempts to write may trigger a copy-on-write operation which
allocates a new physical frame, copies the contents of the original frame,
and re-maps the page to the newly allocated one. This results in a loss of
access rights to the original page in either the child or the parent.

In response to policy decisions (e.g. AutoNUMA migrating a page) or
gathering access statistics, the Linux kernel may decide to swap the access
right to one page with another, or temporarily unmap the page. This
effectively removes the access right from the process, which is restored
when the process accesses the memory page the next time. The backing
memory frame, however, may not be the same. For instance, demand
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paging reads the memory contents from the swap file and copies it into a
new physical frame, which is then mapped into the process’ address space.

6.2.3 Physical Resource Management

This section outlines a proposal to adapt the existing infrastructure of
the Linux memory models, physical frame numbers and page flags to
implement globally unique names and types objects in Linux.

The Linux kernel implements different methods for allocating and manag-
ing virtual and physical memory resources, including swapping strategies
and various page-caches [Gor04; BC0O5; HQS16]. At its core, Linux man-
ages physical memory at the granularity of frames, a 4 KiB contiguous
region of physical memory. For each memory frame, there is a corre-
sponding data structure, the page struct (struct page), which stores various
information about the use of this frame, including the virtual address where
this frame is accessible from the kernel (if configured).

Linux maintains multiple memory managers for physical memory frames.
Core-local pools of free frames avoid synchronization, node-based al-
locators allow requesting memory from a particular NUMA node, and
zone-allocators enable the allocation zones of memory with different prop-
erties (e.g DMA memory, realmode-accessible memory, highmem above
4 GiB).

Frames are identified by a globally-unique physical frame number (PFN).
Together with an offset into the physical frame, the PFN can be seen as the
global name of the physical resource. In other words, the tuple (PFN, va),
where va < 4096, uniquely identifies a byte of memory. The currently
active memory model defines the relation between

PFN < struct page.
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Linux Memory Models. Linux supports three different memory models,
flat, discontinuous and sparse, that change how Linux manages memory
internally, including how the struct page is located given its PFN.

* Flat Model. The flat memory model assumes a single flat physical
address space with a fixed mapping between the PFN and the page
struct. The PFN is used as an index into a global array of page
structs. This model does not support changes in the amount of
physical resources, such as hot-plugging or PCI Express attached
resources. Consequently, it is not possible to implement support for
multiple physical address spaces cleanly.

* Discontinuous Model. The discontinuous memory model is able
to express holes in the physical address space by maintaining a set
of memory nodes, each of which has its own identifier. A memory
node covers a range of PFNs. This model allows expressing address
spaces as nodes. However, itis not possible to have holes in the nodes
themselves, which also renders this memory model unsuitable.

* Sparse Model. The sparse memory model adds support for multiple
memory nodes which may have holes within them. A memory node
consists of a set of frames forming a section. Each section has a map
from the section local PEN to the page struct. The sparse model
adds support for changes in the amount of memory in response to
discovery or hot-plug events.

In summary, the sparse memory model [Whil9] allows encoding dif-
ferent, non-contiguous address spaces using sections. The PFN-map of
the section data structure holds the current mapping between a PFN and
the underlying data structure representing the physical resource, i.e. the
page struct. This allows for a flexible, configurable relation between the
PFN < struct page.

Encoding object types. The Linux kernel already distinguishes between

memory objects used by the kernel or user-space. The supplied “get-
free-pages” (GFP) flags during allocation specify its intended use. This
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implicitly converts a free memory frame to a user-space accessible object,
a page table object or a kernel data structure object. To support additional
memory object types, the page struct could be augmented to include
additional type information to implement different memory object types.
Note, that the underlying fixed size of a memory frame restricts the possible
object sizes to the same unit of account.

Accessing the page structs. To allocate and use a physical frame, the
kernel needs access to the corresponding data structure. Each page struct
resides in exactly one memory location which may not be accessible from
all cores managed by the Linux kernel. In addition, it may appear at a
different, core-local address. The first case renders the frame unusable on
the core, whereas in the second case, a page table replication technique
(e.g. [Ach+19b]) could ensure a consistent view from all cores.

6.2.4 Explicit Address Spaces

Recall, the physical frame number (PFN) uniquely identifies the underlying
page struct representing a contiguous 4 KiB region of memory. However,
hardware uses core-local, physical addresses to refer to memory resources,
and does not directly know about concept of PFNs used in the Linux kernel.

Local Addresses and Canonical Names. After the allocation of a new
physical frame, the corresponding PFN (i.e. the canonical name of the
memory resource) is converted into a physical address.

Physical Address < PFN

To do this conversion, the Linux source code already provides pre-processor
macros that simply shift the values by the number of bits representing the
page size (e.g. 12 for 4 KiB pages). This is problematic because the same
PFN will appear at the same, fixed local physical address on all cores. In
an actual implementation, the relation would need to be changed to include
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the processor core’s or device’s local address space where the PFN should
be resolved in.

(Core, Physical Address) <> PFN

The resulting implementation of this relation in the Linux kernel would
provide the conversion between the globally unique, canonical name of a
physical resource to a core-local address. To avoid ambiguity, the Linux
kernel would need to be modified to strictly use the PFN to share pointers
between different cores and devices. Kernel modules and core functions
convert the PFN into a core-local address prior its use, e.g. updating a page-
table entry. An actual implementation may use code-generation, lookup
tables, or other data structures for this conversion.

User-Space Access to Physical Resources. The Linux kernel does not
expose physical memory directly to user-space processes. Instead, it
abstracts physical memory resources and presents user-space processes
with their virtual address space plus file handles. Processes may hint the
kernel to allocate physical memory from a specific set of NUMA nodes,
or with a specific property. File descriptors provide means to request
a mapping of a specific, previously allocated memory resource, but not
necessarily a particular region of physical memory. The exception is the
special file /dev/mem, which represents the entire physical memory of the
system. Accessing it requires root privileges. Instead of a single file, an
actual implementation might use multiple files to expose physical memory
to user space, each representing an address space. This makes address
spaces explicit.

6.2.5 Managing Address Translation

The Linux kernel has the authority over all address spaces, including the
grant right on the physical resources and the map rights on the address
spaces, and acts as the reference monitor. Therefore, the Linux kernel can
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(in principle) allocate some memory, and map it into some address space at
will. Privilege separation as outlined in Section 6.2.1 may provide means
compartmentalizing and separating certain subsystems.

Therefore, the Linux kernel already has access to all relevant data structures
needed to derive the local address of a resource which is needed to set up a
translation. This provides the functionality for resolving an address within
an address space. For example, the kernel already walks the page tables to
find where a virtual address maps to.

Likewise, Linux already maintains a data structure (rmap) to store reverse
mappings of pages. This enables finding all places where a page is mapped.
Using this data structure, an actual implementation could track all locations
where a particular page is used. This is important when a frame needs to
be unmapped from all address spaces it is currently mapped in response
of reconfiguration or hot-plug event.

6.2.6 Address-Space Aware Cores

Linux maintains kernel data structures for representing devices, processes,
tasks and cores. For example, upon initialization a device driver module
obtains a pointer to the generic PCI device data structure. Kernel threads
access processor-private data structures to obtain information about the
core they are currently executing on. On x86, this is achieved with the help
of segmentation (the GS register). One way to make the cores address-space
aware is to augment the corresponding data structures with address-space
information by either adding a pointer to the address-space representation
or store the local address-space identifier.

Running a process concurrently on multiple cores in the system requires
selecting the right configuration of the MMU for each core. An actual
implementation could use the address space identifier of the core-local
data structure in the scheduler to select the correct copy of the page table,
for instance. This is similar to the page-table replication technique used in
Mitosis [Ach+19b].
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6.2.7 Conclusion

An implementation of the address-space model in a monolithic kernel
seems possible, but due to the monolithic architecture (i.e. the kernel has
maximum authority) an implementation cannot take advantage of the fine-
grained privilege separation outline in Chapter 5. The Linux kernel acts
as a central authority holding the grant and map right to all address spaces
and its resources. It is possible to modify the existing data structures,
translation and conversion functions, and scheduling algorithms used in
the kernel to include and use information about address spaces.

In theory, to some degree privilege separation of the Linux kernel seems
possible but invasive. In practice, strict enforcement might require ad-
ditional hardware support. However, a possible separation is doable on
the vertical axis. For example, using virtual machines, system monitors
(e.g. Arm TrustZone), or running operating system services in user-space
together with a small kernel enforcing isolation and acting as reference
monitor. This is exactly the setup the next section talks about.

6.3 Implementation in Barrelfish/ MAS

This section describes the implementation of the address space model using
the principle of least-privilege. The executable specification of Section 5.6
serves as a guide to extend the open-source Barrelfish OS [Bau+09a] with
support for multiple address spaces (Barrelfish/MAS).

Barrelfish manages authorization and physical resources using a capability
system similar to seL.4 [Kle+09], but distributed and partitioned among pro-
cessor cores. Barrelfish/MAS builds on and extends Barrelfish’s capability
system as described in [Ger18].

Despite its lack of formal verification, Barrelfish is currently a more
suitable evaluation platform tan seL4 due to the support for multiprocessing,
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heterogeneous hardware including drivers for IOMMUSs and Xeon Phi co-
processors. Barrelfish/MAS runs on real hardware and is able to manage
protection rights on a variety of real and simulated hardware platforms.

6.3.1 Reference Monitor

Barrelfish is based on the Multikernel architecture [Bau+09a], where most
of the operating system personality runs as user-level processes or exists in
libraries. The kernel, or cpudriver as it is called in Barrelfish terminology,
runs in privileged mode and is responsible for protection and isolation of
process domains, inter-process communication and scheduling.

The Barrelfish cpudriver does not do any memory allocations. Instead, it
provides mechanisms to user-space applications to safely manage physical
resources or virtual address spaces using explicit capability operations. The
cpudriver acts as the reference monitor and validates the rights represented
by the capabilities. It either executes the requested capability operation or
refuses and returns an error.

This gives a clear separation between unprivileged user-space processes
and the reference monitor (privileged cpudriver).

6.3.2 Background on Capabilities in Barrelfish

The least-privilege model operates on continuous ranges of addresses
within an address space, which is identified by an address space identifier
(ASID). This is a natural match for memory descriptors or capabili-
ties [Lev84; Har85; SSF99] in particular. Capabilities serve as secure,
non-forgeable handles to regions of physical resources including ones
which are not directly accessible. This section provides a brief introduc-
tion to the capabilities used in Barrelfish.

Barrelfish’s capability system [Gerl8] is derived from seL4 [Kle+09;
EKEO08]. Consequently, there are many similarities: Regions of physical
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memory are represented using typed capabilities. A capability gives the
holder a specified set of rights (authority) on the object that the capability
references. In Barrelfish, the all different capability types are defined using
Hamlet, a domain specific language designed for this purpose.

Typed Objects. Every objecthas azype whichis reflected in the capability
that refers to the object. The type defines the set of valid operations and
how the memory object they refer to can be used. For example, a Frame
can be mapped, whereas raw RAM cannot. Recall Section 5.6, a RAM object
represents untyped, physical memory, corresponding to seL.4’s untyped
type. Moreover, retype rules dictate valid type conversions. For instance,
retyping RAM to a Frame iS permitted, a Frame to RAM is not.

Access Rights  Besides its type, each capability has a set of rights defining
the authority the holder has on the object. The rights cannot be changed.
However, the holder can derive a new capability with lesser rights. In its
current state, the Barrelfish capability system does not fully implement
the rights e.g. a read-only Frame can only be mapped read-only, but the
canonical ordering does not take the rights into account (Listing 6.1).

Capability Space. The capabilities themselves live in the capability
space, or CSPACE for short, where each capability occupies an entry
in the capability table. In Barrelfish, this capability table is organized
as a two-level structure consisting of cnodes (Figure 6.1). The root (or
L1) cnode contains capabilities pointing to fixed-sized L2 cnodes. Those
memory-resident objects are inaccessible from applications to prevent
user-space processes from forging capabilities. Only the reference monitor
is able to access the CSPACE directly. Besides storing the capability
representation, the cache-line-sized capability-table entry (cnode slot)
holds other bookkeeping information required to track capability relations.

Capability Invocation. Each user-space process has its CSPACE con-
taining the capabilities it owns. Programs refer to a particular capability
in their CSPACE using capability references indicating the location of the
cnode and the slot within. A process can exercise the rights provided by a
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Figure 6.1: Barrelfish’s Two-Level CSPACE Layout.

capability in its CSPACE by a capability invocation. This corresponds to
calling the reference monitor API through the system call interface. The
reference monitor then tries to locate the capability using the provided
capability reference, and checks whether the type and rights match the
requested operation.

Canonical Ordering. The algorithms and data structures for looking up
a capability rely on a well-defined ordering of capabilities. The Barrelfish
capability system defines a canonical order of the capabilities based on the
base address, size and type of the memory object they refer to: i) smaller
base addresses first, i7) then larger objects first, iii) then smaller type first
(types higher up in the type hierarchy appear first). Listing 6.1 shows the
implementation of capcomp(cl, c2) returning —1 if cl comes before c2, +1
if c2 comes before c1, and 0 if they are equal.
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Listing 6.1: Canonical Ordering of Capabilities

int capcomp(struct capability *cl,
struct capability *c2)
{
if (cl->Addr != c2->Addr)
return cl->Addr < c2->Addr ? -1 : 1;

if (cl->Size != c2->Size)

return cl->Size > c2->Size ? -1 : 1;
if (cl->Type != c2->Type)

return cl->Type < c2->Type ? -1 : 1;
return 0;

Descendant Relation. The canonical ordering is important. Barrelfish
does not store explicit pointers to ancestors or descendants. Using the
canonical ordering, the descendant relation is defined as follows:

descendant c¢; ¢p &> ¢c1 N ¢y = ¢y Aci.type < ca.type

This means that capability ¢, is a descendant of capability c; if ¢; is
fully contained within c; and the type of ¢; is smaller than the type of c;.
Barrelfish’s current implementation only considers the object covered by
the capability, but not the associated authority the capability represents
over the object. In other words, retyping c; to c; is permitted and retyping
can only make the capability refer to a smaller object. In contrast, minting
a capability creates a new descendant with diminished rights.

Mapping Database. Barrelfish maintains a mapping database, a bal-
anced, tree-based data structure which stores capabilities in their canonical
ordering. This enables efficient capability lookups and range query oper-
ators (overlap and contains) based on the object’s base address and size.
Using the canonical ordering, the mapping database can be traversed effi-
ciently to find the descendants of a capability (successors) and ancestors
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(predecessors) efficiently. This is important for finding all affected capabil-
ities in the event of revocation or deletion. There is one mapping database
per operating system node (i.e. cpudriver/kernel) each of which keeps
track of a partition of all capabilities in the system. Distributed protocols
ensure consistency among operating systems nodes and their mapping data
bases [Gerl8].

Revocation and Deletion. Capabilities can be deleted. This invalidates
and frees up a slot in the CSPACE. A simple delete does not remove
descendants. Using the mapping database, the reference monitor knows
when the last copy of a capability is deleted. If this is the case, additional
actions are performed to ensure no-one has access to that object anymore,
and there are no memory leaks. This recurses when the deleted capability
was a cnode. Revocation deletes all copies and descendants of the revoked
capability, without deleting the capability itself. The revoked capability
therefore remains as the last copy. Barrelfish’s capability system already
implements the required revocation protocols in a distributed way while
adhering to the same semantics as in seL4 [EDE0O7; EKEOS].

6.3.3 Physical Resource Management

In Barrelfish, physical resources are not managed by the kernel. Instead,
dedicated user-level processes manage physical resources directly. This is
safe, because the capability system enforces integrity: only well specified
operations can be executed, and capabilities cannot be forged. This section
provides a high-level summary of the process in Barrelfish [Ger18].

At boot time, the reference monitor creates the initial set of capabilities
covering all physical resources of the system minus firmware and kernel
regions, which are excluded so user-space cannot allocate and use them
otherwise. Each other region of memory is therefore covered by at least
one capability. Those capabilities are handed over to the first user-space
process. A subset of them correspond to “untyped” RAM objects which
are passed to the memory manager.
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Other processes request physical memory from the memory manager using
an RPC interface. Upon request, the memory manager allocates memory
by performing capability operations which derive a new capability from an
existing one satisfying the request. The new capability is then transferred
to the requesting process. This is effectively a copy from the CSPACE of
the memory manager to the CSPACE of the requesting process.

All policy decisions and allocations happen in user space. The kernel’s
task is to validate and execute the capability operations, e.g. deriving a new
capability from an existing one, or performing the copy from one CSPACE
to the other. In addition, the kernel maintains the mapping database which
is required to validate whether a capability operation is permitted. For
instance, it is not allowed to retype the same region of an object twice.

In Barrelfish/MAS, the underlying principles remain the same. To sup-
port dynamic discovery of address spaces and physical resources within,
Barrelfish/MAS introduces a new capability type (PhysAddrSpace) that cor-
responds to the entire address space. It has an address space identifier, and
a size in bits. Using retype operations, new RAM objects or device register
objects can be derived within this address space. This is important, as
only the driver of a PCI Express attached device knows in detail about the
resources on the device. For example, the driver of the Xeon Phi receives
the PhysAddrSpace to the Xeon Phi co-processor’s local physical address
space. It then retypes one part of it to RaM (either 6 GiB, 8 GiB, or 16
GiB depending on the model) and another part to DevFrame representing
the memory mapped registers. This process also adheres to Barrelfish’s
existing retype semantics e.g. the same part of an address space can only
be retyped if there are no overlapping descendants.

6.3.4 Explicit Address Spaces

The multiple address space extension, Barrelfish/MAS, replaces the use of
addresses in the capability system with the object’s canonical name. By
doing so, all addresses used by the capability system are qualified with the
identifier of the address space their resource belongs to.
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Listing 6.2: Canonical Name Representation

/* ASID - address space identifier */
typedef uint32_t asid_t;

/* the genaddr is used within an address space */
typedef uint64_t addr_t;

/* expanded canonical name variant */
typedef struct {

addr_t addr;

asid_t asid;
} __attribute__ ((packed)) cname_t;

/* compressed canonical name variant */
typedef uint64_t cname_t

6.3.4.1 Canonical Names and Capability Comparison

The capability structure encodes canonical names as a struct with two
fields: the address space identifier (ASID) and the address as an offset
into this address space. This representation supports address-space sizes
up to 64-bit and up to 232 — 1 address spaces. Optimizing for space, both
values can be packed into a single 64-bit integer which is the same size of a
pointer on 64-bit x86 or ARMv8 systems. This provides support for a 16-bit
address space identifier and a 48-bit address, which is sufficiently large to
address all virtual memory on current 64-bit x86 or ARMvS. Listing 6.2
shows the corresponding C type definitions.

The mapping database implements range queries such as overlap or contains.
Those operations need to remain efficient with the new canonical names.
Recall, physical resources are local to exactly one address space. Therefore,
objects do not span more than one address space. This fact can be used
when comparing two capabilities: if the address space identifier is not
matching, the capabilities cannot overlap.
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Listing 6.3: Canonical Ordering of Capabilities on Barrelfish/MAS

int capcomp(struct capability *cl,
struct capability *c2)
{
if (cl->Asid != c2->Asid)
return cl->Asid < c2->Asid ? -1 : 1;
if (cl->Addr != c2->Addr)
return cl->Addr < c2->Addr ? -1 : 1;

if (cl->Size != c2->Size)

return cl->Size > c2->Size ? -1 : 1;
if (cl->Type != c2->Type)

return cl->Type < c2->Type ? -1 : 1;
return 0;

The canonical ordering is adapted to use canonical names, where the
expanded form reads i) smaller address space identifier first ii) smaller
base addresses first, iii) then larger objects first, iv) then smaller type
first. The updated comparison function is given in Listing 6.3. The
modification of the compare function, integrates canonical names with
existing infrastructure of the mapping database and capability operations.

6.3.4.2 Address Space Representation

Barrelfish/MAS promotes address spaces to first-class objects, and conse-
quently introduces corresponding capabilities to manage them. Consider
the following example.

Motivating Example. During PCI discovery, the PCI driver finds and
initializes a new device. In response to the discovery event, the device
manager spawns the device driver to take care of further configuration.
Only the driver knows that there are 57 cores and 8 GiB of memory on that
PCl-attached device which happens to be a Xeon Phi co-processor. The
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reference monitor does not know about the co-processor at boot time and
hence does not create capabilities for the memory on the co-processor.

Address Space Identifiers. Like physical memory, address space identi-
fiers are a limited resource. This requires their allocation to be managed to
prevent ASID exhaustion. Barrelfish already uses capabilities for a similar
problem: the allocation of interrupt vectors. Barrelfish/MAS adds a new
capability type representing ranges of address space identifiers. Processes
can retype this capability to allocate a new ASID from the range.

Physical Address Spaces. The driver receives a capability representing
the address space containing the physical memory resources on the co-
processor (e.g. RAM and device registers). Using the retype operation
provided by the capability system, the driver can derive new RAM and
device-register capabilities from the address space capability. This is safe,
because the driver can only derive new capabilities that refer to the address
space on the co-processor, and not to other existing resources. Finally,
the driver can hand over the capabilities to the physical memory on the
co-processor to the memory manager for allocations by other processes.

Intermediate Address Spaces. Memory accesses from the co-processor
to the host RAM are mediated through a multi-stage translation scheme
involving a system memory page table (SMPT) and an IOMMU. The
configuration of the SMPT is defined by the contents of 32 memory
mapped registers, each controlling a 16 GiB region. The IOMMU translates
memory requests using memory-resident page tables. Both, the SMPT
and the IOMMU, define a configurable address space, and both have a
corresponding capability type that represent those translation resources.
Barrelfish/MAS adds a new derivation rule to obtain an intermediate
address space capability from a translation table capability. This represents
the input address space of the translation unit. Further, retypes of the
intermediate address space produce segments corresponding to regions of
the address space which can be used for mappings in upstream address
spaces.
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Destroying Address Spaces. An address space is destroyed when the
last copy of the address space capability is deleted. In contrast to a simple
delete, destroying an address space can be seen as revoking plus deleting
the address space capability. This recursively deletes all descendants,
which is a required behavior since there must be no capabilities referring
to objects in non-existing address spaces.

The same applies for translation tables: when the capability system recog-
nizes that the last copy of the translation table is being deleted, the protocol
also revokes the derived address space. This ensures that upon deletion
of the page table, the address space including all segments within it are
deleted. This is equivalent to revoking all descendants of the address space
capability and then deleting it.

6.3.5 Managing Address Translation

Barrelfish’s capability system allows for safe and sound construction of
hardware-defined translation tables from user space. A process can mod-
ify a translation table through capability invocations. This is safe, be-
cause the reference monitor only allows operations resulting in correct-by-
construction page tables, and processes can only map resources for which
they hold a capability with the grant right to it. The reference monitor
enforces the required rights and types based on the presented capabilities.
A process owning a translation table capability has the right to change
the mapping. There is a matching capability for each hardware-defied
translation table type. This enforces safe construction of multi-level page
tables, for instance.

Dealing with address spaces in translations. Recall, translation struc-
tures span an address space. They define a mapping from an input address
space to an output address space. Barrelfish/MAS uses this information
when changing an entry of a translation table. This is important, as the
canonical name of the resource needs to be resolved to the local address to
perform the mapping. The reference monitor refuses to install the mapping
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Figure 6.2: Mapping Capabilities in Barrelfish.

if it cannot verify at which address the object appears in the local address
space, or when it is not (directly) reachable. In the latter case, a capability
from the intermediate address space is required for the mapping. For
example, the Xeon Phi co-processor driver uses the address space capabil-
ity derived from the translation table of the IOMMU context to derive a
segment which in turn is mappable into the system memory address space
of the co-processor.

Tracking mapped capabilities. When a process revokes a capability or
deletes the last copy of it, the deletion or revocation protocol needs to find
and invalidate all instances where this memory object was mapped into
an address space. This requires additional book-keeping information as
the capability table entries are fixed sized and a memory object might be
mapped many times into different address spaces.

This book-keeping information is safety critical. Barrelfish uses the ca-
pability system to keep track of all existing, valid mappings. For each
capability type referring to a mappable object or an address space, there
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exists a corresponding mapping capability which is a descendant of the
mapped object:

descendant mappable_object mapping

Because of the descendant relation, all mapping capabilities of a mappable
object can be found efficiently by traversing the mapping database, and all
mapping capabilities are deleted by the revocation protocol. When the last
mapping capability is deleted, the translation table entry is invalidated.

Figure 6.2 shows the creation of a mapping capability as an effect of the
mapping operation. In the example, a user-space software provides provide
three capability references to i) a page table capability (P), ii) a frame to be
mapped (F), and iii) an empty slot in its CSPACE (M). The first two identify
existing objects in memory, the latter stores the newly created mapping
capability. Barrelfish/MAS stores the canonical names of the frame and
the page table objects in the mapping capability, as opposed to vanilla
Barrelfish which stores a pointer to a specific capability. The mapping
capability also stores the page table entry range which this mapping covers.
In the end, the mapping capability is stored in the empty cnode entry.

In addition to using canonical names in the mapping capability, Barrelfish/-
MAS extends this mechanism to include the new address space and segment
types. When parts of an intermediate address space are mapped, a mapping
capability is created. When the intermediate address space disappears, the
capability system can find all related segments and mapping capabilities
using the descendant relation.

6.3.6 Address-Space Aware Cores

Barrelfish/MAS extends the data structures of the cpudriver (the kernel) and
the device drivers with information about their local address space. This
also includes the input and output address spaces of translation hardware
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such as the IOMMU or the SMPT of the Xeon Phi. The minimum informa-
tion required is the local address space identifier. The reference monitor
includes a fully generated conversion function translating canonical names
of memory resources to local addresses (Listing 6.4). User-space applica-
tions obtain further information about address decoding and the memory
topology by querying the runtime representation of the model by the local
address space identifier.

6.3.7 Runtime Support

The capability system of Barrelfish/MAS provides the mechanisms for
managing physical resources and configure translation hardware securely.
Higher-level operations, such as mapping a region of memory, is broken
down into a sequence of capability operations. Depending on the system
topology, this involves configuring multiple translation units, some of
them may be only discovered at runtime. This section describes a way
to find the required sequence of operations. Figure 6.3 shows the high-
level architecture of Barrelfish/MAS highlighting the policy mechanism
separation, the executable model, and the capability system integration.

In Barrelfish, information about the current system topology, cores, devices
and memory is stored in the system knowledge base (SKB) [Sch+11].
The SKB is a Prolog engine. Various system services insert pieces of
information (e.g. the presence of a PCI device) by asserting them as
facts. Inference rules and constraint solvers evaluate queries and produce
additional views of those facts. Allocation polices base their decisions on
the output of the queries. Barrelfish/MAS makes use of the SKB to store
the runtime representation of the address space model.

Static Information. The state of the system knowledge base contains pre-
defined, static information. This includes the device data base, for instance,
which maps vendor and device identifiers to device drivers. Moreover,
it contains non-discoverable platform specific facts such as the number
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Figure 6.3: Runtime Architecture of Barrelfish/MAS

of cores and devices on SoC platforms without hardware discovery. Bar-
relfish/MAS adds additional information such as the address spaces of a
discovered device or even the entire set of address spaces for SoCs.

Dynamic Information. The hardware topology of a system is often
partially unknown and hence cannot be statically asserted. Consequently,
the number and configuration of address spaces may be incomplete and
requires dynamic discovery at runtime. Examples include the number of
processor cores, the cache topology of the processors, memory affinity, the
presence of PCI root complexes and IOMMUSs. System software obtains
this information by parsing tables provided by UEFI or ACPI, walking
the PCI configuration space, executing specific instructions, or reading
hardware registers. For example, the PCI driver discovers the Xeon Phi co-
processor, but the number of cores and memory resources on the Xeon Phi
depends on the exact model, which is only known to the driver. In summary,
the machine topology is discovered bit-by-bit based on information from
multiple sources.
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Asserting Facts. New facts are added to the System Knowledge Base
by asserting — the Prolog term for inserting information into the data base.
This happens in two steps:

1. During initialization, the device manager asserts static facts based on
the current platform (e.g. x86_64 PC or ARMv7 Texas Instruments
OMAP4460). This includes non-discoverable information.

2. Depending on the added static facts, the device manager starts
hardware discovery services such as the ACPI table parser, to obtain
more facts about the system. This in turn may trigger other discovery
services.

Barrelfish/MAS uses the same mechanism to add information about the
address space topology and their connections to the System Knowledge
Base, either by explicit assertion or through inference rules that describe
an entire hardware module (e.g. the Xeon Phi co-processor with its cores,
memory and the system memory page table.)

Model Queries. Device drivers and other services need to answer the
following questions to properly initialize and configure the devices and
system services:

* Allocation. Where do I allocate memory from, such that it is
accessible from those address spaces?

» Configuration. Which address spaces need to be configured, such
that the memory region is actually accessible from this address
space?

* Backward Resolution. At which address does the resource appear
in this other address space?

e Forward Resolution. Where does this address in the local address
space resolve to?

The model representation in the System Knowledge Base provides answers
to those questions. Common to all of them is the fact that they require
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knowledge about the sequence of address spaces that are being traversed
from the source to the destination address space. Recall, the Decoding
Net model is a directed graph and therefore this is a natural match for
a shortest-path algorithm returning all the (configurable) address spaces
between source and destination node.

Prolog finds a solution for which the posted query evaluates to true. There-
fore, by fixing either the source or destination address space, clients can
obtain all reachable resources from a particular address space, or obtain
all address spaces which can reach a specific resource.

The result of the query serves as a blueprint for the client indicating
what steps should be executed. For example, the query responds with a
list of address spaces that the client needs to configure. In return, the
client converts this list into a sequence of capability operations to allocate
memory, setup translation structures and perform the relevant mappings.
This is evaluated in Section 7.4.

Query Optimizations Invoking the Prolog engine of the System Knowl-
edge Base is a rather heavy-weight operation (see Section 7.5). Running
the query on the full address space topology needs to consider many decode
steps which are static. There are two levels of optimization possible:

1. Flatten. The address spaces with static translations can be flattened
and the result saved as a view. The resulting topology consists of
cores, accepting regions and configurable address spaces. Changes
in the topology trigger re-computation of the flattened representa-
tion.

2. Caching. A client which performs multiple queries, can cache
either the full, or flattened representation in a C library outside of
the SKB.

Note, operating on invalid caches is safe, because the capability system
enforces the integrity of the system. A process cannot obtain access to a
resources without adequate rights. An attempt to create an invalid mapping
results in an error. Depending on the error (e.g. trying to allocate from an
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Figure 6.4: Barrelfish/MAS Toolchain.

address space which does no longer exist, or trying to map an object which
is not directly reachable), the application can then update its cache by
invoking the Prolog engine containing the full topology, and then retry the
operation. This happens when the number of address spaces has changed.

Address Resolution The ground truth of how an address space translates
addresses lies with the configuration of the corresponding translation unit.
The SKB does not store the actual configuration of the address spaces.
Instead, the query above returns the list of configurable address spaces,
each of which are managed by a reference monitor. Application processes
can call the API of the reference monitor to resolve an address within the
address space it manages.

6.3.8 Compile Time Support

Building an operating system image for a specific platform can make use of
the fact that all relevant facts about the hardware configuration are known
and complete at compile time [Sch17]. For instance, the hardware topology
of SoC platforms (e.g. Texas Instruments OMAP4460), or co-processors
(e.g Intel Xeon Phi) can be extracted from the hardware manuals. Figure 6.4
shows a high-level illustration of the toolchain.

Therefore, a system software developer (or hardware vendor) can precisely
write down the hardware configuration of those platforms. Barrelfish/MAS
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adapts the infrastructure provided by the Sockeye [Sch17; Bar17b] system
for this purpose. The Sockeye language lets programmers write speci-
fications about hardware platforms naturally using the map and accept
constructs of the address space model.

The Sockeye platform description is the compiled into the Prolog runtime
representation of the model. The toolchain populates the System Knowl-
edge Base with the Sockeye generated facts about the address spaces of
the target platform. This enables the enumeration and pre-computation
of all address spaces and translations of the platform. Using this output,
the toolchain generates platform specific data structures and low-level
functions of the reference monitor for a specific address space (e.g. the
cpudriver for a core). Examples include:

* Capabilities. The initial set of capabilities referring to the physical
resource of the platform.

 Translate Functions. Translation functions that convert between
core-local addresses and canonical names. Listing 6.4 shows an
example of an automatically generated function, which translates
canonical names to local physical addresses valid on a particular
core.

* Page Tables. The kernel page tables, memory maps and device
locations. This completely removes the page-table setup from the
kernel.

The generated C code is then compiled and linked into the Barrelfish/MAS
system image. Section 7.7 evaluates this scenario.
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Listing 6.4: Canonical name to local address conversion

lpaddr_t canonical_name_to_local_phys(cname_t arg)

{

addr_t ad

if(asid ==
return
if(asid ==

return ((0x1c000000UL

if(asid ==
return
if(asid ==
return
if(asid ==
return
if(asid ==
return
if(asid ==
return
if(asid ==
return
if(asid ==
return
if(asid ==
return
if(asid ==
return
if(asid ==
return

cname_extract_addr(arg);
asid_t asid = cname_extract_asid(arg);

1035 && 0xOUL
((0x1c000000UL

<= ad && ad <= 0x1£fffUL)
- 0x0UL) + ad);

1035 && O0xOUL <= ad && ad <= 0x1£f£ffUL)

1038 && 0xQUL <=
((0x40000000UL -
1038 && 0xQUL <=
((0x40000000UL -
1039 && 0xQUL <=
((0x80000000UL -
1039 && 0xQUL <=
((0x80000000UL -
1040 && 0xOUL <=
((0xQOUL - 0xOUL)
1040 && 0xQUL <=
((0xOUL - 0xOUL)
1057 && OxQUL <=
((0x2f000000UL -
1057 && OxQUL <=
((0x2£f000000UL -
1058 && OxQUL <=
((0x2£f100000UL -
1058 && 0xQUL <=
((0x2£f100000UL -

return LPADDR_INVALID;

ad && ad
0x0UL) +
ad && ad
0x0OUL) +
ad && ad
0xOUL) +
ad && ad
0x0OUL) +
ad && ad
+ ad);

ad && ad
+ ad);

ad && ad
0xOUL) +
ad && ad
0x0OUL) +
ad && ad
0xOUL) +
ad && ad
0x0OUL) +

- 0xOUL) + ad);

<= O0x3fffffffUL)
ad);
<= 0x3ffffff£fUL)
ad);
<= Ox3fffffffUL)
ad) ;
<= Ox3fffffffuL)
ad);
<= Oxfffff£ffUL)

<= Oxfffff£fUL)

<= OxfffffUL)
ad);
<= Oxfff£ffUL)
ad) ;
<= OxfffffUL)
ad);
<= OxfffffUL)
ad) ;
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6.4 Conclusion

This chapter demonstrates that it is possible to implement the least-privilege
model in a real operating system. Barrelfish/MAS uses capabilities to
enforce authorization and to manage physical resources. With the help
of the Prolog implementation, clients can query the state of the system
to obtain a sequence of capability operations to allocate memory and
configure address spaces. This is safe, because the capability system
enforces the integrity. Based on platform descriptions in Sockeye, the
toolchain is able to generate parts of the Barrelfish/MAS image such as
page tables and translation functions for a particular core.
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Evaluation

This chapter evaluates the quantitative and qualitative performance of
Barrelfish/MAS which implements the address space model and the least-
privilege authority model based on the executable specification. The goal
of this chapter is to quantify the resulting overheads of implementing these
models in an operating system, show that these overheads are small, and
in addition to demonstrate that the resulting implementation is capable of
handling unusual memory topologies.

The evaluation is structured as follows:

* Section 7.2 demonstrates that Barrelfish/MAS is able to achieve
comparable performance to vanilla Barrelfish and the Linux kernel
for the standard virtual memory operations map, protect and unmap.
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* Section 7.3 compares the performance of Barrelfish/MAS with
vanilla Barrelfish and Linux using the Appel-Li benchmark for
non-paging related virtual memory operations.

» Section 7.4 assesses the overheads resulting from the least-privilege
principle and model evaluations using a real-world scenario involv-
ing the configuration of multiple translation units.

* Section 7.5 evaluates the scaling behavior of the runtime represen-
tation and shows that the native implementation is able to scale well
for a reasonable sized system.

* Section 7.6 calculates storage requirements of the capability system
and the cost of a capability lookup in the mapping database.

* Section 7.7 qualitatively demonstrates that Barrelfish/MAS is able
to handle pathological system topologies using simulators.

This evaluation provides support for the hypothesis that it is possible to
efficiently implement the address space model in an operating system, and
that the resulting implementation is capable of handling complex memory
topologies.

7.1 Evaluation Platform

All experiments in this chapter are executed on the same platform with the
following hardware and software configuration:

Hardware. As evaluation platform serves a dual-socket server consisting
of two Intel Xeon E5-2670 v2 processors (Ivy-Bridge micro-architecture)
with 10 cores each, totaling at 20 cores clocked at 2.5GHz. The machine
has a grand total of 256 GiB of DDR3 main memory split equally into two
NUMA nodes.

In all experiments, the system is set to run in “performance mode” by
enabling the corresponding setting in the BIOS. In addition, the following
processor features have been disabled:
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* Simultaneous Multi-threading (SMT) / Hyper-Threading
¢ Intel TurboBoost technology

* Intel Speed Stepping

The reason for disabling these features is to ensure more consistent and
stable results by reducing resource sharing and dynamic changes in the
processor’s clock speed. With SMT or Hyper-Threading, two hardware
threads share the resources of a single core. This can cause contention
and interference. TurboBoost and speed stepping can change the processor
frequency, and the selected clock rate can also depend on the temperature
and the clock frequencies of other processor cores.

There are a total of 40 PCI Express 3.0 lanes per processor, each having
an Intel Xeon Phi co-processor 31S1 attached as a PCI Express device.
The co-processors are of the “Knights Corner” generation and have 57
cores with four hardware threads per core. There is a total of 8 GiB GDDR
memory per co-processor. Memory accesses from PCI Express attached
devices are translated by Intel VT-d [Int19b] IOMMU).

Software. All experiments involving Linux are done using Ubuntu 18.04
LTS which uses Linux kernel version 4.15. This includes the latest patches
for Spectre/Meltdown mitigation which are disabled for fair comparison as
neither vanilla Barrelfish, nor Barrelfish/MAS do have this kind of patches.

Linux is configured using the default configuration provided by Ubuntu.
Barrelfish and Barrelfish/MAS are using the compiler optimization levels
(-02) and the NDEBUG flag which disables assertions in the code.

System Call Cost Table 7.1 shows the latency of a no-op system call
on Linux, Barrelfish and Barrelfish/MAS. For the latter, the table also
includes the latency of a no-op capability invocation, which includes a
capability lookup in the process’ CSPACE. All values are the median
out of 1000 runs, with the standard deviation in brackets. Compared to
vanilla Barrelfish, Barrelfish/MAS experiences a statistically significant
slowdown. During the invocation, the kernel looks up the capability in the
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Operating System Cycles Nanoseconds
Linux (Sys) 216 (x£2.3) 86 (£0.9)
Barrelfish (Sys) 172 (£2.2) 68 (x0.9)
Barrelfish/MAS (Sys) 172 (+2.1) 68 (£0.8)
Barrelfish (Cap) 236 (£8.9) 94 (£3.6)

Barrelfish/MAS (Cap) 260 (+7.5) 104 (+3.0)

(Cap) indicates a no-op capability invocation
(Sys) indicates a no-op system call.

Table 7.1: System Call Cost on Linux, Barrelfish and Barrelfish/MAS.

process’ CSPACE, which requires converting the canonical name stored in
the capability to a local kernel virtual address twice. This is accomplished
using inline functions in vanilla Barrelfish, which add a constant to the
physical address stored in the capability to obtain the kernel virtual address.
On Barrelfish/MAS, the canonical name stored in the capability is first
converted to a local physical address, and subsequently to a kernel virtual
address. This requires extracting the address space identifiers and addresses
from the canonical name resulting in additional instructions and function
calls, which add about 24 cycles of latency to the operation.

7.2 Virtual Memory Operations -
Map/Protect/Unmap

This section evaluates the performance of virtual memory operations map,
protect and unmap by comparing Barrelfish/MAS with vanilla Barrelfish
and Linux as a frame of reference, using an increasing buffer size from 4
KiB up to 64 GiB and different page sizes.
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Benchmark Methodology. The benchmark consists of three phases,
each of which is measured separately:

1. map: Allocates a free region of virtual memory and faults on it to
ensure that it is backed by physical memory,

2. protect: write-protects the allocated region of virtual memory,

3. unmap: unmaps and frees the virtual memory region.

All three operations manipulate one or more page-table entries in bulk
using a single high-level operation. Where possible, the backing memory
is pre-allocated. All three supported page-sizes are evaluated separately
with regions up to 64 GiB where the page size defines the minimum region
size.

* Page size: 4 KiB (base), 2 MiB (large), 1 GiB (huge)

* Region size: page size up to 64 GiB

Operation
Configuration map protect unmap
Linux (mmap) mmap mprotect munmap
Linux (shmat) shmat shmdt + shmat shmdt
Linux (shmfd) shm_open + mmap mprotect munmap
Barrelfish vspace_map memobj_protect vspace_unmap
Barrelfish/MAS ~ vspace_map memobj_protect vspace_unmap

Table 7.2: Evaluated Virtual Memory Operations on Linux, Barrelfish and
Barrelfish/MAS.

Linux supports different memory management operations: mapping of
anonymous memory (mmap), attaching a shared memory segment (shmat)
and using a file descriptor to a shared memory object (shmfd). Table 7.2
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shows the memory operations used on Linux, vanilla Barrelfish and Bar-
relfish/MAS. All Linux configurations are benchmarked without Spec-
tre/Meltdown mitigation.

Where possible, the allocation of physical memory itself is not measured
because this is dominated by clearing the memory pages. On Linux,
using the MAP_POPULATE flag where possible, or touching the memory after
allocation ensures that the page table entries are updated with the mapping
information. Barrelfish’s operation are all eagerly updating the page
table. In all cases, the measurement includes updating the page table and
bookkeeping data structures.

Results. Figures 7.3, 7.3, and 7.3 show the median execution time per
affected page for the three operations map, protect and unmap respectively.
The figures show performance for all operations with the three different
page sizes and an increasing memory region. The Linux results are based
on the best of the three options for each operation. Table 7.3 shows the
best configuration for each page size and operation.

map protect unmap

4 KiB page Linux-shmfd Linux-shmfd Linux-shmat
2 MiB large page Linux-shmat Linux-mmap Linux-shmat

1 GiB huge page  Linux-shmat  Linux-shmat Linux-shmat

Table 7.3: The Best Configuration of the Linux Virtual Memory Opera-
tions.

The graphs show the median execution time (lower is better) of the operation
per page (modified page-table entry) on the y-axis and an increasing region
size on the x-axis. Recall, the numbers do not include the allocation of
backing memory. From the plots we can make the following observations:

* Amortization: Overall the pattern for all configuration looks similar:
the cost per page is going down with increasing memory region
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The plots show the execution time (lower is better) of the map() operation
on the entire buffer divided by the number of affected pages in us. The
memory region sizes range from 4 KiB to 64 GiB.

Figure 7.1: Comparison of the Virtual Memory Operation map() with In-
creasing Region Size on Barrelfish/MAS, Barrelfish and Linux.
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The plots show the execution time (lower is better) of the protect() oper-
ation on the entire buffer divided by the number of affected pages in us.
The memory region sizes range from 2 MiB to 64 GiB.

Figure 7.2: Comparison of the Virtual Memory Operation protect() with

Increasing Region Size on Barrelfish/MAS, Barrelfish and
Linux.
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The plots show the execution time (lower is better) of the unmap () operation
on the entire buffer divided by the number of affected pages in us. The
memory region sizes range from 1 GiB to 64 GiB.

Figure 7.3: Comparison of the Virtual Memory Operation unmap() with
Increasing Region Size on Barrelfish/MAS, Barrelfish and
Linux.
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sizes affecting more pages. On Linux this includes a system call,
looking up the relevant data structures, walk the page table and
finally update one or more page table entries. On Barrelfish and
Barrelfish/MAS, this corresponds to a lookup of the memory region
in user space, invoke the capabilities associated with the region, the
kernel then locates the capabilities in the CSPACE, and performs
one or more updates to the page table the capability references. In
both cases, locating the page table entry is most of the work, which
is amortized when multiple, consecutive entries are modified, which
is the case for larger regions.

Map: Recall, this maps previously allocated memory in an address
space. Barrelfish/MAS and Barrelfish exhibit both predictable per-
formance per page regardless of the used page size. This is because
the capability operation to update a page table entry is independent
of the used page size, in fact it is the same operation just at another
level of the page table tree. In contrast, Linux performs worse with
large/huge pages compared to base pages for the same number of
affected pages. This is because Linux allocates and deposits a page
of memory to hold a page table in case the huge/large page mapping
has to be broken up and replaced with a smaller mapping granularity
later. This introduces additional memory management overheads,
and memory writes. Writing a 4 KiB page holding a page table can
add up to 0.71us, which corresponds to the difference shown in the
graph. Linux is faster than Barrelfish for up to two base pages. This
is because Barrelfish creates a new mapping capability and inserts
it into the mapping database, which requires finding the right spot
in the derivation tree. In direct comparison with Barrelfish, Bar-
relfish/MAS is able to match the performance for the map operation
for all page sizes. Moreover, using Linux as the reference frame,
Barrelfish/MAS is able to achieve comparable performance.

Protect: Again, Barrelfish/MAS has predictable performance regard-
less of the used page size. Compared to Barrelfish, Barrelfish/MAS
has very similar performance characteristics, showing a slight over-
head due to a required lookup of the page table from the mapping
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capability, whereas Barrelfish includes an explicit pointer. Both,
Barrelfish and Barrelfish/MAS use capability invocations on the
mapping capability, which contains information to efficiently locate
the page table entry. Linux needs to locate the page table entries
based on the virtual address. This is equivalent to a page table walk.
Barrelfish/MAS is consistently better than Linux.

* Unmap: The performance characteristics per affected page are
more predictable for all tested operating systems and configurations.
Linux has the best performance for a few pages, whereas Barrelfish
and Barrelfish/MAS have an advantage for unmapping larger regions.
Note, that Barrelfish and Barrelfish/MAS do a full TLB flush on an
unmap operation, whereas Linux does a selective TLB flush up to 33
pages, resulting in lower overall TLB misses. Moreover, Barrelfish
and Barrelfish/MAS do need to remove the mapping capability from
the MDB, which is an additional lookup, and is amortized over 512
affected page table entries. (Recall, there is at least one mapping
cap per page table, which may cover all entries.) Barrelfish/MAS is
able to match vanilla Barrelfish in all cases.

Discussion. The results for the virtual memory operations map, protect
and unmap demonstrate that Barrelfish/MAS is able to match the performance
of the same operation on vanilla Barrelfish. In addition, both operating
systems comparable to Linux in all cases. Linux has an advantage when
mapping and unmapping a small number of pages, whereas it needs to
lookup page table structures based on virtual address. Furthermore, Linux
maintains additional page tables for huge or large page mappings, which
introduces overhead. In contrast, Barrelfish and Barrelfish/MAS use ca-
pabilities which efficiently reference the page table structure. However,
Barrelfish and Barrelfish/MAS need to update the mapping database (insert
or remove the mapping capability), which is amortized over multiple pages.

Therefore, one can implement a fine-grained, least-privilege access control
model in an operating system while still having competitive memory
management performance to an optimized, monolithic operating system
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kernel such as Linux. Moreover, Barrelfish/MAS matches the performance
of vanilla Barrelfish.

7.3 Virtual Memory Operations - Appel-Li
Benchmark

This section evaluates the performance of virtual memory operations
which are relevant to tasks such as garbage collection using the Appel-Li
benchmark [AL91].

Benchmark Methodology. The Appel-Li benchmark measures the time
it takes to protect a page of memory, take a trap into the operating system
kernel by writing to the protected page, and then unprotect the page again.
It does not evaluate other paging-related operations such as mmap and munmap.
This may be used to track page modifications.

The Appel-Li benchmark is executed in three configurations:

1. protl-trap-unprot. Randomly picks a page of memory, write-
protects the page, writes to it, takes a trap, unprotects the page,
continue with next page.

2. protN-trap-unprot. Write-protects 512 pages of memory, writes to
a page of memory, takes a trap, unprotects the page, continues with
next page. This amortizes the cost of protecting the pages by using
a single system call.

3. trap only. Picks a page, tries to write to it, takes the trap, continues
with next page without changing any permissions.

Linux runs the Appel-Li benchmark with its default TLB flush strategy
(Linux Default), which does a selective TLB flush up to 33 affected pages,
and full TLB flush thereafter, and always using full TLB flushes (Linux
Full), Barrelfish/MAS and Barrelfish always use full TLB flushes, and are
evaluated using direct capability invocations, and using the higher-level
memory management functions of libbarrelfish.
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Figure 7.4: Results of the Appel-Li Benchmark on Barrelfish/MAS and

Linux.

Results. Figure 7.4 shows the benchmark results for the three configura-

tions.

The y-axis shows the time per page (or trap for the trap-only case).

The standard error is less than 0.5%. For all configurations, Barrelfish/MAS
is able to outperform Linux.

TLB Flush Strategy. The differences between the default and full
TLB flush strategies are insignificant on Linux.

Barrelfish vs. Barrelfish/MAS. The performance of both systems
are comparable, but Barrelfish/MAS is 100-300 cycles (or <5%)
slower than vanilla Barrelfish.

PMAP vs. Direct Invoke. Barrelfish and Barrelfish/MAS maintains
a user-space library to keep track of a process’ virtual address space.
This library accounts for about 10-15% overhead compared to direct
capability invocations.

Batching. Protecting all 512 pages in one go (protN-trap-unprot),
reduces the amount of traps taken by 511 which amortizes the time
per page reducing the latency by 600-2000 cycles.
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» Trap Performance Barrelfish and Barrelfish/MAS have the exact
same trap handing latency, which is about 1300 cycles faster than
Linux. The trap handlers on Linux and Barrelfish/Barrelfish/MAS
are identical. Barrelfish simply invokes the registered user-space
trap handler on the event of a page fault, whereas Linux performs
more operations such as checking whether the fault address has
been allocated [Bar00].

Discussion. Barrelfish/MAS is able to match Barrelfish with a small 5%
overhead, despite support for multiple address spaces and fine-grained
protection mechanisms. The slight overhead originates from i) a different
mapping capability which does not store a direct pointer to the page-table
capability, and ii) the use of canonical names, which the kernel need to
convert to a kernel virtual address to access the page table. This requires
additional address calculation operations to extract the name of the page
table and convert it to a core-local address.

Both, Barrelfish and Barrelfish/MAS are able to outperform Linux due to
its efficient and lightweight system call and trap handling. This is also
because the capability operations only allow mappings that do not require
multiple translations. This check can be done using a local comparison of
the address spaces of the involved capabilities.

7.4 Dynamic Updates of Translation Tables

This evaluation investigates the overheads resulting from the least-privilege
implementation and model consultation at a real-world scenario of allocat-
ing memory and making it available to software running on a co-processor.
This could be, for instance, setting up a descriptor ring for communication
between a driver and the co-processor. To accomplish this, the following
steps need to be executed:

1. Allocate a region of memory such that it is accessible from the
driver and the co-processor.
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2. Obtain the set of translation units to be configured to make the
allocated memory accessible from the device and the driver.

3. Perform the necessary instructions to configure a variable number
of translation units to make the memory accessible.

Driver software obtains the information of step one and two by consulting
the runtime representation of the model. The model response is then
translated into a sequence of capability operations and RPCs to perform
the necessary memory allocations and address space mappings.

Background: Device Drivers in Barrelfish. This paragraph briefly de-
scribes the mechanisms used by device drivers in Barrelfish/MAS (and
Barrelfish), and how they are started and initialized. The Barrelfish Tech-
nical Note 19 [Barl7a] describes the process in detail.

Device drivers run as user-space processes. Kaluga (the Barrelfish device
manager) starts a new device driver as a response to a hardware change
event, e.g. the PCI Express driver discovers a PCI Express device. As part
of their start arguments, device drivers receive the initial set of capabilities
required to operate the device. For example, a PCI Express device driver
gets a capability to memory mapped registers of the device, the PCI Express
configuration space, and the IOMMU input address space (some of which
may be RPC endpoints). The latter is important to configure the device’s
memory translation unit.

Barrelfish/MAS adds another capability to this set: device drivers also
receive an address-space capability, which allows managing the physical
resources on the device. This is important, because only the device
driver knows about memory resources present on the device. For instance,
depending on the exact model, the Xeon Phi co-processor comes with 6, 8,
or 16 GiB of GDDR memory. The driver uses the address space capability
to derive the corresponding RAM capabilities.

Benchmark Methodology. This benchmark profiles the sequence of
steps initializing and booting the Intel Xeon Phi co-processor. This consists
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of setting up a shared memory region for communication between the
driver and the bootstrap code on the Xeon Phi co-processor, to make the
co-processor operating system image accessible to the bootstrap code. For
this, the Barrelfish Xeon Phi co-processor driver allocates memory and
configures the necessary translation units. Tracing points in the driver
code measure and profile the allocation and configuration steps.

The Xeon Phi co-processors accesses a memory region in host DRAM
through the following chain of translation steps, which the device driver
needs to configure correctly:

Co-processor Core MMU — SMPT — IOMMU — System Bus

Note, the IOMMU can be either enabled or disabled. The driver obtains
this information by consulting the model representation at runtime.

In this evaluation, the following steps are profiled:

1. Model Query: The first step is to find memory resources that are
accessible from the Xeon Phi co-processor and the device driver
managing it. This is effectively a reachability query on the runtime
representation of the model. Moreover, to make the memory re-
sources accessible, the driver may need to configure intermediate
address spaces. This corresponds to running shortest path on the
runtime representation of the model between the address spaces of
the co-processor core and the memory resource.

2. Memory Allocation and Mapping: Based on the results from the
model query, the driver allocates memory resources. This involves
an RPC to the memory manager of the address space indicated
by the model. For the evaluation, the driver requests a memory
region of 8 MiB in size and maps the received frame into its virtual
address space using capability operations. Note, that this operation
is similar to mmap () on Linux.
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3. IOMMU Programming: If the IOMMU is enabled, this step config-
ures the required translation. To map the allocated memory region,
the driver uses the obtained capability of the memory region as a
token of authority to perform the mapping in the co-processor’s
IOMMU address space. The evaluation compares two alternatives
to accomplish this:

* RPC: The driver does an RPC to the IOMMU reference
monitor which manages the IOMMU address space and au-
thenticates the capability presented and ultimately performs
the mapping. This is implemented on top of the capability
system. One possible reason for this setup could be that
the cpudriver does not know the details about a particular
IOMMU.

* Capability Invocation The device driver uses the capability
system which exposes the IOMMU translation structures. It
installs the mapping with a direct capability invocation. This
is safe because the capability system enforces that only valid
mappings can be installed that way.

In both cases, the device driver obtains a capability to the input
address space of the IOMMU. This carries the grant right which
is needed to create a mapping from the SMPT address space to the
IOMMU address space.

4. SMPT Programming: In the last step, the driver uses the capability
obtained in the previous step to set up a mapping in the Xeon
Phi system memory page table. As before, the driver obtains a
corresponding capability of the mapped region in the input address
space of the SMPT.

The capability obtained in the last step enables the mapping into the virtual
address space of the processor cores on the Xeon Phi co-processor. The
driver can send it, or parts of it, to software running on the co-processor.

To provide a frame of reference on the duration of those operations, the
evaluation compares the steps above with the latency of the mmap () operation
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for anonymous memory on Linux with the exact same size, and a user-space
memset () operation using streaming instructions.

Barrelfish/MAS RPC Map | ZR\ |
Barrelfish/MAS Local Map { 7 N
Barrelfish Alloc and Map 1 /ﬂ—l-
Linux MMAP { |
Linux Userspace Memset 1 ///////m
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Il SMPT programming Memset of Allocated Memory

Model Query

Figure 7.5: Breakdown of Memory Allocation and Mapping Latency.

Results. Figure 7.5 shows the profiling breakdown of the four operations
explained in the previous paragraph. In addition, it highlights the time
used for clearing the allocated memory. The x-axis shows the latency in
micro seconds for the three evaluated configurations on the y-axis. The
latency of a mmap() call on Linux requesting a mapping of an anonymous
memory region of the same size serves as a frame of reference.

* Memory Allocation and Mapping. The allocation of the memory
resources and setting up the mappings is the dominant factor in
this benchmark. In fact, zeroing the memory page in the kernel
is the main contributor. Comparing with “Linux User” memset
shows that there is room for improvement in Barrelfish/MAS. Both,
Linux and Barrelfish/MAS perform the allocation, clearing and
mapping of memory in similar times. On Linux, this accounts
for the latency until the mmap call returns. Note, in contrast to
Figures 7.1, 7.2, and 7.3 the memory allocation is also accounted
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for in this evaluation. Compared to Barrelfish, Barrelfish/MAS
achieves the same performance.

* Model Query. The model query determines the address space to
allocate the memory region from and the address spaces which need
configuration. This accounts for 71 usec, or about 5%, to the overall
latency.

* SMPT Configuration. This corresponds to a capability invocation
and a device register write, which accounts for Susec or 0.3% of
the runtime.

* JOMMU Programming. Using direct capability invocations (“Local
Map”) to update the in-memory IOMMU translation tables. This
adds 2usec to the runtime. In contrast, the “RPC Map” configura-
tion performs the same operations by invoking the IPC endpoint
capability of a server which manages the IOMMU. The process
presents two capabilities to the IOMMU server, one that conveys
the right to change a mapping, and one that provides the grant right
to the memory resource. These are the same capabilities needed
for the local mapping, but now they are transferred over RPC to the
IOMMU server, which then performs the mapping operation. Note,
that this requires multiple round trips of the underlying messag-
ing protocol, as Barrelfish’s IPC system can only transfer a single
capability per message. This adds 30usec more to the local case.

Overall, the overhead for the additional address space configurations and
the model query account for 5.7% overhead compared to Linux and 8.3%
of the overall evaluation. There is no significant overhead for the memory
allocation and mapping of Barrelfish/MAS compared to Barrelfish.

Discussion. This evaluation shows that it is possible to efficiently imple-
ment the model queries and the address space configuration following the
least-privilege principle. For subsequent memory allocations and address
space configurations, the results of the model query can be cached which
reduces the overheads even further. This is safe, as the model query merely
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indicates what operations need to be done, but the integrity thereof is
enforced by the capability system. The overall performance is dominated
by the allocation of memory, in particular zeroing the newly allocated
memory in the kernel.

7.5 Scaling and Caching Performance

In the evaluation above, the model query consults the runtime representa-
tion of the model to obtain the address space to allocate memory from, and
the address spaces to configure to make the allocated memory resource
accessible to the co-processor. This corresponds finding the shortest path
from the source node (e.g. a processor core) to the destination (e.g. a
DRAM cell).

This yields the sequence of address spaces in between. The graph grows
with the number of configurable address spaces and possible connections
between them. This evaluation explores the scaling behavior of the model
queries for both, the Prolog implementation and the cached graph in C.

Graph Properties. Modern hardware platforms have an ever-increasing
number of cores and DMA-capable devices. Memory accesses traverse
multiple configurable and fixed interconnects and translation units resulting
in multi-stage address translations schemes. The address spaces are either:

1. apossible source of a memory access (e.g. processor core or device),

2. a possible destination of a memory access (e.g. DRAM cell or
device register),

3. an address space with a configurable translation scheme, or

4. an address space with a fixed translation function.

The model transformations convert the graph by flattening the fixed ad-
dress spaces. The resulting graph consists of configurable address spaces,
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memory resources and cores. This representation is persisted and used to
run queries on.

The resulting graph has a low diameter, i.e. the number of nodes to traverse
from a processor core or device to a memory resource is small. The systems
encountered so far have a diameter of less than ten. On the other hand, the
fan-out of the nodes may be large, e.g. an IOMMU can translate memory
requests from hundreds of PCI devices.

Benchmark Methodology. This benchmark is synthetic. It simulates
the address space topology of a hypothetical system based on the one
described in Section 7.1. The system is configured with an increasing
number of Xeon Phi co-processors, each of which having its own (local)
translation unit and an independent IOMMU configuration. The runtime
representation of the model grows linearly in the number of Xeon Phi
co-processors added to the simulated system.

The benchmark measures the time it takes to determine the set of config-
urable address spaces between a co-processor core and the host DRAM —a
common scenario explained in the previous Section 7.4. This corresponds
to executing a shortest-path algorithm on the graph. In each round of the
benchmark, the number of PCI Express-attached Xeon Phi co-processors
is doubled, until 256 co-processors are present in the system, resulting in
a few thousand of address spaces.

The evaluation compares the following two implementations, which both
are based on Dijkstra’s shortest path algorithm and running on Barrelfish/-
MAS.

1. Prolog. Calculating the shortest path directly in the Prolog repre-
sentation of the model running in EclipseCLP on Barrelfish/MAS.

2. C. Running shortest path on a native C implementation using a
graph encoding as an adjacency matrix.

Results. Table 7.4 shows the results of this evaluation. Each row pro-
vides the runtime and standard deviation of the runtime for the native C

235



Chapter 7 - Evaluation

Number of Devices | Native C | Prolog EclipseCLP

1 68 (x0) 131 (£38)
2 68 (+x0) 149  (+49)
4 68 (£0) 144 (+44)
8 68 (+x0) 166 (+69)
16 68 (+x0) 187 (£54)
32 69 (x0) | 257 (x60)
64 69 (x0) | 427 (=91

128 71 (x0) | 723 (+83)

256 72 (£0) | 1504 (x2)

Times in Microseconds, Standard Deviation in Brackets.

Table 7.4: Scaling Behavior of Determining the Configurable Address
Spaces in a Synthetic, Increasingly Large System.
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implementation and the Prolog variant in EclipseCLP. The number of
devices indicate added co-processors to the system. The two evaluated
implementations differ in their scalability:

1. Prolog. The runtime of the Prolog shortest path algorithm in
EclipseCLP scales linearly with the number of devices. The Prolog
implementation has at least a factor of two overhead.

2. C. Evaluating the shortest path in the C graph representation
exhibits an almost constant runtime for the number devices measured.
Initialization of data structures and consulting the adjacency-matrix
results in a slight linear increase of the runtime.

Discussion. The cost for determining the set of configurable address
spaces which need to be dynamically configured to enable memory access
from a processor node is almost static for efficiently represented graphs
with low diameter and a few thousands of address spaces.

In summary, the native C implementation makes it possible to consult the
address space model representation at runtime to determine which address
spaces require configuration.

7.6 Space and Time Complexity

This evaluation analyzes the space and time complexity of the address
space aware capability system used in Barrelfish/MAS. An efficient im-
plementation is important for a usable deployment in an operating system.
Barrelfish and Barrelfish/MAS share most of the implementation, with the
delta of address space capabilities.

Evaluation Methodology. The analysis consists of two parts:

1. Space Complexity estimates the space requirements to store the
capabilities in Barrelfish/MAS. This includes the space overhead
per page of memory, and bookkeeping information of mappings.
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2. Runtime Complexity analyses the asymptotic behavior of capability
lookups during invocations and mapping database queries.

In both cases, the Linux implementation serves as a frame of reference.

Space Overheads. Barrelfish/MAS stores capabilities in the CSPACE of
an application where they occupy a slot in a CNODE (or a capability table
entry). All CNODE slots are 64 bytes in size. This is enough to store the
following two data structures:

1. Capability Representation. This stores the type of the object this
capability refers to including its name (qualified address), size and
associated rights that can be exercised.

2. MDB Node. This holds pointers and bookkeeping information
needed to insert the capability into the mapping data base.

There is no additional overhead for implementing the mapping database
as the MDB node in the CNODE slot is sufficient. In theory, a single
capability is enough to manage all physical resources of one address space.
To refer to smaller objects, or non-contiguous resources, new capabilities
can be derived. The data, stack, and code segments of a program can be
represented using three capabilities. This is independent of the respective
segment sizes.

To manage and keep track of physical resources, Barrelfish/MAS needs at
least one capability per address space. Overall, the number of capabilities
grows linearly in the number of contiguous regions of physical resources
in the system. There is, however, no upper bound in how many copies
of the same capability can be created. This is limited by the amount of
physical memory available as each copy uses 64 bytes.

Assuming one capability per physical 4 KiB frame results in 64 bytes
overhead per 4 KiB of memory which is 1.5%. As not all objects need
to be exactly 4 KiB in size, the use of larger frames further reduces the
overhead. In comparison, the page struct that Linux manages is up to 80
bytes in size and exists for each 4 KiB frame of memory (or about 2%).
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Barrelfish/MAS uses mapping capabilities to track of mappings. Setting
one or more page-table entries creates a mapping capability each time.
Mappings spanning multiple page-table entries require only a single map-
ping capability per page table spanned. In other words, there are at least
one and up to 512 mapping capabilities for the valid entries of a x86_64
page table. This is similar to Linux maintaining the rmap data structures
for each page of memory that is mapped. The memory requirements for
bookkeeping of mappings grows linearly in the number of mapped frames.
Using larger mappings, that set multiple page-table entries at once further
reduces the bookkeeping overhead.

Runtime Overheads. The CSPACE stores the capabilities of a process
in a two-level structure where a capability reference identifies the slot
within this structure. Because the depth of the tree-like structure is fixed,
lookups are therefore constant time operations: locate the slot in the L1
CNODE, obtain the L2 CNODE and locate the slot within.

The mapping database is a balanced tree data structure which supports
range queries to find all capabilities between a base and a limit. The
mapping database stores the capabilities in their canonical order which,
allows efficient lookup of successors and predecessors. There is a mapping
database per reference monitor. Lookups are in the mapping database are
logarithmic in the total number of capabilities in this partition.

The ability to efficiently traverse the mapping database is essential to find
the related capabilities when a capability is revoked (or the last copy of
an address space capability is deleted). This corresponds to a range query
plus traversing the MDB and removing the capability.

Linux does not expose physical resources directly to user space. Within the
kernel, direct pointers to the page struct can be passed around. Finding the
page struct that corresponds to a physical address depends on the memory
model. First, the physical address is converted to a physical frame number.
Then, in the simplest case (flat memory model), the physical frame number
is used as an index into an array, or passed to a more complex function to
find the page struct in the worst case.
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Figure 7.6: Running Barrelfish/MAS on an ARM FastModels [ARM19b]
Platform Based on a Sockeye Description.

Discussion. In summary, the minimum space required to track resources
with capabilities grows linearly in the number of contiguous regions of
physical memory. In contrast, Linux maintains a page struct per 4 KiB
frame of memory resulting in 2% overhead compared to < 1.5% for a
capability per 4 KiB frame of memory. In Barrelfish/MAS, the number
of capabilities is limited by the amount of memory resources available
to create CNODE:s for storing them. Overall, bookkeeping overhead is
comparable between Barrelfish/MAS and Linux. The tree-based mapping
database implementation enables efficient lookups of capabilities by name
and allows finding predecessors and successors efficiently.

7.7 Correctness on Simulated Platforms

This evaluation is qualitative. It demonstrates the integration of the address
space model into the operating system toolchain to generate platform-
specific operating systems code. This enables Barrelfish/MAS platforms
with unusual memory topologies. This stress-tests the model application
in the operating system.
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| Configurable Memory Map | | Configurable Memory Map |

ARM Cortex A57 ARM Cortex A57

Figure 7.7: FastModels Simulator Configuration

Evaluation Methodology. Figure 7.6 illustrates the schema of this eval-
uation. First, the platform configuration (including the memory subsystem)
is specified in a Sockeye [Sch17; Barl7b] file. This describes the com-
ponents and the memory subsystem of a simulator platform. From the
Sockeye description, the Sockeye compiler produces two outputs:

1. Simulator Configuration. The LISA+ hardware description that
configures the ARM FastModels simulator [ARM19b], and

2. Operating System Platform Code. Low-level operating systems
code such as page tables and address translation functions based on
the address space model extracted from the Sockeye description.

The generated operating-systems code is then linked into the Barrelfish/-
MAS kernel at compile time. This creates platform specific bootdrivers,
page tables, and operating systems kernels.

The simulated platform consists of two ARM Cortex AS57 processor clusters,
each having its own memory bus which defines the address translation
from the processor cluster to the rest of the system. Figure 7.7 shows an
illustration of the four tested configurations:

1. Uniform Both processor clusters have an identical memory map.

241



Chapter 7 - Evaluation

2. Swapped DRAM is split in two halves where on one processor
cluster, the first half appears before the second, and vice versa on
the other i.e. the address ranges of the two halves are swapped.

3. Private There are three memory regions, one of which is shared at
between both processors, and there is a private memory region per
processor cluster.

4. Private Swapped This is the combination of the swapped and private
configuration: each processor cluster has its own private memory,
plus the shared memory is split in half and is mapped with swapped
address ranges.

Results. Barrelfish/MAS is able to boot and run successfully on all tested
configurations including memory management tasks and shared-memory
message passing between two cores. This worked just out of the box,
no programmer effort was required. All platform specific data structures,
page tables and translation functions were generated based on the Sockeye
platform description.

Discussion. This evaluation showed that Barrelfish/MAS together with
the address space model is capable on running correctly on platforms with
complex memory systems. This worked because capabilities strictly use
canonical names which are converted to a local address prior using it (if
possible). Other operating systems only support case 1 (e.g. Linux, sel4,
Barrelfish, Popcorn Linux [Bar+15a]) or provide limited support for case
3 with private memory resources (Barrelfish, Popcorn Linux)

7.8 Conclusion

This chapter demonstrated that it is possible to efficiently implement the
detailed and faithful address space model following the least-privilege
principle in an operating system. The implementation in Barrelfish/ MAS
is able to match the virtual memory operation performance of Linux.
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Additional model consultation and translation hardware configuration add
less than 10% overhead to implement least-privilege. Capabilities are
a natural match for fine-grained authorization, while at the same time
allowing for time and space efficient resource management.
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Conclusion and Future
Directions

This chapter concludes the thesis and presents future directions of the
research presented in this thesis.

8.1 Conclusion

This dissertation surveyed different memory address translation schemes
and hardware platforms which have been implemented in real hardware or
which have been proposed in the architecture community. Based on this
survey, the thesis demonstrated how the memory abstractions currently
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used in operating systems violate the actual hardware characteristics which
in turn has resulted in various bugs and security vulnerabilities in operating
systems.

Based on the implications drawn from the analysis of memory translation
schemes and platforms, the dissertation made the case to make the address
space as a first class operating system abstraction to represent and capture
the characteristics of memory address translation, from virtual address
spaces to multi-stage address translation schemes and interconnect net-
works, of any platforms. The semantics of the address space abstraction
were then formally defined in the Decoding Net, a representation of the
model in Isabelle/HOL. This provides a sound basis to reason about ad-
dress decoding and algorithms operating on top of the model. Moreover,
the thesis shows that existing hardware at the example of a software loaded
TLB can be expressed as a refinement of the Decoding Net model.

The Decoding Net model is able to capture the static state of a platform. This
state, however, is hardly static: processes and devices require updates to
translation units to access memory, or new hardware is discovered, turned
on or off, or even hot-plugged in a machine. To express this dynamic
behavior, the Decoding Net is extended by a layer expressing this dynamic
configuration. Each dynamic address space then gets its configuration
space from which it can select its current configuration state from.

The configuration space of an address space defines what address transla-
tion settings are supported by the hardware itself. To change the configu-
ration of an address space, the subject requesting the change needs to have
sufficient authority to do so. The dissertation presented a fine-grained,
least-privilege separation of the involved subjects, objects and authorities
which is expressed as an access control matrix. Based on this matrix, the
configuration space of each address space is further reduced to only allow
transitions for which the subject has sufficient authority.

The dissertation adopts the proven methodology of the selL4 verification
project to obtain a rigorous model of memory management in an operating
system. The development process of the model and its semantics are
guided by an executable specification which allows rapid prototyping. The
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resulting model and its refinement are the amenable to implementations in
both, capability-based systems (e.g. Barrelfish), and ACL-based systems
such as Linux.

The thesis further describes the implementation of Barrelfish/MAS demon-
strating the feasibility of an efficient operating system implementation
while at the same time providing safe and clean way to deal with the
complexity problem of memory allocation, enforcement and configuration.
Barrelfish/MAS leverages and extends the distributed, partitioned capabil-
ity system of Barrelfish, which is a natural match for an implementation
following the principle of least-privilege.

The evaluation of Barrelfish/MAS provides evidence thatitis indeed feasible
to efficiently implement the full complexity of multiple, dynamic address
spaces in an operating system in a least-privilege fashion. Not only the
performance and scalability aspects are good, Barrelfish/MAS is able to
boot inherently complex and even pathological systems with heterogeneous
memory layouts.

8.2 Future Work

The work presented in this thesis provides an end-to-end solution, including
a new abstraction of a machine’s memory subsystem as seen by software,
and an efficient operating system implementation with corresponding
toolchain. This section describes are areas that have room for improvement
or where there is opportunity for future projects.

8.2.1 Model Improvements

The Decoding Net model presented in this thesis purely encodes how an
address is being decoded by hardware. This, however, does not capture
the entire picture: even if two memory resources are reachable from a
particular core, their access characteristics may be different, depending on
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their affinity or proximity to the accessing core, or the type of memory.
Moreover, an access may be a load or a store.

8.2.1.1 Memory Properties

There are different types of memory resources, each of which having
different characteristics: DRAM is volatile and byte addressable, multiple
writes can be combined, and accesses may be cached. Non-volatile memory
has similar characteristics but is persistent. Device registers can also be
byte addressable, but accesses should not be cached or writes combined.
Some memory resources may be cache-coherent with a few other cores,
while others are not.

This information is important when allocating memory resources and
configuring translation units. For example, I/O regions should be mapped
non-cachable or as strongly-ordered memory in a processor’s MMU, or the
GDDR memory on the Xeon Phi co-processor is cache coherent with the
co-processor cores, but not with the cores on the host accessing it through
the PCI Express subsystem.

It is, however, not sufficient to just add some properties along the decode-
relation in the model. There can be multiple resolution paths through
the graph, resulting in memory accesses with different characteristics.
Properties can be added or removed along the decode-path. The rules and
semantics of those alterations need to be well specified.

8.2.1.2 Access Properties

Related to the memory properties above are the characteristics of a memory
access themselves. For example, the MMU supports different memory
attributes or memory protection keys per page of memory which affects
the properties of the memory access. Moreover, a memory resource can
be read or written to whereas not all of them support those two operations.
The processors have different operating modes such as user/supervisor or
secure/non-secure, which do change the access properties.
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A memory access has a certain width, e.g. memory is fetched from the
DRAM in cache-line granularity whereas a processor may load a single
byte from a cache line into a register. Likewise, 64-bit device registers
must be accessed using two 32-bit reads or writes.

Some of these access properties can be modeled as separate address spaces
(e.g. secure/non-secure). While others (e.g. access width) cannot, or
not naturally. Like the memory properties, the semantics of the access
properties need to be well-defined.

8.2.1.3 Performance Characteristics

The Decoding Net model encodes how many decode steps it takes from a
processor or device doing a memory access until it reaches the memory
resource. This is some indication about the affinity and proximity of
the access. By adding more performance characteristics, such as latency
and bandwidth, to the translate-function of an address space, a detailed
performance model of a machine can be built.

Using this performance information, allocation and scheduling decisions
can be made in much finer granularity as possible with libnuma today.
Runtime systems such as Smelt [Kae+16] or Shoal [Kae+15] can then base
their scheduling and allocation policies on a detailed performance model
of the machine.

8.2.1.4 Caches

The Decoding Net model describes how a name is resolved in the system.
However, doing so on real hardware can change the state of the system:
data is fetched from a cache or loaded into the cache as a result of the
memory access, misses in the TLB are triggering page-table walks which
in turn issue more memory reads.

It is the ultimate goal of the model to exactly express this kind of highly
dynamic aspects of caches in the system with sufficient detail. The interac-
tion with the dynamic extension to the model and the least-privilege model
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seems interesting in this regard: having the access right to a memory
resource seems to be tied with the right to modify the cache’s address
space.

8.2.2 Implementation in a Monolithic OS Kernel

The dissertation sketched a possible implementation inside a monolithic
kernel at the example of Linux. While the sketch hints at the feasibility
of a possible implementation, a real prototype may still require invasive
changes to the memory management subsystem of the Linux kernel itself.

There are two aspects to an implementation inside a monolithic operating
system kernel:

1. The use of canonical names throughout the kernel when referring
to physical resources and name resolution in an address space.

2. Applying (or even enforcing) the principle of least-privilege to
address space management functions.

8.2.3 Towards Correct-by-Construction Address Spaces

At its current state, the Sockeye language and toolchain are designed to
support the memory and interrupt subsystem, power domains and clock
trees. This enabled its use in the work presented in this dissertation
to express the memory topology of a platform and generate operating
systems code. This section describes a road map for obtaining a correct-
by-construction address space management system.

8.2.3.1 Algorithm Verification

The model representation (in Prolog) produced by the Sockeye compiler is
similar to the Decoding Net model defined in Isabelle/HOL. Likewise, the
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transformations that run on top of the Sockeye-generated executable model
more or less follow the formally specified counterparts in Isabelle/HOL.

The executable model representation and the algorithms seem to produce
the right results. To be sure about the actual correctness of any software
requires a formal proof. There are three aspects to this:

1. Sockeye to Prolog. The Sockeye compiler takes an hardware de-
scription file as input and produces a Prolog representation encoding
all address spaces and their translations or memory resources. This
transformation process is not verified.

2. Prolog Representation. Assuming that the Sockeye compiler cor-
rectly produces Prolog code (previous point), the next step is to show
that the Prolog representation and its semantics are a refinement of
the Decoding Net model. In particular, address resolution produces
the same result.

3. Prolog Algorithms. The previous two steps ensure that the generated
Prolog representation of the Decoding Net model is correct and has
well-defined semantics. The last step is to show the transformation
algorithms and queries written in Prolog produce a correct result.

Following these steps ensures that a Sockeye description of a hardware
platform can be transformed into a well-founded Prolog representation
usable during compilation and runtime.

To accomplish this, a proof framework for Prolog programs is required.

8.2.3.2 Expressing Configuration Spaces

The work presented in this dissertation added the notion of a configuration
space to the dynamic address spaces in a system. Conceptually, hardware
defines the possible configurations an address space can assume, while
the capability system (or the ACLs) reduce this to the set of allowed
configurations.
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The goal of this line of future work is to express the set of possible
configurations of an address space in Sockeye, e.g. an MMU translates 4
KiB- and 2 MiB-aligned regions of memory. Based on these descriptions
in Sockeye, operating system code can be generated that check, whether
the arguments of a configuration step are valid, e.g. the memory region
has the right alignment and size.

8.2.3.3 Configuration Steps Generation

The current implementation is able to produce a list of address spaces that
need to be configured to make a resource accessible in the target address
space. This separates the address space to be configured from the process
of applying the configuration.

Using the capability system, the latter could be abstracted as a sequence
of capability invocations that performs a mapping in an address space.
For example, the subject presents a capability to the input address space
and a capability to the destination resource. The generated code then
verifies that it matches the constraints of the underlying hardware, then
performs a sequence of capability operations that performs the mapping.
The generated code roughly corresponds to the PMAP code currently
present in Barrelfish. The CapDL framework [seL 18] could possible used
for this.

8.2.3.4 Device Representation

Barrelfish already has Mackerel [Bar13] another domain specific language
that expresses the register and data structure layout defined by hardware.
Combining Sockeye with Mackerel can provide the basis for referring to
a specific register and obtain its location in the machine. This would
somewhat represent a device. The information that this memory resource
are the memory mapped registers described by this Mackerel file can be
used to bootstrap and start device drivers.
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8.2.3.5 API Generation

Translation structures are hardware defined: a page table on x86_64 is
different than on ARMVS, for instance. If Sockeye is able to express the
configuration space as explained above, this information can also include
the corresponding translation structure and how they are managed.

Using this information, an API modifying the translation structure can be
generated and, in the case of Barrelfish, integrated into the capability system.
The sequence of configuration steps obtained from above combined with
the generated translation structure modification API then yields a correct-
by-construction address space management infrastructure.

8.2.4 Integration with Other Models

Expressing the semantics of memory accesses and representing the memory
subsystem of a platform are used in proofs about system software and
runtime systems. The Decoding Net model and its extensions can serve as
a basis for those proofs faithfully describing the hardware.

8.2.4.1 Integration into System Software Verification

Verified system software, such as sel.4 and CertiKOS, use an over-simplified
abstraction of physical memory to base their proofs on. The model pre-
sented in this dissertation can replace this simple abstraction to provide a
sound foundation for those fully verified systems.

This integration leads to new challenges regarding the correctness proofs
with respect to dynamic address spaces and multi-stage memory translation
schemes, especially when a single memory resource is accessible under
different names from different cores with independent translation units.

8.2.4.2 Memory Models and ISA Semantics

Memory requests can get reordered by the processor. The extent this can
happen is defined by the memory model, e.g. total store ordering (TSO)
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on x86 or weak memory models such as used in ARM or Power. The
semantics of instructions with respect to the memory model have been
formally specified. This is orthogonal to the Decoding Net. Combining
the semantics of possible memory access reordering with the formalism of
address decoding could lead to a rich and expressive model of the memory
subsystem of any platform.

8.2.5 Applications to Other Areas of Operating Systems

The memory subsystem is not the only aspect of a hardware platform where
the formal modeling approach and least-privilege principle can be applied.

8.2.5.1 Interrupts, Power and Clocks

There is a duality between memory addressing and interrupts [Ach+17b]
and the same model can be used to express both — in fact some interrupts
are delivered as memory writes (e.g. MSI-X). Interrupts also traverse
multiple translation steps from its source to destination and those interrupt
controllers need to be configured [Hum+17].

Similarly, power and clocks are routed through a network of dividers and
voltage regulators. This seems to form a directed graph which indicates
the power sources and clock domains that need to be enabled. Like with
memory or interrupts, those clock dividers and voltage regulators need to
be configured. The question at hand is whether the abstraction of addresses
can be used to represent voltage or clocks in this case.

8.2.5.2 Least Privilege Device Drivers

Device drivers require access to a broad set of resources: the device
registers to configure the device, interrupt vectors to set up interrupt
delivery, and IOMMU configuration mechanisms. Managing devices
following the principle of least-privilege seems reasonable: each driver
should only have the right to the resources it needs to operate the device.
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A similar decomposition on a higher level can be done: identification of
the subjects (device drivers and system services), objects (device registers,
IPC endpoints) and the authority.

8.2.6 Application to Network Configuration

The Decoding Net expresses how addresses are routed through the memory
subsystem of a platform. There seems to be an overlap in the area of network-
ing where switches forward network packets based on their configuration.
Similar to the memory subsystem, the switches also need to be config-
ured, which requires a well-founded understanding of the network topology.
Techniques such as correct-by-construction configurations [Ryz+17] may
be also applicable to the context of memory addressing.
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